Lecture 26

Section 11.6 Taylor Polynomials and Taylor Series in x - a

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu http://math.uh.edu/~jiwenhe/Math1432

Taylor Polynomials in Powers of x - a

The *n*th Taylor polynomial in x - a for a function *f* is

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

P_n is the polynomial that has the same value as *f* at *a* and the same first *n* derivatives:

 $P_n(a) = f(a), P'_n(a) = f'(a), P''_n(a) = f''(a), \dots, P_n^{(n)}(a) = f^{(n)}(a)$

Best Approximation

 P_n provides the best local approximation of f(x) near a by a polynomial of degree $\leq n$.

 $P_0(x) = f(a),$ $P_1(x) = f(a) + f'(a)(x - a),$ f''(a)(x - a),

Taylor Polynomials in Powers of x - a

The *n*th Taylor polynomial in x - a for a function f is

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

 P_n is the polynomial that has the same value as f at a and the same first n derivatives:

 $P_n(a) = f(a), P'_n(a) = f'(a), P''_n(a) = f''(a), \dots, P_n^{(n)}(a) = f^{(n)}(a)$

Best Approximation

 P_n provides the best local approximation of f(x) near a by a polynomial of degree $\leq n$.

 $P_0(x) = f(a),$ $P_1(x) = f(a) + f'(a)(x - a),$ f'(a)(x - a),

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

Taylor Polynomials in Powers of x - a

The *n*th Taylor polynomial in x - a for a function f is

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

 P_n is the polynomial that has the same value as f at a and the same first n derivatives:

 $P_n(a) = f(a), P'_n(a) = f'(a), P''_n(a) = f''(a), \dots, P_n^{(n)}(a) = f^{(n)}(a)$

Best Approximation

 P_n provides the best local approximation of f(x) near a by a polynomial of degree $\leq n$.

 $P_0(x) = f(a),$ $P_1(x) = f(a) + f'(a)(x - a),$ f''(a)(x - a),

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

The *n*th Taylor polynomial in x - a for a function f is

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

 P_n is the polynomial that has the same value as f at a and the same first n derivatives:

 $P_n(a) = f(a), P'_n(a) = f'(a), P''_n(a) = f''(a), \cdots, P_n^{(n)}(a) = f^{(n)}(a)$

Best Approximation

 P_n provides the best local approximation of f(x) near a by a polynomial of degree $\leq n$.

 $P_0(x) = f(a),$ $P_1(x) = f(a) + f'(a)(x - a),$ f''(a)(x - a),

Math 1432 - Section 26626, Lecture 26

The *n*th Taylor polynomial in x - a for a function f is

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

 P_n is the polynomial that has the same value as f at a and the same first n derivatives:

$$P_n(a) = f(a), P'_n(a) = f'(a), P''_n(a) = f''(a), \dots, P_n^{(n)}(a) = f^{(n)}(a)$$

Best Approximation

 P_n provides the best local approximation of f(x) near a by a polynomial of degree $\leq n$.

 $P_0(x) = f(a),$ $P_1(x) = f(a) + f'(a)(x - a),$ f''(a)(x - a),

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

Taylor Polynomials in Powers of x - a

The *n*th Taylor polynomial in x - a for a function f is

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

 P_n is the polynomial that has the same value as f at a and the same first n derivatives:

$$P_n(a) = f(a), P'_n(a) = f'(a), P''_n(a) = f''(a), \dots, P_n^{(n)}(a) = f^{(n)}(a)$$

Best Approximation

 P_n provides the best local approximation of f(x) near a by a polynomial of degree $\leq n$.

 $P_0(x) = f(a),$ $P_1(x) = f(a) + f'(a)(x - a),$ f''(a)(x - a),

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

Taylor Polynomials in Powers of x - a

The *n*th Taylor polynomial in x - a for a function f is

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

 P_n is the polynomial that has the same value as f at a and the same first n derivatives:

$$P_n(a) = f(a), P'_n(a) = f'(a), P''_n(a) = f''(a), \dots, P_n^{(n)}(a) = f^{(n)}(a)$$

Best Approximation

 P_n provides the best local approximation of f(x) near a by a polynomial of degree $\leq n$.

 $P_0(x) = f(a),$ $P_1(x) = f(a) + f'(a)(x - a)$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

Taylor Polynomials in Powers of x - a

The *n*th Taylor polynomial in x - a for a function f is

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

 P_n is the polynomial that has the same value as f at a and the same first n derivatives:

$$P_n(a) = f(a), P'_n(a) = f'(a), P''_n(a) = f''(a), \cdots, P_n^{(n)}(a) = f^{(n)}(a).$$

Best Approximation

 P_n provides the best local approximation of f(x) near *a* by a polynomial of degree $\leq n$.

$$P_0(x) = f(a),$$

 $P_1(x) = f(a) + f'(a)(x - a),$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

Taylor Polynomials in Powers of x - a

The *n*th Taylor polynomial in x - a for a function f is

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

 P_n is the polynomial that has the same value as f at a and the same first n derivatives:

$$P_n(a) = f(a), P'_n(a) = f'(a), P''_n(a) = f''(a), \cdots, P_n^{(n)}(a) = f^{(n)}(a).$$

Best Approximation

 P_n provides the best local approximation of f(x) near *a* by a polynomial of degree $\leq n$.

$$P_0(x) = f(a),$$

$$P_1(x) = f(a) + f'(a)(x - a),$$

$$P_2(x) = f(a) + f'(a)x + \frac{f''(a)}{2!}(x - a)$$

Taylor Polynomials in Powers of x - a

The *n*th Taylor polynomial in x - a for a function f is

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

 P_n is the polynomial that has the same value as f at a and the same first n derivatives:

$$P_n(a) = f(a), P'_n(a) = f'(a), P''_n(a) = f''(a), \cdots, P_n^{(n)}(a) = f^{(n)}(a).$$

Best Approximation

 P_n provides the best local approximation of f(x) near *a* by a polynomial of degree $\leq n$.

$$P_0(x) = f(a),$$

$$P_1(x) = f(a) + f'(a)(x - a),$$

$$P_2(x) = f(a) + f'(a)x + \frac{f''(a)}{2!}(x - a)^2.$$

Taylor Polynomials in Powers of x - a

The *n*th Taylor polynomial in x - a for a function f is

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

 P_n is the polynomial that has the same value as f at a and the same first n derivatives:

$$P_n(a) = f(a), P'_n(a) = f'(a), P''_n(a) = f''(a), \cdots, P_n^{(n)}(a) = f^{(n)}(a).$$

Best Approximation

 P_n provides the best local approximation of f(x) near *a* by a polynomial of degree $\leq n$.

$$P_0(x) = f(a),$$

$$P_1(x) = f(a) + f'(a)(x - a),$$

$$P_2(x) = f(a) + f'(a)x + \frac{f''(a)}{2!}(x - a)^2.$$

Taylor Polynomials in Powers of x - a

The *n*th Taylor polynomial in x - a for a function f is

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

 P_n is the polynomial that has the same value as f at a and the same first n derivatives:

$$P_n(a) = f(a), P'_n(a) = f'(a), P''_n(a) = f''(a), \cdots, P_n^{(n)}(a) = f^{(n)}(a).$$

Best Approximation

 P_n provides the best local approximation of f(x) near *a* by a polynomial of degree $\leq n$.

$$\begin{split} P_0(x) &= f(a), \\ P_1(x) &= f(a) + f'(a)(x-a), \\ P_2(x) &= f(a) + f'(a)x + \frac{f''(a)}{2!}(x-a)^2. \end{split}$$

Taylor's Theorem

If f has n + 1 continuous derivatives on an open interval l that contains a, then for each $x \in I$,

 $R_n(x) = \frac{1}{n!} \int_{a} f^{(n+1)}(t)(x-t)^n dt.$

Lagrange Formula for the Remainder

where *c* is some number between *a* and

Estimate for the Remainder Term

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008 3 /

Taylor's Theorem

If f has n + 1 continuous derivatives on an open interval l that contains a, then for each $x \in I$,

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x)$$
$$R_n(x) = \frac{1}{n!} \int_a^x f^{(n+1)}(t)(x - t)^n dt.$$

Lagrange Formula for the Remainder

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

where c is some number between a and ightarrow

Estimate for the Remainder Term

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008 3 /

Taylor's Theorem

If f has n + 1 continuous derivatives on an open interval l that contains a, then for each $x \in I$,

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x);$$

$$R_n(x) = \frac{1}{n!} \int_a^x f^{(n+1)}(t)(x - t)^n dt.$$

Lagrange Formula for the Remainder

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

where c is some number between a and x.

