Lecture 24 Section 11.4 Absolute and Conditional

Convergence; Alternating Series
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1 Convergence Tests

Basic Series that Converge or Diverge

Basic Series that Converge
Geometric series: Zxk, if |z| <1

1
p-series: Z T’ ifp>1

BaSIC SerleS that Dl V erge
1y series Qf or wiic P 1m ayg 7

1
p-series: Z o ifp<1

Convergence Tests (1)

Basic Test for Convergence
Keep in Mind that, if ap, = 0, then the series Y ay diverges;
therefore there is no reason to apply any special convergence test.

Ezamples 1. Y. z* with |z| > 1 (e.g, Y.(—1)¥) diverge since z* - 0. [lex]
k
k . 1
Zm diverges since kLH — 1 # 0. [lex] Z (1 — k) diverges since
ap=(1-1Fse 2o

Convergence Tests (2)

Comparison Tests
Rational terms are most easily handled by basic comparison or limit comparison
with p-series > 1/kP

Basic Comparison Test



1 K3
Z CYER converges by companson with Z 3 Z BradrT converges

2
by comparison with Z = Z m converges by comparison with Z 3
1 1 1
Z 1 diverges by comparison with Z 30+ 1) Z (k£ 6) diverges by

1
comparison with Z P16

Limit Comparison Test

diverges

1 3k2 4+ 2k +1
Z e converges by comparison with Z e Z %

3 5vEk + 100
by comparison with -
y 5p Zk ZW\[ 0k
2 3

Convergence Tests (3)

Root Test and Ratio Test
The root test is used only if powers are involved.

converges by comparison with

Root Test
1k _ 2 L
Z oF converges: (ar)" =5 [kV*]" = 31 Z (Ink)

2
k
g 0 Z (1 - ) converges: (a,f)l/’c = (1 + %) el

- converges: (ak)l/k =

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and
factorials.

Ratio Comparison Test
k2 a 2 1
Loaky1 1 (k+1) 1 L oQr+1 1
E oF converges: —o= = 3 5 g o converges: “US = g = 0
k Ak+1 1 k41 1 kk di Ak+1 1 1\F
g 10 converges: == = 15" "% — 10 E a] werges: — = = ( + *) —e

2 1-(2/3) »
Zw converges: ‘IZ—:I =2. W Z f converges: “Z:l =

1
w1 — 0

2 Absolute Convergence

2.1 Absolute Convergence

Absolute Convergence



Absolute Convergence
A series Y ay, is said to converge absolutely if > |ag| converges.

if 3" |ag| converges, then > ay converges.
i.e., absolutely convergent series are convergent.

Alternating p-Series with p > 1

—1)k 1
Z ( kp) , p > 1, converge absolutely because Zk—p converges. =
; % =1- 92 + 33 T o converge absolutely.

Geometric Series with —1 <z <1
Z(fl)J(k)xk, —1 < z < 1, converge absolutely because Z|x|k converges.
1 1 1 1 1 1

= 1_5_272+§_?+275+276_,,, converge absolutely.

Conditional Convergence

Conditional Convergence
A series Y ay is said to converge conditionally if > aj converges while Y |ag|
diverges.

Alternating p-Series with 0 <p <1

—1)k 1
Z (=1 , 0 < p <1, converge conditionally because Z w diverges. =

kp
— (—1)F 1 1.1 1
% =1- 3 + 3~ converge conditionally.
k=1

3 Alternating Series

Alternating Series
Alternating Series

Let {ax} be a sequence of positive numbers.
Z(—l)kak =ay—a1t+ay—az+aqg—---
is called an alternating series.

Alternating Series Test
Let {ax} be a decreasing sequence of positive numbers.

If a, — 0, then Z(—l)kak converges.
Alternating p-Series with p > 0

(—1)* . 1 . ron D
E w P> 0, converge since f(z) = it decreasing, i.e., f'(z) = g
. N (—1)kH 1 1 1
0 for Vo > 0, and 1 =0. = E A [T
or ¥ >0, and lim_f(x) 2 27371

converge conditionally.



Examples

—1)F 1 2
Z 2(k +) 7» converge since f(x) = 2o+ 1 is decreasing, i.e., f'(x) = OIS >
0 for Vo > 0, and lim f(z) =0.

—1)kk 210
Z lE:Q :10, converge since f(x) = ﬁ is decreasing, i.e., f'(x) = _(;;Jril())Q >
0, for Vz > /10, and lim f(z) = 0.
An Estimate for Altanntine Qamine

e
0 51 83 S5 L sS4 S2 S0
An Estimate for Alternating Series
and let

Let {ar} be a decreasing sequence of positive numbers that tends to 0
o0

L = Z(—l)kak. Then the sum L lies between consecutive partial sums sy,

k=0
s . .
el Sp < L < spq1, if nisodd;  sp+1 < L < s,, if nis even.

and thus s,, approximates L to within a, 11

|L — sp| < any1-

Example
. . o (—1)k+1 11 Y
Find s,, to approximate Z ~——— =1— -+ —--- within 107°.
k=1 23
0 —1)k+1 oo _1)*
Set Z ( 2} = (k+)1 . For |L — s,| <1072, we want
k=1 k=0
1
pp1= ———— <1072 = n+2>10° = n>98.
T 1) +1
Then n = 99 and the 99th partial sum s is
1 1 1 1 1
=1l-=-—+-—-4--4+—=—— ~0.6882.
599 23 1T T 99 100
From the estimate )
L— = — ~ 0.00991.
| 599] < @100 101
we conclude that
=, (1)
S99 ~ 0.6882 < ) =2 <0.6981 ~ s100

k=1



Example

Find s, t imat i Cut 1 ! + ! ithin 102
ind s, to approximate oy = L5t within .
pre (2k + 1)! 3! 5l
For |L — s,| < 1072, we want )
] =——— <107 = > 1.
T B+ 1) + 1) "=

Then n = 1 and the 2nd partial sum 521 is
s1=1— = ~0.8333
. 3! 1
From the estimate IL—s1| <as= —~ 0.0083.
we conclude that 5!

51~ 0.8333 < Z
k=0

(71)k+1
2k + 1)

=sinl < 0.8416 = s9

4 Rearrangements

Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

Z“’(fl)k 1 1 1 1 1 2
2o Tt gt T g abolutely

1t 1 1 1 1 1 1,2
Rearmngementl—i—?—§+f24+2f6—2f3+2f8+2T0—2*5"'-——g

Theorem 2. All rearrangements of an absolutely convergent series converge
absolutely to the same sum.

Why Absolute Convergence Matters: Rearrangements (2)
Rearrangement of Conditional Convergence Series

2 (—1)kH1 1 1 1 1 1 »
E ———=1—-c-+-—=-4+-——-+4--- =1n2 conditionall
2 A 2—|—3 4—|—5 6+ n2 conaitionally
11 1 1 1 1 1 1
R tl+-—-+-+-—=+-+——=---7= #In2
earrangemen —|—3 2—|—5+7 4+9+11 5 # In
Multiply the original series by %
IS (- 1 1 1 1 1 1
- —_— == = = - — = —_ ~:712
2;1 k 57176 s 10 2 "

Adding the two series, we get the rearrangement

2 (=DE 1 SN (1R 1 1 1 1 1 3
~ 4= = 4 -4 4 —Z4...=Z1n2
D tiX tyogtstrogt S
k=1 k=1
Remark



e A series that is only conditionally convergent can be rearranged to converge
to any number we please.

e It can also be arranged to diverge to +00 or —oo, or even to oscillate
between any two bounds we choose.

Outline
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