Lecture 24Section 11.4 Absolute and Conditional Convergence; Alternating Series

 Jiwen He

 Jiwen He}

1 Convergence Tests

Basic Series that Converge or Diverge

Basic Series that Converge

$$
\begin{array}{rll}
\text { Geometric series: } & \sum x^{k}, & \text { if }|x|<1 \\
p \text {-series: } & \sum \frac{1}{k^{p}}, & \text { if } p>1
\end{array}
$$

Basic Series that Diverge

$$
\begin{gathered}
\text { Any series } \sum a_{k} \quad \text { for which } \lim _{k \rightarrow \infty} a_{k} \neq 0 \\
p \text {-series: } \quad \sum \frac{1}{k^{p}}, \quad \text { if } p \leq 1
\end{gathered}
$$

Convergence Tests (1)

Basic Test for Convergence

Keep in Mind that, if $a_{k} \nrightarrow 0$, then the series $\sum a_{k}$ diverges; therefore there is no reason to apply any special convergence test.

Examples 1. $\sum x^{k}$ with $|x| \geq 1$ (e.g, $\left.\sum(-1)^{k}\right)$ diverge since $x^{k} \nrightarrow 0$. [1ex] $\sum \frac{k}{k+1}$ diverges since $\frac{k}{k+1} \rightarrow 1 \neq 0 . \quad[1 \mathrm{ex}] \sum\left(1-\frac{1}{k}\right)^{k}$ diverges since $a_{k}=\left(1-\frac{1}{k}\right)^{k} \rightarrow e^{-1} \neq 0$.

Convergence Tests (2)
Comparison Tests
Rational terms are most easily handled by basic comparison or limit comparison with p-series $\sum 1 / k^{p}$

Basic Comparison Test
$\sum \frac{1}{2 k^{3}+1}$ converges by comparison with $\sum \frac{1}{k^{3}} \sum \frac{k^{3}}{k^{5}+4 k^{4}+7}$ converges by comparison with $\sum \frac{1}{k^{2}} \sum \frac{1}{k^{3}-k^{2}}$ converges by comparison with $\sum \frac{2}{k^{3}}$ $\sum \frac{1}{3 k+1}$ diverges by comparison with $\sum \frac{1}{3(k+1)} \sum \frac{1}{\ln (k+6)}$ diverges by comparison with $\sum \frac{1}{k+6}$

Limit Comparison Test

$\sum \frac{1}{k^{3}-1}$ converges by comparison with $\sum \frac{1}{k^{3}} . \quad \sum \frac{3 k^{2}+2 k+1}{k^{3}+1}$ diverges by comparison with $\sum \frac{3}{k} \sum \frac{5 \sqrt{k}+100}{2 k^{2} \sqrt{k}-9 \sqrt{k}}$ converges by comparison with $\sum \frac{5}{2 k^{2}}$

Convergence Tests (3)

Root Test and Ratio Test

The root test is used only if powers are involved.
Root Test
$\sum \frac{k^{2}}{2^{k}}$ converges: $\left(a_{k}\right)^{1 / k}=\frac{1}{2} \cdot\left[k^{1 / k}\right]^{2} \rightarrow \frac{1}{2} \cdot 1 \sum \frac{1}{(\ln k)^{k}}$ converges: $\left(a_{k}\right)^{1 / k}=$
$\frac{1}{\ln k} \rightarrow 0 \sum\left(1-\frac{1}{k}\right)^{k^{2}}$ converges: $\left(a_{k}\right)^{1 / k}=\left(1+\frac{(-1)}{k}\right)^{k} \rightarrow e^{-1}$

Convergence Tests (4)