Estimate for the Remainder Term

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008 3 /

Taylor's Theorem

If f has n + 1 continuous derivatives on an open interval l that contains a, then for each $x \in I$,

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x);$$

$$R_n(x) = \frac{1}{n!} \int_a^x f^{(n+1)}(t)(x - t)^n dt.$$

Lagrange Formula for the Remainder

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

where c is some number between a and x.

Estimate for the Remainder Term

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008 3 /

坍

Taylor's Theorem

If f has n + 1 continuous derivatives on an open interval l that contains a, then for each $x \in I$,

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x);$$

$$R_n(x) = \frac{1}{n!} \int_a^x f^{(n+1)}(t)(x - t)^n dt.$$

Lagrange Formula for the Remainder

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

where c is some number between a and x.

Estimate for the Remainder Term

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008 3 /

屮

Taylor's Theorem

If f has n + 1 continuous derivatives on an open interval l that contains a, then for each $x \in I$,

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x);$$

$$R_n(x) = \frac{1}{n!} \int_a^x f^{(n+1)}(t)(x - t)^n dt.$$

Lagrange Formula for the Remainder

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

where c is some number between a and x.

Estimate for the Remainder Term

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

屮

Taylor's Theorem

If f has n + 1 continuous derivatives on an open interval l that contains a, then for each $x \in I$,

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x);$$

$$R_n(x) = \frac{1}{n!} \int_a^x f^{(n+1)}(t)(x - t)^n dt.$$

Lagrange Formula for the Remainder

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

where c is some number between a and x.

Estimate for the Remainder Term

$$|R_n(x)| \le \left(\max_{t\in J} |f^{(n+1)}(t)|\right) \frac{|x-a|^{n+1}}{(n+1)!}, \quad J = [a,x] \text{ or } [x,a].$$

Taylor Polynomial and the Remainder

Taylor Series in x - a

Sigma Notation

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

| / 14

If f(x) is infinitely differentiable on interval I containing a, then

Taylor Series in x - a

Sigma Notation

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

/ 14

Taylor Polynomial and the Remainder

If f(x) is infinitely differentiable on interval I containing a, then

Taylor Series in x - a

If $R_n(x) \to 0$ as $n \to \infty$, then $P_n(x) \to f(x)$,

Sigma Notation

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

/ 14

Taylor Polynomial and the Remainder

If f(x) is infinitely differentiable on interval I containing a, then

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x);$$

$$|R_n(x)| \le \left(\max_{t \in J} |f^{(n+1)}(t)|\right) \frac{|x - a|^{n+1}}{(n+1)!}, \quad J = [a, x] \text{ or } [x, a].$$

Taylor Series in x - a

If $R_n(x) \to 0$ as $n \to \infty$, then $P_n(x) \to f(x)$,

Sigma Notation

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

Taylor Polynomial and the Remainder

If f(x) is infinitely differentiable on interval I containing a, then

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x);$$

$$|R_n(x)| \le \left(\max_{t \in J} |f^{(n+1)}(t)|\right) \frac{|x - a|^{n+1}}{(n+1)!}, \quad J = [a, x] \text{ or } [x, a].$$

Taylor Series in x - a

If
$$R_n(x) \to 0$$
 as $n \to \infty$, then $P_n(x) \to f(x)$,

 $f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \dots$

Sigma Notation

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

Taylor Polynomial and the Remainder

If f(x) is infinitely differentiable on interval I containing a, then

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x);$$

$$|R_n(x)| \le \left(\max_{t \in J} |f^{(n+1)}(t)|\right) \frac{|x - a|^{n+1}}{(n+1)!}, \quad J = [a, x] \text{ or } [x, a].$$

Taylor Series in x - a

If
$$R_n(x) \to 0$$
 as $n \to \infty$, then $P_n(x) \to f(x)$,

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{T^{(n)}(a)}{n!}(x - a)^n + \dots$$

Sigma Notation

Jiwen He, University of Houston

Taylor Polynomial and the Remainder

If f(x) is infinitely differentiable on interval I containing a, then

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x);$$

$$|R_n(x)| \le \left(\max_{t \in J} |f^{(n+1)}(t)|\right) \frac{|x - a|^{n+1}}{(n+1)!}, \quad J = [a, x] \text{ or } [x, a].$$

Taylor Series in x - a

If
$$R_n(x) \to 0$$
 as $n \to \infty$, then $P_n(x) \to f(x)$,

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \dots$$

Sigma Notation

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = \lim_{n \to \infty} \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Taylor Polynomial and the Remainder

If f(x) is infinitely differentiable on interval I containing a, then

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x);$$

$$|R_n(x)| \le \left(\max_{t \in J} |f^{(n+1)}(t)|\right) \frac{|x - a|^{n+1}}{(n+1)!}, \quad J = [a, x] \text{ or } [x, a].$$

Taylor Series in x - a

If
$$R_n(x) \to 0$$
 as $n \to \infty$, then $P_n(x) \to f(x)$,

$$f(x) = f(a) + f'(a)(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots$$

Sigma Notation

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = \lim_{n \to \infty} \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Taylor Polynomial and the Remainder

If f(x) is infinitely differentiable on interval I containing a, then

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x);$$

$$|R_n(x)| \le \left(\max_{t \in J} |f^{(n+1)}(t)|\right) \frac{|x - a|^{n+1}}{(n+1)!}, \quad J = [a, x] \text{ or } [x, a].$$

Taylor Series in x - a

If
$$R_n(x) \to 0$$
 as $n \to \infty$, then $P_n(x) \to f(x)$,

$$f(x) = f(a) + f'(a)(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots$$

Sigma Notation

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = \lim_{n \to \infty} \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Polynomials Taylor Series Powers in x -

Taylor Polynomials and Taylor Series in x - a of $f(x) = e^x$

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

$$f^{(k)}(x) = e^{x}, \quad f^{(k)}(a) = e^{a}, \quad \forall k = 0, 1, 2, \cdots$$

Taylor Polynomials in x - a of the Exponential $f(x) = e^x$

Taylor Series in x - a of the Exponential $f(x) = e^x$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

$$f^{(k)}(x) = e^x, \quad f^{(k)}(a) = e^a, \quad \forall k = 0, 1, 2, \cdots$$

Taylor Polynomials in x - a of the Exponential $f(x) = e^x$

Taylor Polynomials

$$P_n(x) = e^a + e^a(x-a) + \frac{e^a}{2!}(x-a)^2 + \dots + \frac{e^a}{n!}(x-a)^n.$$

