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Taylor Polynomials in Powers of x − a

The nth Taylor polynomial in x − a for a function f is

Pn(x) = f (a)+ f ′(a)(x−a)+
f
′′
(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n;

Pn is the polynomial that has the same value as f at a and the
same first n derivatives:

Pn(a) = f (a),P ′n(a) = f ′(a),P
′′
n (a) = f

′′
(a), · · · ,P

(n)
n (a) = f (n)(a).

Best Approximation

Pn provides the best local approximation of f (x) near a by a
polynomial of degree ≤ n.

P0(x) = f (a),

P1(x) = f (a) + f ′(a)(x − a),

P2(x) = f (a) + f ′(a)x +
f
′′
(a)

2!
(x − a)2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 26 April 17, 2008 2 / 14



Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Taylor Polynomials in Powers of x − a
Taylor Polynomials in Powers of x − a

The nth Taylor polynomial in x − a for a function f is

Pn(x) = f (a)+ f ′(a)(x−a)+
f
′′
(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n;

Pn is the polynomial that has the same value as f at a and the
same first n derivatives:

Pn(a) = f (a),P ′n(a) = f ′(a),P
′′
n (a) = f

′′
(a), · · · ,P

(n)
n (a) = f (n)(a).

Best Approximation

Pn provides the best local approximation of f (x) near a by a
polynomial of degree ≤ n.

P0(x) = f (a),

P1(x) = f (a) + f ′(a)(x − a),

P2(x) = f (a) + f ′(a)x +
f
′′
(a)

2!
(x − a)2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 26 April 17, 2008 2 / 14



Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Taylor Polynomials in Powers of x − a
Taylor Polynomials in Powers of x − a

The nth Taylor polynomial in x − a for a function f is

Pn(x) = f (a)+ f ′(a)(x−a)+
f
′′
(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n;

Pn is the polynomial that has the same value as f at a and the
same first n derivatives:

Pn(a) = f (a),P ′n(a) = f ′(a),P
′′
n (a) = f

′′
(a), · · · ,P

(n)
n (a) = f (n)(a).

Best Approximation

Pn provides the best local approximation of f (x) near a by a
polynomial of degree ≤ n.

P0(x) = f (a),

P1(x) = f (a) + f ′(a)(x − a),

P2(x) = f (a) + f ′(a)x +
f
′′
(a)

2!
(x − a)2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 26 April 17, 2008 2 / 14



Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Taylor Polynomials in Powers of x − a
Taylor Polynomials in Powers of x − a

The nth Taylor polynomial in x − a for a function f is

Pn(x) = f (a)+ f ′(a)(x−a)+
f
′′
(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n;

Pn is the polynomial that has the same value as f at a and the
same first n derivatives:

Pn(a) = f (a),P ′n(a) = f ′(a),P
′′
n (a) = f

′′
(a), · · · ,P

(n)
n (a) = f (n)(a).

Best Approximation

Pn provides the best local approximation of f (x) near a by a
polynomial of degree ≤ n.

P0(x) = f (a),

P1(x) = f (a) + f ′(a)(x − a),

P2(x) = f (a) + f ′(a)x +
f
′′
(a)

2!
(x − a)2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 26 April 17, 2008 2 / 14



Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Taylor Polynomials in Powers of x − a
Taylor Polynomials in Powers of x − a

The nth Taylor polynomial in x − a for a function f is

Pn(x) = f (a)+ f ′(a)(x−a)+
f
′′
(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n;

Pn is the polynomial that has the same value as f at a and the
same first n derivatives:

Pn(a) = f (a),P ′n(a) = f ′(a),P
′′
n (a) = f

′′
(a), · · · ,P

(n)
n (a) = f (n)(a).

Best Approximation

Pn provides the best local approximation of f (x) near a by a
polynomial of degree ≤ n.

P0(x) = f (a),

P1(x) = f (a) + f ′(a)(x − a),

P2(x) = f (a) + f ′(a)x +
f
′′
(a)

2!
(x − a)2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 26 April 17, 2008 2 / 14



Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Taylor Polynomials in Powers of x − a
Taylor Polynomials in Powers of x − a

The nth Taylor polynomial in x − a for a function f is

Pn(x) = f (a)+ f ′(a)(x−a)+
f
′′
(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n;

Pn is the polynomial that has the same value as f at a and the
same first n derivatives:

Pn(a) = f (a),P ′n(a) = f ′(a),P
′′
n (a) = f

′′
(a), · · · ,P

(n)
n (a) = f (n)(a).

Best Approximation

Pn provides the best local approximation of f (x) near a by a
polynomial of degree ≤ n.

P0(x) = f (a),

P1(x) = f (a) + f ′(a)(x − a),

P2(x) = f (a) + f ′(a)x +
f
′′
(a)

2!
(x − a)2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 26 April 17, 2008 2 / 14



Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Taylor Polynomials in Powers of x − a
Taylor Polynomials in Powers of x − a

The nth Taylor polynomial in x − a for a function f is

Pn(x) = f (a)+ f ′(a)(x−a)+
f
′′
(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n;

Pn is the polynomial that has the same value as f at a and the
same first n derivatives:

Pn(a) = f (a),P ′n(a) = f ′(a),P
′′
n (a) = f

′′
(a), · · · ,P

(n)
n (a) = f (n)(a).