Root Test and Ratio Test
The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$\sum \frac{k^{2}}{2^{k}}$ converges: $\frac{a_{k+1}}{a_{k}}=\frac{1}{2} \cdot \frac{(k+1)^{2}}{k^{2}} \rightarrow \frac{1}{2} \sum \frac{1}{k!}$ converges: $\frac{a_{k+1}}{a_{k}}=\frac{1}{k+1} \rightarrow 0$ $\sum \frac{k}{10^{k}}$ converges: $\frac{a_{k+1}}{a_{k}}=\frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10} \sum \frac{k^{k}}{k!}$ diverges: $\frac{a_{k+1}}{a_{k}}=\left(1+\frac{1}{k}\right)^{k} \rightarrow e$ $\sum \frac{2^{k}}{3^{k}-2^{k}}$ converges: $\frac{a_{k+1}}{a_{k}}=2 \cdot \frac{1-(2 / 3)^{k}}{3-2(2 / 3)^{k}} \rightarrow 2 \cdot \frac{1}{3} \sum \frac{1}{\sqrt{k!}}$ converges: $\frac{a_{k+1}}{a_{k}}=$ $\sqrt{\frac{1}{k+1}} \rightarrow 0$

2 Absolute Convergence

2.1 Absolute Convergence

Absolute Convergence

Absolute Convergence

A series $\sum a_{k}$ is said to converge absolutely if $\sum\left|a_{k}\right|$ converges.

$$
\text { if } \sum\left|a_{k}\right| \text { converges, then } \sum a_{k} \text { converges. }
$$

i.e., absolutely convergent series are convergent.

Alternating p-Series with $p>1$
$\sum \frac{(-1)^{k}}{k^{p}}, p>1$, converge absolutely because $\sum \frac{1}{k^{p}}$ converges. $\quad \Rightarrow$
$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2}}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}-\cdots$ converge absolutely.
Geometric Series with $-1<x<1$
$\sum(-1)^{j(k)} x^{k},-1<x<1$, converge absolutely because $\sum|x|^{k}$ converges.
$\Rightarrow \quad 1-\frac{1}{2}-\frac{1}{2^{2}}+\frac{1}{2^{3}}-\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{1}{2^{6}}-\cdots$ converge absolutely.

Conditional Convergence

Conditional Convergence

A series $\sum a_{k}$ is said to converge conditionally if $\sum a_{k}$ converges while $\sum\left|a_{k}\right|$ diverges.

Alternating p-Series with $0<p \leq 1$
$\sum \frac{(-1)^{k}}{k^{p}}, 0<p \leq 1$, converge conditionally because $\sum \frac{1}{k^{p}}$ diverges. \Rightarrow $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\cdots$ converge conditionally.

3 Alternating Series

Alternating Series

Alternating Series

Let $\left\{a_{k}\right\}$ be a sequence of positive numbers.

$$
\sum(-1)^{k} a_{k}=a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-\cdots
$$

is called an alternating series.

Alternating Series Test

Let $\left\{a_{k}\right\}$ be a decreasing sequence of positive numbers.
If $a_{k} \rightarrow 0, \quad$ then $\sum(-1)^{k} a_{k}$ converges.
Alternating p-Series with $p>0$
$\sum \frac{(-1)^{k}}{k^{p}}, p>0$, converge since $f(x)=\frac{1}{x^{p}}$ is decreasing, i.e., $f^{\prime}(x)=-\frac{p}{x^{p+1}}>$
0 for $\forall x>0$, and $\lim _{x \rightarrow \infty} f(x)=0 . \quad \Rightarrow \quad \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\cdots$
converge conditionally.

Examples

$\sum \frac{(-1)^{k}}{2 k+1}$, converge since $f(x)=\frac{1}{2 x+1}$ is decreasing, i.e., $f^{\prime}(x)=-\frac{2}{(2 x+1)^{2}}>$ 0 for $\forall x>0$, and $\lim _{x \rightarrow \infty} f(x)=0$.
$\sum \frac{(-1)^{k} k}{k^{2}+10}$, converge since $f(x)=\frac{x}{x^{2}+10}$ is decreasing, i.e., $f^{\prime}(x)=-\frac{x^{2}-10}{\left(x^{2}+10\right)^{2}}>$ 0 , for $\forall x>\sqrt{10}$, and $\lim _{x \rightarrow \infty} f(x)=0$.