Taylor Series in x - a of the Exponential $f(x) = e^x$

Jiwen He, University of Houston

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

$$f^{(k)}(x) = e^x, \quad f^{(k)}(a) = e^a, \quad \forall k = 0, 1, 2, \cdots$$

Taylor Polynomials in x - a of the Exponential $f(x) = e^x$

Taylor Polynomials

$$P_n(x) = e^a + e^a(x-a) + \frac{e^a}{2!}(x-a)^2 + \dots + \frac{e^a}{n!}(x-a)^n.$$

Taylor Series in x - a of the Exponential $f(x) = e^x$

Jiwen He, University of Houston

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

$$f^{(k)}(x) = e^x, \quad f^{(k)}(a) = e^a, \quad \forall k = 0, 1, 2, \cdots$$

Taylor Polynomials in x - a of the Exponential $f(x) = e^x$

Taylor Polynomials

$$P_n(x) = e^a + e^a(x-a) + \frac{e^a}{2!}(x-a)^2 + \cdots + \frac{e^a}{n!}(x-a)^n.$$

Taylor Series in x - a of the Exponential $f(x) = e^x$

$$e^{x} = e^{a} \sum_{k=0}^{\infty} \frac{1}{k!} (x-a)^{k} = e^{a} + e^{a} (x-a) + \dots + \frac{e^{a}}{n!} (x-a)^{n} + \dots, \quad \forall x.$$

Jiwen He, University of Houston

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n;$$

$$f^{(k)}(x) = e^x, \quad f^{(k)}(a) = e^a, \quad \forall k = 0, 1, 2, \cdots$$

Taylor Polynomials in x - a of the Exponential $f(x) = e^x$

Taylor Polynomials

$$P_n(x) = e^a + e^a(x-a) + \frac{e^a}{2!}(x-a)^2 + \cdots + \frac{e^a}{n!}(x-a)^n.$$

Taylor Series in x - a of the Exponential $f(x) = e^x$

$$e^{x} = e^{a} \sum_{k=0}^{\infty} \frac{1}{k!} (x-a)^{k} = e^{a} + e^{a} (x-a) + \dots + \frac{e^{a}}{n!} (x-a)^{n} + \dots, \quad \forall x.$$

Jiwen He, University of Houston

Expansion of *e^x* in *x* – *a*

Taylor Series in x - a by Translation

Another way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Exponential $f(x) = e^x$

$$e^{x} = e^{a} + e^{a}(x-a) + \frac{e^{a}}{2!}(x-a)^{2} + \dots + \frac{e^{a}}{n!}(x-a)^{n} + \dots, \quad \forall x.$$

1. Expand e^{t+a} in powers of $t \Rightarrow e^{t+a} = e^a e^t = e^a \sum_{k=0}^{\infty} \frac{t^k}{k!} = e^a \sum_{k=0}^{\infty} \frac{1}{k!} t^k$. 2. Set $t = x - a \Rightarrow e^x = e^a \sum_{k=0}^{\infty} \frac{1}{k!} (x - a)^k$, for all real x.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

Taylor Polynomials Taylor Series Powers in x -

Expansion of e^x in x - a

Taylor Series in x - a by Translation

Another way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Exponential $f(x) = e^x$

$$e^x = e^a + e^a(x-a) + \frac{e^a}{2!}(x-a)^2 + \cdots + \frac{e^a}{n!}(x-a)^n + \cdots, \quad \forall x.$$

1. Expand e^{t+a} in powers of $t \Rightarrow e^{t+a} = e^a e^t = e^a \sum_{k=0}^{\infty} \frac{t^k}{k!} = e^a \sum_{k=0}^{\infty} \frac{1}{k!} t^k$. 2. Set $t = x - a \Rightarrow e^x = e^a \sum_{k=0}^{\infty} \frac{1}{k!} (x - a)^k$, for all real x.

Jiwen He, University of Houston
Expansion of e^x in x - a

Taylor Series in x - a by Translation

Another way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Exponential $f(x) = e^x$

$$e^x = e^a + e^a(x-a) + \frac{e^a}{2!}(x-a)^2 + \cdots + \frac{e^a}{n!}(x-a)^n + \cdots, \quad \forall x.$$

1. Expand e^{t+a} in powers of $t \Rightarrow e^{t+a} = e^a e^t = e^a \sum_{k=0}^{\infty} \frac{t^k}{k!} = e^a \sum_{k=0}^{\infty} \frac{1}{k!} t^k$. 2. Set $t = x - a \Rightarrow e^x = e^a \sum_{k=0}^{\infty} \frac{1}{k!} (x-a)^k$, for all real x.

Taylor Polynomials Taylor Series Powers in x -

Expansion of e^x in x - a

Taylor Series in x - a by Translation

Another way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Exponential $f(x) = e^x$

$$e^x = e^a + e^a(x-a) + \frac{e^a}{2!}(x-a)^2 + \cdots + \frac{e^a}{n!}(x-a)^n + \cdots, \quad \forall x.$$

1. Expand e^{t+a} in powers of $t \Rightarrow e^{t+a} = e^a e^t = e^a \sum_{k=0}^{\infty} \frac{t^k}{k!} = e^a \sum_{k=0}^{\infty} \frac{1}{k!} t^k$. 2. Set $t = x - a \Rightarrow e^a \sum_{k=0}^{\infty} \frac{1}{k!} (x - a)^k$, for all real x.

Jiwen He, University of Houston

Expansion of e^x in x - a

Taylor Series in x - a by Translation

Another way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Exponential $f(x) = e^x$

$$e^x = e^a + e^a(x-a) + \frac{e^a}{2!}(x-a)^2 + \cdots + \frac{e^a}{n!}(x-a)^n + \cdots, \quad \forall x.$$

1. Expand e^{t+a} in powers of $t \Rightarrow e^{t+a} = e^a e^t = e^a \sum_{k=0}^{\infty} \frac{t^k}{k!} = e^a \sum_{k=0}^{\infty} \frac{1}{k!} t^k$. 2. Set $t = x - a \Rightarrow e^x = e^a \sum_{k=0}^{\infty} \frac{1}{k!} (x - a)^k$, for all real x.

Expansion of *e^x* in *x* – *a*

Taylor Series in x - a by Translation

Another way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Exponential $f(x) = e^x$

$$e^x = e^a + e^a(x-a) + \frac{e^a}{2!}(x-a)^2 + \cdots + \frac{e^a}{n!}(x-a)^n + \cdots, \quad \forall x.$$

1. Expand e^{t+a} in powers of $t \Rightarrow e^{t+a} = e^a e^t = e^a \sum_{k=0}^{\infty} \frac{t^k}{k!} = e^a \sum_{k=0}^{\infty} \frac{1}{k!} t^k$. 2. Set $t = x - a \Rightarrow e^x = e^a \sum_{k=0}^{\infty} \frac{1}{k!} (x-a)^k$, for all real x.

Expansion of e^x in x - a

Taylor Series in x - a by Translation

Another way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Exponential $f(x) = e^x$

$$e^x = e^a + e^a(x-a) + \frac{e^a}{2!}(x-a)^2 + \cdots + \frac{e^a}{n!}(x-a)^n + \cdots, \quad \forall x.$$

1. Expand e^{t+a} in powers of $t \Rightarrow e^{t+a} = e^a e^t = e^a \sum_{k=0}^{\infty} \frac{t^k}{k!} = e^a \sum_{k=0}^{\infty} \frac{1}{k!} t^k$. 2. Set $t = x - a \Rightarrow e^x = e^a \sum_{k=0}^{\infty} \frac{1}{k!} (x - a)^k$, for all real x.

