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1 Convergence Tests

Basic Series that Converge or Diverge

Basic Series that Converge

Geometric series:
∑

xk, if |x| < 1

p-series:
∑ 1

kp
, if p > 1

Basic Series that Diverge

Any series
∑

ak for which lim
k→∞

ak 6= 0

p-series:
∑ 1

kp
, if p ≤ 1

Convergence Tests (1)

Basic Test for Convergence
Keep in Mind that, if ak 9 0, then the series

∑
ak diverges;

therefore there is no reason to apply any special convergence test.

Examples 1.
∑

xk with |x| ≥ 1 (e.g,
∑

(−1)k) diverge since xk 9 0. [1ex]∑ k

k + 1
diverges since k

k+1 → 1 6= 0. [1ex]
∑ (

1− 1
k

)k

diverges since

ak =
(
1− 1

k

)k → e−1 6= 0.

Convergence Tests (2)

Comparison Tests
Rational terms are most easily handled by basic comparison or limit comparison
with p-series

∑
1/kp

Basic Comparison Test
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∑ 1
2k3 + 1

converges by comparison with
∑ 1

k3

∑ k3

k5 + 4k4 + 7
converges

by comparison with
∑ 1

k2

∑ 1
k3 − k2

converges by comparison with
∑ 2

k3∑ 1
3k + 1

diverges by comparison with
∑ 1

3(k + 1)

∑ 1
ln(k + 6)

diverges by

comparison with
∑ 1

k + 6

Limit Comparison Test∑ 1
k3 − 1

converges by comparison with
∑ 1

k3
.

∑ 3k2 + 2k + 1
k3 + 1

diverges

by comparison with
∑ 3

k

∑ 5
√

k + 100
2k2

√
k − 9

√
k

converges by comparison with∑ 5
2k2

Convergence Tests (3)

Root Test and Ratio Test
The root test is used only if powers are involved.

Root Test∑ k2

2k
converges: (ak)1/k = 1

2 ·
[
k1/k

]2 → 1
2 ·1

∑ 1
(ln k)k

converges: (ak)1/k =

1
ln k → 0

∑ (
1− 1

k

)k2

converges: (ak)1/k =
(
1 + (−1)

k

)k

→ e−1

Convergence Tests (4)
Root Test and Ratio Test
The ratio test is effective with factorials and with combinations of powers and
factorials.

Ratio Comparison Test∑ k2

2k
converges: ak+1

ak
= 1

2 ·
(k+1)2

k2 → 1
2

∑ 1
k!

converges: ak+1
ak

= 1
k+1 → 0∑ k

10k
converges: ak+1

ak
= 1

10 ·
k+1

k → 1
10

∑ kk

k!
diverges: ak+1

ak
=

(
1 + 1

k

)k → e∑ 2k

3k − 2k
converges: ak+1

ak
= 2 · 1−(2/3)k

3−2(2/3)k → 2 · 1
3

∑ 1√
k!

converges: ak+1
ak

=√
1

k+1 → 0

2 Absolute Convergence

2.1 Absolute Convergence

Absolute Convergence
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Absolute Convergence
A series

∑
ak is said to converge absolutely if

∑
|ak| converges.

if
∑
|ak| converges, then

∑
ak converges.

i.e., absolutely convergent series are convergent.

Alternating p-Series with p > 1∑ (−1)k

kp
, p > 1, converge absolutely because

∑ 1
kp

converges. ⇒
∞∑

k=1

(−1)k+1

k2
= 1− 1

22
+

1
32
− 1

42
− · · · converge absolutely.

Geometric Series with −1 < x < 1∑
(−1)j(k)xk, −1 < x < 1, converge absolutely because

∑
|x|k converges.

⇒ 1− 1
2
− 1

22
+

1
23
− 1

24
+

1
25

+
1
26
− · · · converge absolutely.

Conditional Convergence

Conditional Convergence
A series

∑
ak is said to converge conditionally if

∑
ak converges while

∑
|ak|

diverges.

Alternating p-Series with 0 < p ≤ 1∑ (−1)k

kp
, 0 < p ≤ 1, converge conditionally because

∑ 1
kp

diverges. ⇒
∞∑

k=1

(−1)k+1

k
= 1− 1

2
+

1
3
− 1

4
− · · · converge conditionally.

3 Alternating Series

Alternating Series
Alternating Series
Let {ak} be a sequence of positive numbers.∑

(−1)kak = a0 − a1 + a2 − a3 + a4 − · · ·
is called an alternating series.