Best Approximation

Pn provides the best local approximation of f (x) near a by a
polynomial of degree ≤ n.

P0(x) = f (a),

P1(x) = f (a) + f ′(a)(x − a),

P2(x) = f (a) + f ′(a)x +
f
′′
(a)

2!
(x − a)2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 26 April 17, 2008 2 / 14



Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Taylor Polynomials in Powers of x − a
Taylor Polynomials in Powers of x − a

The nth Taylor polynomial in x − a for a function f is

Pn(x) = f (a)+ f ′(a)(x−a)+
f
′′
(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n;

Pn is the polynomial that has the same value as f at a and the
same first n derivatives:

Pn(a) = f (a),P ′n(a) = f ′(a),P
′′
n (a) = f

′′
(a), · · · ,P

(n)
n (a) = f (n)(a).

Best Approximation

Pn provides the best local approximation of f (x) near a by a
polynomial of degree ≤ n.

P0(x) = f (a),

P1(x) = f (a) + f ′(a)(x − a),

P2(x) = f (a) + f ′(a)x +
f
′′
(a)

2!
(x − a)2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 26 April 17, 2008 2 / 14



Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Taylor Polynomials in Powers of x − a
Taylor Polynomials in Powers of x − a

The nth Taylor polynomial in x − a for a function f is

Pn(x) = f (a)+ f ′(a)(x−a)+
f
′′
(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n;

Pn is the polynomial that has the same value as f at a and the
same first n derivatives:

Pn(a) = f (a),P ′n(a) = f ′(a),P
′′
n (a) = f

′′
(a), · · · ,P

(n)
n (a) = f (n)(a).

Best Approximation

Pn provides the best local approximation of f (x) near a by a
polynomial of degree ≤ n.

P0(x) = f (a),

P1(x) = f (a) + f ′(a)(x − a),

P2(x) = f (a) + f ′(a)x +
f
′′
(a)

2!
(x − a)2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 26 April 17, 2008 2 / 14



Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Taylor Polynomials in Powers of x − a
Taylor Polynomials in Powers of x − a

The nth Taylor polynomial in x − a for a function f is

Pn(x) = f (a)+ f ′(a)(x−a)+
f
′′
(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n;

Pn is the polynomial that has the same value as f at a and the
same first n derivatives:

Pn(a) = f (a),P ′n(a) = f ′(a),P
′′
n (a) = f

′′
(a), · · · ,P

(n)
n (a) = f (n)(a).

Best Approximation

Pn provides the best local approximation of f (x) near a by a
polynomial of degree ≤ n.

P0(x) = f (a),

P1(x) = f (a) + f ′(a)(x − a),

P2(x) = f (a) + f ′(a)x +
f
′′
(a)

2!
(x − a)2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 26 April 17, 2008 2 / 14



Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Taylor Polynomials in Powers of x − a
Taylor Polynomials in Powers of x − a

The nth Taylor polynomial in x − a for a function f is

Pn(x) = f (a)+ f ′(a)(x−a)+
f
′′
(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n;

Pn is the polynomial that has the same value as f at a and the
same first n derivatives:

Pn(a) = f (a),P ′n(a) = f ′(a),P
′′
n (a) = f

′′
(a), · · · ,P

(n)
n (a) = f (n)(a).

Best Approximation

Pn provides the best local approximation of f (x) near a by a
polynomial of degree ≤ n.

P0(x) = f (a),

P1(x) = f (a) + f ′(a)(x − a),

P2(x) = f (a) + f ′(a)x +
f
′′
(a)

2!
(x − a)2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 26 April 17, 2008 2 / 14



Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Taylor Polynomials in Powers of x − a
Taylor Polynomials in Powers of x − a

The nth Taylor polynomial in x − a for a function f is

Pn(x) = f (a)+ f ′(a)(x−a)+
f
′′
(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n;

Pn is the polynomial that has the same value as f at a and the
same first n derivatives:

Pn(a) = f (a),P ′n(a) = f ′(a),P
′′
n (a) = f

′′
(a), · · · ,P

(n)
n (a) = f (n)(a).

Best Approximation

Pn provides the best local approximation of f (x) near a by a
polynomial of degree ≤ n.

P0(x) = f (a),

P1(x) = f (a) + f ′(a)(x − a),

P2(x) = f (a) + f ′(a)x +
f
′′
(a)

2!
(x − a)2.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 26 April 17, 2008 2 / 14



Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Taylor’s Theorem and Remainder Term

Taylor’s Theorem

If f has n + 1 continuous derivatives on an open interval I that
contains a, then for each x ∈ I ,

f (x) = f (a) + f ′(a)(x − a) + · · ·+ f (n)(a)

n!
(x − a)n + Rn(x);

Rn(x) =
1

n!

∫ x

a
f (n+1)(t)(x − t)n dt.

Lagrange Formula for the Remainder

Rn(x) =
f (n+1)(c)

(n + 1)!
(x − a)n+1

where c is some number between a and x .