Taylor Polynomials Taylor Series Powers in x -

Expansion of e^x in x - a

Taylor Series in x - a by Translation

Another way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Exponential $f(x) = e^x$

$$e^x = e^a + e^a(x-a) + \frac{e^a}{2!}(x-a)^2 + \cdots + \frac{e^a}{n!}(x-a)^n + \cdots, \quad \forall x.$$

1. Expand
$$e^{t+a}$$
 in powers of $t \Rightarrow e^{t+a} = e^a e^t = e^a \sum_{k=0}^{\infty} \frac{t^k}{k!} = e^a \sum_{k=0}^{\infty} \frac{1}{k!} t^k$.
2. Set $t = x - a \Rightarrow e^x = e^a \sum_{k=0}^{\infty} \frac{1}{k!} (x - a)^k$, for all real x.

Taylor Polynomials Taylor Series Powers in x -

Expansion of e^x in x - a

Taylor Series in x - a by Translation

Another way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Exponential $f(x) = e^x$

$$e^x = e^a + e^a(x-a) + \frac{e^a}{2!}(x-a)^2 + \cdots + \frac{e^a}{n!}(x-a)^n + \cdots, \quad \forall x.$$

1. Expand
$$e^{t+a}$$
 in powers of $t \Rightarrow e^{t+a} = e^a e^t = e^a \sum_{k=0}^{\infty} \frac{t^k}{k!} = e^a \sum_{k=0}^{\infty} \frac{1}{k!} t^k$.
2. Set $t = x - a \Rightarrow e^x = e^a \sum_{k=0}^{\infty} \frac{1}{k!} (x - a)^k$, for all real x.

Taylor Polynomials

lor Polynomials Taylor Series Powers in x

Expansion of f(x) in x - a as Expansion of f(t + a) in t

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a. This is the approach to take when the expansion in t is either known or is readily available.

Example

Expand $f(x) = e^{x/2}$ in powers of x - 3

벼

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

7 / 14

Taylor Polynomials

or Polynomials Taylor Series Powers in x

Expansion of f(x) in x - a as Expansion of f(t + a) in t

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a. This is the approach to take when the expansion in t is either known or is readily available.

Example

Expand $f(x) = e^{x/2}$ in powers of x - 3.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

7 / 14

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a. This is the approach to take when the expansion in t is either known or is readily available.

Example

Expand $f(x) = e^{x/2}$ in powers of x - 3.

Jiwen He, University of Houston

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a. This is the approach to take when the expansion in t is either known or is readily available.

Example

Expand
$$f(x) = e^{x/2}$$
 in powers of $x - 3$.

1. Expand
$$f(t+3)$$
 in powers of $t \Rightarrow$
 $f(t+3) = e^{(t+3)/2} = e^{3/2}e^{t/2} = e^{3/2}\sum_{k=0}^{\infty}\frac{(t/2)^k}{k!} = e^{3/2}\sum_{k=0}^{\infty}\frac{1}{2^k k!}t^k$.
2. Set $t = x - 3 \Rightarrow$
 $f(x) = e^{x/2} = e^{3/2}\sum_{k=0}^{\infty}\frac{1}{2^k k!}(x-3)^k$, for all real x.

Jiwen He, University of Houston

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a. This is the approach to take when the expansion in t is either known or is readily available.

Example

Expand
$$f(x) = e^{x/2}$$
 in powers of $x - 3$.

1. Expand
$$f(t+3)$$
 in powers of $t \Rightarrow$
 $f(t+3) = e^{(t+3)/2} = e^{3/2}e^{t/2} = e^{3/2}\sum_{k=0}^{\infty}\frac{(t/2)^k}{k!} = e^{3/2}\sum_{k=0}^{\infty}\frac{1}{2^k k!}t^k$.
2. Set $t = x - 3 \Rightarrow$
 $f(x) = e^{x/2} = e^{3/2}\sum_{k=0}^{\infty}\frac{1}{2^k k!}(x-3)^k$, for all real x.

Jiwen He, University of Houston

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a. This is the approach to take when the expansion in t is either known or is readily available.

Example

Expand
$$f(x) = e^{x/2}$$
 in powers of $x - 3$.

1. Expand
$$f(t+3)$$
 in powers of $t \Rightarrow$
 $f(t+3) = e^{(t+3)/2} = e^{3/2}e^{t/2} = e^{3/2}\sum_{k=0}^{\infty}\frac{(t/2)^k}{k!} = e^{3/2}\sum_{k=0}^{\infty}\frac{1}{2^k k!}t^k$.
2. Set $t = x - 3 \Rightarrow$
 $f(x) = e^{x/2} = e^{3/2}\sum_{k=0}^{\infty}\frac{1}{2^k k!}(x-3)^k$, for all real x.

Jiwen He, University of Houston

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a. This is the approach to take when the expansion in t is either known or is readily available.

Example

Expand
$$f(x) = e^{x/2}$$
 in powers of $x - 3$.

1. Expand
$$f(t+3)$$
 in powers of $t \Rightarrow$
 $f(t+3) = e^{(t+3)/2} = e^{3/2}e^{t/2} = e^{3/2}\sum_{k=0}^{\infty} \frac{(t/2)^k}{k!} = e^{3/2}\sum_{k=0}^{\infty} \frac{1}{2^k k!}t^k$

Jiwen He, University of Houston

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a. This is the approach to take when the expansion in t is either known or is readily available.

Example

Expand
$$f(x) = e^{x/2}$$
 in powers of $x - 3$.

1. Expand
$$f(t+3)$$
 in powers of $t \Rightarrow$
 $f(t+3) = e^{(t+3)/2} = e^{3/2}e^{t/2} = e^{3/2}\sum_{k=0}^{\infty} \frac{(t/2)^k}{k!} = e^{3/2}\sum_{k=0}^{\infty} \frac{1}{2^k k!}t^k$.
2. Set $t = x - 3 \Rightarrow$
 $f(x) = e^{x/2} = e^{3/2}\sum_{k=0}^{\infty} \frac{1}{2^k k!}(x-3)^k$, for all real x .

Jiwen He, University of Houston

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a. This is the approach to take when the expansion in t is either known or is readily available.

Example

Expand
$$f(x) = e^{x/2}$$
 in powers of $x - 3$.

1. Expand
$$f(t+3)$$
 in powers of $t \Rightarrow$
 $f(t+3) = e^{(t+3)/2} = e^{3/2}e^{t/2} = e^{3/2}\sum_{k=0}^{\infty} \frac{(t/2)^k}{k!} = e^{3/2}\sum_{k=0}^{\infty} \frac{1}{2^k k!}t^k$.
2. Set $t = x - 3 \Rightarrow$
 $f(x) = e^{x/2} = e^{3/2}\sum_{k=0}^{\infty} \frac{1}{2^k k!}(x-3)^k$, for all real x.

Jiwen He, University of Houston

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a. This is the approach to take when the expansion in t is either known or is readily available.

Example

Expand
$$f(x) = e^{x/2}$$
 in powers of $x - 3$.

1. Expand
$$f(t+3)$$
 in powers of $t \Rightarrow$
 $f(t+3) = e^{(t+3)/2} = e^{3/2}e^{t/2} = e^{3/2}\sum_{k=0}^{\infty}\frac{(t/2)^k}{k!} = e^{3/2}\sum_{k=0}^{\infty}\frac{1}{2^k k!}t^k$.
2. Set $t = x - 3 \Rightarrow$
 $f(x) = e^{x/2} = e^{3/2}\sum_{k=0}^{\infty}\frac{1}{2^k k!}(x-3)^k$, for all real x.

Jiwen He, University of Houston

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a. This is the approach to take when the expansion in t is either known or is readily available.

Example

Expand
$$f(x) = e^{x/2}$$
 in powers of $x - 3$.