Alternating Series Test
Let {ak} be a decreasing sequence of positive numbers.

If ak → 0, then
∑

(−1)kak converges.
Alternating p-Series with p > 0∑ (−1)k

kp
, p > 0, converge since f(x) =

1
xp

is decreasing, i.e., f ′(x) = − p

xp+1
>

0 for ∀x > 0, and lim
x→∞

f(x) = 0. ⇒
∞∑

k=1

(−1)k+1

k
= 1 − 1

2
+

1
3
− 1

4
− · · ·

converge conditionally.
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Examples∑ (−1)k

2k + 1
, converge since f(x) =

1
2x + 1

is decreasing, i.e., f ′(x) = − 2
(2x + 1)2

>

0 for ∀x > 0, and lim
x→∞

f(x) = 0.

∑ (−1)kk

k2 + 10
, converge since f(x) =

x

x2 + 10
is decreasing, i.e., f ′(x) = − x2 − 10

(x2 + 10)2
>

0, for ∀x >
√

10, and lim
x→∞

f(x) = 0.

An Estimate for Alternating Series

An Estimate for Alternating Series
Let {ak} be a decreasing sequence of positive numbers that tends to 0 and let

L =
∞∑

k=0

(−1)kak. Then the sum L lies between consecutive partial sums sn,

sn+1, sn < L < sn+1, if n is odd; sn+1 < L < sn, if n is even.
and thus sn approximates L to within an+1

|L− sn| < an+1.

Example

Find sn to approximate
∞∑

k=1

(−1)k+1

k
= 1− 1

2
+

1
3
· · · within 10−2.

Set
∞∑

k=1

(−1)k+1

k
=

∞∑
k=0

(−1)k

k + 1
. For |L− sn| < 10−2, we want

an+1 =
1

(n + 1) + 1
< 10−2 ⇒ n + 2 > 102 ⇒ n > 98.

Then n = 99 and the 99th partial sum s100 is

s99 = 1− 1
2

+
1
3
− 1

4
+ · · ·+ 1

99
− 1

100
≈ 0.6882.

From the estimate

|L− s99| < a100 =
1

101
≈ 0.00991.

we conclude that

s99 ≈ 0.6882 <

∞∑
k=1

(−1)k+1

k
= ln 2 < 0.6981 ≈ s100
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Example

Find sn to approximate
∞∑

k=0

(−1)k+1

(2k + 1)!
= 1− 1

3!
+

1
5!
· · · within 10−2.

For |L− sn| < 10−2, we want

an+1 =
1

(2(n + 1) + 1)!
< 10−2 ⇒ n ≥ 1.

Then n = 1 and the 2nd partial sum s2 is
s1 = 1− 1

3!
≈ 0.8333

From the estimate |L− s1| < a2 =
1
5!
≈ 0.0083.

we conclude that

s1 ≈ 0.8333 <

∞∑
k=0

(−1)k+1

(2k + 1)!
= sin 1 < 0.8416 ≈ s2

4 Rearrangements

Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series
∞∑

k=0

(−1)k

2k
= 1− 1

2
+

1
22
− 1

23
+

1
24
− 1

25
+ · · · =

2
3

absolutely

Rearrangement 1 +
1
22
− 1

2
+

1
24

+
1
26
− 1

23
+

1
28

+
1

210
− 1

25
· · · ? = =

2
3

Theorem 2. All rearrangements of an absolutely convergent series converge
absolutely to the same sum.

Why Absolute Convergence Matters: Rearrangements (2)
Rearrangement of Conditional Convergence Series

∞∑
k=1

(−1)k+1

k
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · · = ln 2 conditionally

Rearrangement 1 +
1
3
− 1

2
+

1
5

+
1
7
− 1

4
+

1
9

+
1
11
− 1

6
· · · ? = 6= ln 2

Multiply the original series by 1
2

1
2

∞∑
k=1

(−1)k+1

k
=

1
2
− 1

4
+

1
6
− 1

8
+

1
10

+ · · · =
1
2

ln 2

Adding the two series, we get the rearrangement
∞∑

k=1

(−1)k+1

k
+

1
2

∞∑
k=1

(−1)k+1

k
= 1 +

1
3
− 1

2
+

1
5

+
1
7
− 1

4
+ · · · =

3
2

ln 2

Remark
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• A series that is only conditionally convergent can be rearranged to converge
to any number we please.

• It can also be arranged to diverge to +∞ or −∞, or even to oscillate
between any two bounds we choose.

Outline
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