Estimate for the Remainder Term

|Rn(x)| ≤
(

max
t∈J

|f (n+1)(t)|
)
|x − a|n+1

(n + 1)!
, J = [a, x ] or [x , a].
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Taylor Series in x − a

Taylor Polynomial and the Remainder

If f (x) is infinitely differentiable on interval I containing a, then

f (x) = f (a) + f ′(a)(x − a) + · · ·+ f (n)(a)

n!
(x − a)n + Rn(x);

|Rn(x)| ≤
(

max
t∈J

|f (n+1)(t)|
)
|x − a|n+1

(n + 1)!
, J = [a, x ] or [x , a].

Taylor Series in x − a

If Rn(x) → 0 as n →∞, then Pn(x) → f (x),

f (x) = f (a) + f ′(a)(x − a) + · · ·+ f (n)(a)

n!
(x − a)n + · · · .

Sigma Notation

f (x) =
∞∑

k=0

f (k)(a)

k!
(x − a)k = lim

n→∞

n∑
k=0

f (k)(a)

k!
(x − a)k
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Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Taylor Polynomials and Taylor Series in x − a of f (x) = ex

Pn(x) = f (a)+ f ′(a)(x−a)+
f
′′
(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n;

f (k)(x) = ex , f (k)(a) = ea, ∀k = 0, 1, 2, · · ·

Taylor Polynomials in x − a of the Exponential f (x) = ex

Pn(x) = ea + ea(x − a) +
ea

2!
(x − a)2 + · · ·+ ea

n!
(x − a)n.

Taylor Series in x − a of the Exponential f (x) = ex

ex = ea
∞∑

k=0

1

k!
(x−a)k = ea+ea(x−a)+· · ·+ea

n!
(x−a)n+· · · , ∀x .
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Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Expansion of ex in x − a

Taylor Series in x − a by Translation

Another way to expand f (x) in in powers of x − a is to expand
f (t + a) in powers of t and then set t = x − a.

Taylor Series in x − a of the Exponential f (x) = ex

ex = ea + ea(x − a) +
ea

2!
(x − a)2 + · · ·+ ea

n!
(x − a)n + · · · , ∀x .

1. Expand et+a in powers of t ⇒

et+a = eaet = ea
∞∑

k=0

tk

k!
= ea

∞∑
k=0

1

k!
tk .

2. Set t = x − a ⇒

ex = ea
∞∑

k=0

1

k!
(x − a)k , for all real x.
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Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Expansion of f (x) in x − a as Expansion of f (t + a) in t

Taylor Series in x − a by Translation

One way to expand f (x) in in powers of x − a is to expand
f (t + a) in powers of t and then set t = x − a.
This is the approach to take when the expansion in t is either
known or is readily available.

Example

Expand f (x) = ex/2 in powers of x − 3.

1. Expand f (t + 3) in powers of t ⇒

f (t+3) = e(t+3)/2 = e3/2et/2 = e3/2
∞∑

k=0

(t/2)k

k!
= e3/2

∞∑
k=0

1

2kk!
tk .

2. Set t = x − 3 ⇒

f (x) = ex/2 = e3/2
∞∑

k=0

1

2kk!
(x − 3)k , for all real x.
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Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Expansion of ln x in x − a, a > 0

Taylor Series in x − a by Translation

One way to expand f (x) in in powers of x − a is to expand
f (t + a) in powers of t and then set t = x − a.

Taylor Series in x − a of the Logarithm f (x) = ln x

ln x = ln a+
1

a
(x−a)− 1

2a2
(x−a)2+

1

3a3
(x−a)3−· · · , 0 < x ≤ 2a.

1. Expand ln(t + a) in powers of t ⇒

ln(t+a) = ln
[
a
(
1 +

t

a

)]
= ln a+ln

(
1 +

t

a

)
= ln a+

∞∑
k=1

(−1)k+1

k

( t

a

)k

= ln a+
∞∑

k=1

(−1)k+1

kak
tk

2. Set t = x − a, −1 < t
a ≤ 1, −a < t ≤ a, 0 < t + a ≤ 2a, ⇒

ln x = ln a +
∞∑

k=1

(−1)k+1

kak
(x − a)k , for 0 < x ≤ 2a.
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Taylor Polynomials Taylor Polynomials Taylor Series Powers in x − a

Expansion of sin x in x − π

Taylor Series in x − π of the Sine f (x) = sin x

sin x = −(x−π)+
1

3!
(x−π)3− 1

5!
(x−π)5+

1

7!
(x−π)7+· · · , ∀x .

1. Expand sin(t + π) in powers of t ⇒

sin(t + π) = sin t cos π + cos t sin π = − sin t

= −
∞∑

k=0

(−1)k

(2k + 1)!
t2k+1 =

∞∑
k=0

(−1)k+1

(2k + 1)!
t2k+1

2. Set t = x − π ⇒

sin x =
∞∑

k=0

(−1)k+1

(2k + 1)!
(x − π)2k+1, for all real x .
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Expansion of (1− x)−1 in x and Related
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Expansion of (1− x)−m in x and Related
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