1. Expand
$$f(t+3)$$
 in powers of $t \Rightarrow$
 $f(t+3) = e^{(t+3)/2} = e^{3/2}e^{t/2} = e^{3/2}\sum_{k=0}^{\infty}\frac{(t/2)^k}{k!} = e^{3/2}\sum_{k=0}^{\infty}\frac{1}{2^k k!}t^k$.
2. Set $t = x - 3 \Rightarrow$
 $f(x) = e^{x/2} = e^{3/2}\sum_{k=0}^{\infty}\frac{1}{2^k k!}(x-3)^k$, for all real x.

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a. This is the approach to take when the expansion in t is either known or is readily available.

Example

Expand
$$f(x) = e^{x/2}$$
 in powers of $x - 3$.

1. Expand
$$f(t+3)$$
 in powers of $t \Rightarrow$
 $f(t+3) = e^{(t+3)/2} = e^{3/2}e^{t/2} = e^{3/2}\sum_{k=0}^{\infty}\frac{(t/2)^k}{k!} = e^{3/2}\sum_{k=0}^{\infty}\frac{1}{2^kk!}t^k$.
2. Set $t = x - 3 \Rightarrow$
 $f(x) = e^{x/2} = e^{3/2}\sum_{k=0}^{\infty}\frac{1}{2^kk!}(x-3)^k$, for all real x.

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a. This is the approach to take when the expansion in t is either known or is readily available.

Example

Expand
$$f(x) = e^{x/2}$$
 in powers of $x - 3$.

1. Expand
$$f(t+3)$$
 in powers of $t \Rightarrow$
 $f(t+3) = e^{(t+3)/2} = e^{3/2}e^{t/2} = e^{3/2}\sum_{k=0}^{\infty}\frac{(t/2)^k}{k!} = e^{3/2}\sum_{k=0}^{\infty}\frac{1}{2^kk!}t^k$.
2. Set $t = x - 3 \Rightarrow$
 $f(x) = e^{x/2} = e^{3/2}\sum_{k=0}^{\infty}\frac{1}{2^kk!}(x-3)^k$, for all real x.

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Logarithm $f(x) = \ln x$

$$\ln x = \ln a + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \cdots, \quad 0 < x \le 2a.$$

1. Expand $\ln(t + a)$ in powers of $t \Rightarrow$ $n(t+a) = \ln\left[a\left(1+\frac{t}{a}\right)\right] = \ln a + \ln\left(1+\frac{t}{a}\right) = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ 2. Set t = x - a, $-1 < \frac{t}{a} \le 1$, $-a < t \le a$, $0 < t + a \le 2a$,

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

/ 14

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Logarithm $f(x) = \ln x$

$$\ln x = \ln a + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \cdots, \quad 0 < x \le 2a.$$

1. Expand $\ln(t + a)$ in powers of $t \Rightarrow$ $\ln(t+a) = \ln\left[a\left(1+\frac{t}{a}\right)\right] = \ln a + \ln\left(1+\frac{t}{a}\right) = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ 2. Set t = x - a, $-1 < \frac{t}{a} \le 1$, $-a < t \le a$, $0 < t + a \le 2a$, = $\ln x = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (x - a)^k$, for $0 < x \le 2a$.

Jiwen He, University of Houston

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Logarithm $f(x) = \ln x$

$$\ln x = \ln a + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \cdots, \quad 0 < x \le 2a.$$

1. Expand $\ln(t + a)$ in powers of $t \Rightarrow$ $\ln(t+a) = \ln\left[a\left(1+\frac{t}{a}\right)\right] = \ln a + \ln\left(1+\frac{t}{a}\right) = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ (
2. Set $t = x - a, -1 < \frac{t}{a} \le 1, -a < t \le a, 0 < t + a \le 2a, \Rightarrow$ $\ln x = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{ka^k} (x - a)^k$, for $0 < x \le 2a$.

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Logarithm $f(x) = \ln x$

$$\ln x = \ln a + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \cdots, \quad 0 < x \le 2a.$$

1. Expand $\ln(t+a)$ in powers of $t \Rightarrow$ $\ln(t+a) = \ln\left[a\left(1+\frac{t}{a}\right)\right] = \ln a + \ln\left(1+\frac{t}{a}\right) = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left(\frac{t}{a}\right)^{k}$ 2. Set t = x - a, $-1 < \frac{t}{a} \leq 1$, $-a < t \leq a$, $0 < t + a \leq 2a$, \Rightarrow $\ln x = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{ka^{k}} (x-a)^{k}$, for $0 < x \leq 2a$.

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Logarithm $f(x) = \ln x$

$$\ln x = \ln a + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \cdots, \quad 0 < x \le 2a.$$

1. Expand $\ln(t + a)$ in powers of $t \Rightarrow$ $\ln(t+a) = \ln\left[a\left(1+\frac{t}{a}\right)\right] = \ln a + \ln\left(1+\frac{t}{a}\right) = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left(\frac{t}{a}\right)^{k}$ 2. Set t = x - a, $-1 < \frac{t}{a} \le 1$, $-a < t \le a$, $0 < t + a \le 2a$, \Rightarrow $\ln x = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{ka^{k}} (x - a)^{k}$, for $0 < x \le 2a$.

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Logarithm $f(x) = \ln x$

$$\ln x = \ln a + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \cdots, \quad 0 < x \le 2a.$$

1. Expand $\ln(t + a)$ in powers of $t \Rightarrow$ $\ln(t+a) = \ln\left[a\left(1+\frac{t}{a}\right)\right] = \ln a + \ln\left(1+\frac{t}{a}\right) = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left(\frac{t}{a}\right)^k$ 2. Set t = x - a, $-1 < \frac{t}{a} \le 1$, $-a < t \le a$. One to the set 2a. $\ln x = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{ka^k} (x - a)^k$, for $0 < x \le 2a$.

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Logarithm $f(x) = \ln x$

$$\ln x = \ln a + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \cdots, \quad 0 < x \le 2a.$$

1. Expand $\ln(t+a)$ in powers of $t \Rightarrow$ $\ln(t+a) = \ln\left[a\left(1+\frac{t}{a}\right)\right] = \ln a + \ln\left(1+\frac{t}{a}\right) = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left(\frac{t}{a}\right)^k$ 2. Set t = x - a, $-1 < \frac{t}{a} \le 1$, $-a < t \le a$, $0 < t + a \le 2a$.

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Logarithm $f(x) = \ln x$

$$\ln x = \ln a + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \cdots, \quad 0 < x \le 2a.$$

1. Expand $\ln(t+a)$ in powers of $t \Rightarrow$ $\ln(t+a) = \ln\left[a\left(1+\frac{t}{a}\right)\right] = \ln a + \ln\left(1+\frac{t}{a}\right) = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left(\frac{t}{a}\right)^{k}$ 2. Set t = x - a, $-1 < \frac{t}{a} \le 1$, $-a < t \le a$, $0 < t + a \le 2a$,

Jiwen He, University of Houston

峅

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Logarithm $f(x) = \ln x$

$$\ln x = \ln a + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \cdots, \quad 0 < x \le 2a.$$

1. Expand $\ln(t+a)$ in powers of $t \Rightarrow$ $\ln(t+a) = \ln\left[a\left(1+\frac{t}{a}\right)\right] = \ln a + \ln\left(1+\frac{t}{a}\right) = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left(\frac{t}{a}\right)^k$ 2. Set t = x - a, $-1 < \frac{t}{a} \le 1$, $-a < t \le a$, $0 < t + a \le 2a$, \Rightarrow

Jiwen He, University of Houston

H

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Logarithm $f(x) = \ln x$

$$\ln x = \ln a + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \cdots, \quad 0 < x \le 2a.$$

1. Expand $\ln(t+a)$ in powers of $t \Rightarrow$ $\ln(t+a) = \ln\left[a\left(1+\frac{t}{a}\right)\right] = \ln a + \ln\left(1+\frac{t}{a}\right) = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left(\frac{t}{a}\right)^{k}$ 2. Set $t = x - a, -1 < \frac{t}{a} \le 1, -a < t \le a, 0 < t + a \le 2a, \Rightarrow$ $\ln x = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{kk} (x-a)^{k}, \quad \text{for } 0 \le x \le 2a$

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Logarithm $f(x) = \ln x$

$$\ln x = \ln a + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \cdots, \quad 0 < x \le 2a.$$

1. Expand $\ln(t+a)$ in powers of $t \Rightarrow$ $\ln(t+a) = \ln\left[a\left(1+\frac{t}{a}\right)\right] = \ln a + \ln\left(1+\frac{t}{a}\right) = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left(\frac{t}{a}\right)^k$ 2. Set t = x - a, $-1 < \frac{t}{a} \le 1$, $-a < t \le a$, $0 < t + a \le 2a$, \Rightarrow $\ln x = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{ka^k} (x-a)^k$, for $0 < x \le 2a$.