An Estimate fre 1 ltannatine Coninc

An Estimate for Alternating Series
Let $\left\{a_{k}\right\}$ be a decreasing sequence of positive numbers that tends to 0 and let $L=\sum_{k=0}^{\infty}(-1)^{k} a_{k}$. Then the sum L lies between consecutive partial sums s_{n},
$s_{n+1}, \quad s_{n}<L<s_{n+1}$, if n is odd; $s_{n+1}<L<s_{n}$, if n is even.
and thus s_{n} approximates L to within a_{n+1}

$$
\left|L-s_{n}\right|<a_{n+1} .
$$

Example

Find s_{n} to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3} \cdots$ within 10^{-2}.
Set $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+1}$. For $\left|L-s_{n}\right|<10^{-2}$, we want

$$
a_{n+1}=\frac{1}{(n+1)+1}<10^{-2} \Rightarrow n+2>10^{2} \Rightarrow n>98
$$

Then $n=99$ and the 99 th partial sum s_{100} is

$$
s_{99}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{99}-\frac{1}{100} \approx 0.6882
$$

From the estimate

$$
\left|L-s_{99}\right|<a_{100}=\frac{1}{101} \approx 0.00991
$$

we conclude that

$$
s_{99} \approx 0.6882<\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\ln 2<0.6981 \approx s_{100}
$$

Example

Find s_{n} to approximate $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2 k+1)!}=1-\frac{1}{3!}+\frac{1}{5!} \cdots$ within 10^{-2}.
For $\left|L-s_{n}\right|<10^{-2}$, we want

$$
a_{n+1}=\frac{1}{(2(n+1)+1)!}<10^{-2} \quad \Rightarrow \quad n \geq 1
$$

Then $n=1$ and the 2 nd partial sum s_{2} is

$$
s_{1}=1-\frac{1}{3!} \approx 0.8333
$$

From the estimate
we conclude that

$$
\left|L-s_{1}\right|<a_{2}=\frac{1}{5!} \approx 0.0083
$$

$$
s_{1} \approx 0.8333<\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2 k+1)!}=\sin 1<0.8416 \approx s_{2}
$$

4 Rearrangements

Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k}}=1-\frac{1}{2}+\frac{1}{2^{2}}-\frac{1}{2^{3}}+\frac{1}{2^{4}}-\frac{1}{2^{5}}+\cdots=\frac{2}{3} \text { absolutely } \\
& \text { Rearrangement } 1+\frac{1}{2^{2}}-\frac{1}{2}+\frac{1}{2^{4}}+\frac{1}{2^{6}}-\frac{1}{2^{3}}+\frac{1}{2^{8}}+\frac{1}{2^{10}}-\frac{1}{2^{5}} \cdots ?==\frac{2}{3}
\end{aligned}
$$

Theorem 2. All rearrangements of an absolutely convergent series converge absolutely to the same sum.

Why Absolute Convergence Matters: Rearrangements (2) Rearrangement of Conditional Convergence Series

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2 \text { conditionally } \\
& \text { Rearrangement } 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots ?=\neq \ln 2
\end{aligned}
$$

Multiply the original series by $\frac{1}{2}$

$$
\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}+\cdots=\frac{1}{2} \ln 2
$$

Adding the two series, we get the rearrangement

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}+\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\cdots=\frac{3}{2} \ln 2
$$

Remark

- A series that is only conditionally convergent can be rearranged to converge to any number we please.
- It can also be arranged to diverge to $+\infty$ or $-\infty$, or even to oscillate between any two bounds we choose.

Outline

Contents

1 Convergence Tests 1
2 Absolute Convergence 2
2.1 Absolute Convergence . 2

3 Alternating Series 3
4 Rearrangements 5