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Logarithm $f(x) = \ln x$

$$\ln x = \ln a + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \cdots, \quad 0 < x \le 2a.$$

1. Expand $\ln(t+a)$ in powers of $t \Rightarrow$ $\ln(t+a) = \ln\left[a\left(1+\frac{t}{a}\right)\right] = \ln a + \ln\left(1+\frac{t}{a}\right) = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left(\frac{t}{a}\right)^{k}$ 2. Set t = x - a, $-1 < \frac{t}{a} \le 1$, $-a < t \le a$, $0 < t + a \le 2a$, \Rightarrow $\ln x = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{ka^{k}} (x-a)^{k}$, for $0 < x \le 2a$.

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Logarithm $f(x) = \ln x$

$$\ln x = \ln a + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \cdots, \quad 0 < x \le 2a.$$

1. Expand $\ln(t+a)$ in powers of $t \Rightarrow$ $\ln(t+a) = \ln\left[a\left(1+\frac{t}{a}\right)\right] = \ln a + \ln\left(1+\frac{t}{a}\right) = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left(\frac{t}{a}\right)^k$ 2. Set t = x - a, $-1 < \frac{t}{a} \le 1$, $-a < t \le a$, $0 < t + a \le 2a$, \Rightarrow $\ln x = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{ka^k} (x-a)^k$, for $0 < x \le 2a$.

Taylor Series in x - a by Translation

One way to expand f(x) in in powers of x - a is to expand f(t + a) in powers of t and then set t = x - a.

Taylor Series in x - a of the Logarithm $f(x) = \ln x$

$$\ln x = \ln a + \frac{1}{a}(x-a) - \frac{1}{2a^2}(x-a)^2 + \frac{1}{3a^3}(x-a)^3 - \cdots, \quad 0 < x \le 2a.$$

1. Expand $\ln(t+a)$ in powers of $t \Rightarrow$ $\ln(t+a) = \ln\left[a\left(1+\frac{t}{a}\right)\right] = \ln a + \ln\left(1+\frac{t}{a}\right) = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left(\frac{t}{a}\right)^{k}$ 2. Set t = x - a, $-1 < \frac{t}{a} \le 1$, $-a < t \le a$, $0 < t + a \le 2a$, \Rightarrow $\ln x = \ln a + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{ka^{k}} (x-a)^{k}$, for $0 < x \le 2a$.

Expansion of sin x in $x - \pi$

Taylor Series in $x - \pi$ of the Sine $f(x) = \sin x$

$$\sin x = -(x-\pi) + \frac{1}{3!}(x-\pi)^3 - \frac{1}{5!}(x-\pi)^5 + \frac{1}{7!}(x-\pi)^7 + \cdots, \quad \forall x.$$

1. Expand $sin(t + \pi)$ in powers of $t \Rightarrow$

 $\sin(t + \pi) = \sin t \cos \pi + \cos t \sin \pi = -\sin t$ $= -\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} t^{2k+1} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} t^{2k+1}$ 2. Set $t = x - \pi \Rightarrow$ $\sin x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} (x - \pi)^{2k+1}, \text{ for all real } x.$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

Expansion of sin x in $x - \pi$

Taylor Series in $x - \pi$ of the Sine $f(x) = \sin x$

$$\sin x = -(x-\pi) + \frac{1}{3!}(x-\pi)^3 - \frac{1}{5!}(x-\pi)^5 + \frac{1}{7!}(x-\pi)^7 + \cdots, \quad \forall x.$$

1. Expand $sin(t + \pi)$ in powers of t =

 $\sin(t+\pi) = \sin t \cos \pi + \cos t \sin \pi = -\sin t$ $= -\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k+1)!} t^{2k+1} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} t^{2k+1}$ 2. Set $t = x - \pi \Rightarrow$ $\sin x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} (x - \pi)^{2k+1}, \text{ for all real } x.$

Taylor Series in $x - \pi$ of the Sine $f(x) = \sin x$

$$\sin x = -(x-\pi) + \frac{1}{3!}(x-\pi)^3 - \frac{1}{5!}(x-\pi)^5 + \frac{1}{7!}(x-\pi)^7 + \cdots, \quad \forall x.$$

1. Expand $\sin(t + \pi)$ in powers of $t \Rightarrow$

$$\sin(t + \pi) = \sin t \cos \pi + \cos t \sin \pi = -\sin t$$
$$= -\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} t^{2k+1} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} t^{2k+1}$$
2. Set $t = x - \pi \implies$
$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} (x - \pi)^{2k+1}, \text{ for all real } x.$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

イロト イポト イヨト イヨト

Taylor Series in $x - \pi$ of the Sine $f(x) = \sin x$

$$\sin x = -(x-\pi) + \frac{1}{3!}(x-\pi)^3 - \frac{1}{5!}(x-\pi)^5 + \frac{1}{7!}(x-\pi)^7 + \cdots, \quad \forall x.$$

1. Expand $sin(t + \pi)$ in powers of $t \Rightarrow$

 $\sin(t+\pi) = \sin t \cos \pi + \cos t \sin \pi = -\sin t$

2. Set $t = x - \pi \quad \Rightarrow$ $\sin x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} (x - \pi)^{2k+1}, \quad \text{for all real } x.$

▲ 伺 ▶ → 三 ▶

H

Taylor Series in $x - \pi$ of the Sine $f(x) = \sin x$

$$\sin x = -(x-\pi) + \frac{1}{3!}(x-\pi)^3 - \frac{1}{5!}(x-\pi)^5 + \frac{1}{7!}(x-\pi)^7 + \cdots, \quad \forall x.$$

1. Expand $sin(t + \pi)$ in powers of $t \Rightarrow$

 $\sin(t+\pi) = \sin t \cos \pi + \cos t \sin \pi = -\sin t$

2. Set
$$t = x - \pi \quad \Rightarrow$$

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} (x - \pi)^{2k+1}, \quad \text{for all real } x.$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

坍

Taylor Series in $x - \pi$ of the Sine $f(x) = \sin x$

$$\sin x = -(x-\pi) + \frac{1}{3!}(x-\pi)^3 - \frac{1}{5!}(x-\pi)^5 + \frac{1}{7!}(x-\pi)^7 + \cdots, \quad \forall x.$$

Expand sin($t + \pi$) in powers of t1. \Rightarrow

$$\sin(t+\pi) = \sin t \cos \pi + \cos t \sin \pi = -\sin t$$
$$= -\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} t^{2k+1} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} t^{2k+1}$$

< //2 → < 三

н

r Polynomials Taylor Series Powers in x -

Expansion of sin x in $x - \pi$

Taylor Series in $x - \pi$ of the Sine $f(x) = \sin x$

$$\sin x = -(x-\pi) + \frac{1}{3!}(x-\pi)^3 - \frac{1}{5!}(x-\pi)^5 + \frac{1}{7!}(x-\pi)^7 + \cdots, \quad \forall x.$$

1. Expand $\sin(t + \pi)$ in powers of $t \Rightarrow$

$$\sin(t+\pi) = \sin t \cos \pi + \cos t \sin \pi = -\sin t$$
$$= -\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} t^{2k+1} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} t^{2k+1}$$

2. Set $t = x - \pi \Rightarrow$

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} (x-\pi)^{2k+1}, \quad \text{ for all real } x.$$

Jiwen He, University of Houston

April 17, 2008 🛛 🤉

Taylor Series in $x - \pi$ of the Sine $f(x) = \sin x$

$$\sin x = -(x-\pi) + \frac{1}{3!}(x-\pi)^3 - \frac{1}{5!}(x-\pi)^5 + \frac{1}{7!}(x-\pi)^7 + \cdots, \quad \forall x.$$

1. Expand $sin(t + \pi)$ in powers of $t \Rightarrow$

$$\sin(t+\pi) = \sin t \cos \pi + \cos t \sin \pi = -\sin t$$
$$= -\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} t^{2k+1} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} t^{2k+1}$$

2. Set $t = x - \pi \Rightarrow$

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} (x-\pi)^{2k+1}, \quad \text{ for all real } x.$$

畃

Jiwen He, University of Houston

Taylor Series in $x - \pi$ of the Sine $f(x) = \sin x$

$$\sin x = -(x-\pi) + \frac{1}{3!}(x-\pi)^3 - \frac{1}{5!}(x-\pi)^5 + \frac{1}{7!}(x-\pi)^7 + \cdots, \quad \forall x.$$

1. Expand $\sin(t + \pi)$ in powers of $t \Rightarrow$

$$\sin(t+\pi) = \sin t \cos \pi + \cos t \sin \pi = -\sin t$$
$$= -\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} t^{2k+1} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} t^{2k+1}$$

2. Set $t = x - \pi \Rightarrow$

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} (x-\pi)^{2k+1}, \quad \text{ for all real } x.$$

Jiwen He, University of Houston

< 177 ▶

Taylor Series in $x - \pi$ of the Sine $f(x) = \sin x$

$$\sin x = -(x-\pi) + \frac{1}{3!}(x-\pi)^3 - \frac{1}{5!}(x-\pi)^5 + \frac{1}{7!}(x-\pi)^7 + \cdots, \quad \forall x.$$

1. Expand $\sin(t + \pi)$ in powers of $t \Rightarrow$

$$\sin(t+\pi) = \sin t \cos \pi + \cos t \sin \pi = -\sin t$$
$$= -\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} t^{2k+1} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} t^{2k+1}$$

2. Set $t = x - \pi \Rightarrow$

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} (x-\pi)^{2k+1}, \quad \text{ for all real } x.$$

Jiwen He, University of Houston

< 177 ▶

Taylor Series in $x - \pi$ of the Cosine $f(x) = \cos x$

$$\cos x = -1 + \frac{1}{2!}(x-\pi)^2 - \frac{1}{4!}(x-\pi)^4 + \frac{1}{6!}(x-\pi)^6 - \cdots, \quad \forall x.$$

1. Expand $\cos(t + \pi)$ in powers of $t \Rightarrow$

 $\cos(t + \pi) = \cos t \cos \pi - \sin t \sin \pi = -\cos t$ $= -\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2k)!} t^{2k} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2k)!} t^{2k}$

Set
$$t = x - \pi$$
 \Rightarrow
 $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} (x - \pi)^{2k}$, for all real x .

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

Taylor Series in $x - \pi$ of the Cosine $f(x) = \cos x$

$$\cos x = -1 + \frac{1}{2!}(x-\pi)^2 - \frac{1}{4!}(x-\pi)^4 + \frac{1}{6!}(x-\pi)^6 - \cdots, \quad \forall x.$$

1. Expand $cos(t + \pi)$ in powers of t =

 $\cos(t+\pi) = \cos t \cos \pi - \sin t \sin \pi = -\cos t$

 $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} (x - \pi)^{2k}, \quad \text{ for all real } x.$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

• IP • • E •

Taylor Series in $x - \pi$ of the Cosine $f(x) = \cos x$

$$\cos x = -1 + \frac{1}{2!}(x-\pi)^2 - \frac{1}{4!}(x-\pi)^4 + \frac{1}{6!}(x-\pi)^6 - \cdots, \quad \forall x.$$

1. Expand $\cos(t + \pi)$ in powers of $t \Rightarrow$

$$\cos(t + \pi) = \cos t \cos \pi - \sin t \sin \pi = -\cos t$$
$$= -\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k)!} t^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} t^{2k}$$
2. Set $t = x - \pi \implies$
$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} (x - \pi)^{2k}, \text{ for all real } x.$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

Taylor Series in $x - \pi$ of the Cosine $f(x) = \cos x$

$$\cos x = -1 + \frac{1}{2!}(x-\pi)^2 - \frac{1}{4!}(x-\pi)^4 + \frac{1}{6!}(x-\pi)^6 - \cdots, \quad \forall x.$$

1. Expand $\cos(t + \pi)$ in powers of $t \Rightarrow$

$$\cos(t+\pi) = \cos t \cos \pi - \sin t \sin \pi = -\cos t$$

2. Set $t = x - \pi \implies$ $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} (x - \pi)^{2k}$, for all real x.

< 🗇 🕨

Taylor Series in $x - \pi$ of the Cosine $f(x) = \cos x$

$$\cos x = -1 + \frac{1}{2!}(x-\pi)^2 - \frac{1}{4!}(x-\pi)^4 + \frac{1}{6!}(x-\pi)^6 - \cdots, \quad \forall x.$$

1. Expand $\cos(t + \pi)$ in powers of $t \Rightarrow$

$$\cos(t+\pi) = \cos t \cos \pi - \sin t \sin \pi = -\cos t$$

2. Set
$$t = x - \pi \implies$$

 $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} (x - \pi)^{2k}$, for all real x .

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

< 🗗 🕨

Taylor Series in $x - \pi$ of the Cosine $f(x) = \cos x$

$$\cos x = -1 + \frac{1}{2!}(x-\pi)^2 - \frac{1}{4!}(x-\pi)^4 + \frac{1}{6!}(x-\pi)^6 - \cdots, \quad \forall x.$$

1. Expand $\cos(t + \pi)$ in powers of $t \Rightarrow$

$$\cos(t+\pi) = \cos t \cos \pi - \sin t \sin \pi = -\cos t$$
$$= -\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} t^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} t^{2k}$$

2. Set
$$t = x - \pi \implies$$

 $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} (x - \pi)^{2k}$, for all real x .

Jiwen He, University of Houston

April 17, 2008

Taylor Series in $x - \pi$ of the Cosine $f(x) = \cos x$

$$\cos x = -1 + \frac{1}{2!}(x-\pi)^2 - \frac{1}{4!}(x-\pi)^4 + \frac{1}{6!}(x-\pi)^6 - \cdots, \quad \forall x.$$

1. Expand $\cos(t + \pi)$ in powers of $t \Rightarrow$

$$\cos(t+\pi) = \cos t \cos \pi - \sin t \sin \pi = -\cos t$$
$$= -\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} t^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} t^{2k}$$

2. Set $t = x - \pi \Rightarrow$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} (x - \pi)^{2k}$$
, for all real x .

畃

Taylor Series in $x - \pi$ of the Cosine $f(x) = \cos x$

$$\cos x = -1 + \frac{1}{2!}(x-\pi)^2 - \frac{1}{4!}(x-\pi)^4 + \frac{1}{6!}(x-\pi)^6 - \cdots, \quad \forall x.$$

1. Expand $\cos(t + \pi)$ in powers of $t \Rightarrow$

$$\cos(t+\pi) = \cos t \cos \pi - \sin t \sin \pi = -\cos t$$
$$= -\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} t^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} t^{2k}$$

2. Set $t = x - \pi \Rightarrow$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} (x - \pi)^{2k}$$
, for all real x .

埘

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

Taylor Series in $x - \pi$ of the Cosine $f(x) = \cos x$

$$\cos x = -1 + \frac{1}{2!}(x-\pi)^2 - \frac{1}{4!}(x-\pi)^4 + \frac{1}{6!}(x-\pi)^6 - \cdots, \quad \forall x.$$

1. Expand $\cos(t + \pi)$ in powers of $t \Rightarrow$

$$\cos(t+\pi) = \cos t \cos \pi - \sin t \sin \pi = -\cos t$$
$$= -\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} t^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} t^{2k}$$

2. Set $t = x - \pi \Rightarrow$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} (x - \pi)^{2k}$$
, for all real x.

搟

Jiwen He, University of Houston

Taylor Series in $x - \pi$ of the Cosine $f(x) = \cos x$

$$\cos x = -1 + \frac{1}{2!}(x-\pi)^2 - \frac{1}{4!}(x-\pi)^4 + \frac{1}{6!}(x-\pi)^6 - \cdots, \quad \forall x.$$

1. Expand $\cos(t + \pi)$ in powers of $t \Rightarrow$

$$\cos(t+\pi) = \cos t \cos \pi - \sin t \sin \pi = -\cos t$$
$$= -\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} t^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} t^{2k}$$

2. Set $t = x - \pi \Rightarrow$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k)!} (x - \pi)^{2k}$$
, for all real x .

搟

Taylor Series in $x - \pi$ of $f(x) = \cos^2 x$

$$\cos^2 x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k 2^{2k-1}}{(2k)!} (x - \pi)^{2k}, \quad \forall x.$$

1. Expand $\cos^2(t + \pi)$ in powers of $t \Rightarrow$

$$\cos^{2}(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos 2(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos(2t+2\pi)$$
$$= \frac{1}{2} + \frac{1}{2}\cos 2t = \frac{1}{2} + \frac{1}{2}\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(2k)!}(2t)^{2k} = 1 + \sum_{k=1}^{\infty}\frac{(-1)^{k}2^{2k-1}}{(2k)!}t$$

2. Set $t = x - \pi \Rightarrow$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

머

Taylor Series in $x - \pi$ of $f(x) = \cos^2 x$

$$\cos^2 x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k 2^{2k-1}}{(2k)!} (x - \pi)^{2k}, \quad \forall x$$

1. Expand $\cos^2(t + \pi)$ in powers of $t \Rightarrow$

$$\cos^{2}(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos 2(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos(2t+2\pi)$$
$$= \frac{1}{2} + \frac{1}{2}\cos 2t = \frac{1}{2} + \frac{1}{2}\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(2k)!}(2t)^{2k} = 1 + \sum_{k=1}^{\infty}\frac{(-1)^{k}2^{2k-1}}{(2k)!}$$

2. Set $t = x - \pi \Rightarrow$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

머

Taylor Series in $x - \pi$ of $f(x) = \cos^2 x$

$$\cos^2 x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k 2^{2k-1}}{(2k)!} (x - \pi)^{2k}, \quad \forall x$$

1. Expand $\cos^2(t+\pi)$ in powers of $t \Rightarrow$

$$\cos^{2}(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos 2(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos(2t+2\pi)$$
$$= \frac{1}{2} + \frac{1}{2}\cos 2t = \frac{1}{2} + \frac{1}{2}\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k)!}(2t)^{2k} = 1 + \sum_{k=1}^{\infty} \frac{(-1)^{k}2^{2k-1}}{(2k)!}t^{2k}$$
$$2. \quad \text{Set } t = x - \pi \quad \Rightarrow$$
$$\cos^{2} x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^{k}2^{2k-1}}{(2k)!}(x-\pi)^{2k}, \quad \text{for all real } x.$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

Taylor Series in $x - \pi$ of $f(x) = \cos^2 x$

$$\cos^2 x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k 2^{2k-1}}{(2k)!} (x - \pi)^{2k}, \quad \forall x$$

1. Expand $\cos^2(t+\pi)$ in powers of $t \Rightarrow$

$$\cos^{2}(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos 2(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos(2t+2\pi)$$
$$= \frac{1}{2} + \frac{1}{2}\cos 2t = \frac{1}{2} + \frac{1}{2}\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k)!}(2t)^{2k} = 1 + \sum_{k=1}^{\infty} \frac{(-1)^{k}2^{2k-1}}{(2k)!}t$$
$$2. \quad \text{Set } t = x - \pi$$
$$\cos^{2} x = 1 + \sum_{k=0}^{\infty} \frac{(-1)^{k}2^{2k-1}}{(2k)!}(x-\pi)^{2k}, \quad \text{for all real } x.$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

April 17, 2008

Taylor Series in $x - \pi$ of $f(x) = \cos^2 x$

$$\cos^2 x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k 2^{2k-1}}{(2k)!} (x - \pi)^{2k}, \quad \forall x$$

1. Expand $\cos^2(t+\pi)$ in powers of $t \Rightarrow$

$$\cos^{2}(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos 2(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos(2t+2\pi)$$
$$= \frac{1}{2} + \frac{1}{2}\cos 2t = \frac{1}{2} + \frac{1}{2}\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(2k)!}(2t)^{2k} = 1 + \sum_{k=1}^{\infty}\frac{(-1)^{k}2^{2k-1}}{(2k)!}t^{2k}$$

2. Set
$$t = x - \pi \Rightarrow$$

Jiwen He, University of Houston

坍

申

Expansion of $\cos^2 x$ in $x - \pi$

Taylor Series in
$$x - \pi$$
 of $f(x) = \cos^2 x$

$$\cos^2 x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k 2^{2k-1}}{(2k)!} (x - \pi)^{2k}, \quad \forall x$$

1. Expand $\cos^2(t+\pi)$ in powers of $t \Rightarrow$

$$\cos^{2}(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos 2(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos(2t+2\pi)$$
$$= \frac{1}{2} + \frac{1}{2}\cos 2t = \frac{1}{2} + \frac{1}{2}\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(2k)!}(2t)^{2k} = 1 + \sum_{k=1}^{\infty}\frac{(-1)^{k}2^{2k-1}}{(2k)!}t^{2k}$$

2. Set
$$t = x - \pi \Rightarrow$$

Jiwen He, University of Houston

Taylor Series in
$$x - \pi$$
 of $f(x) = \cos^2 x$

$$\cos^2 x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k 2^{2k-1}}{(2k)!} (x - \pi)^{2k}, \quad \forall x$$

1. Expand $\cos^2(t+\pi)$ in powers of $t \Rightarrow$

$$\cos^{2}(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos 2(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos(2t+2\pi)$$
$$= \frac{1}{2} + \frac{1}{2}\cos 2t = \frac{1}{2} + \frac{1}{2}\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(2k)!}(2t)^{2k} = 1 + \sum_{k=1}^{\infty}\frac{(-1)^{k}2^{2k-1}}{(2k)!}t^{2k}$$

2. Set
$$t = x - \pi$$

$$\cos^2 x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k 2^{2k-1}}{(2k)!} (x - \pi)^{2k},$$
 for all real x.

Jiwen He, University of Houston

April 17, 2008

坍

Taylor Series in
$$x - \pi$$
 of $f(x) = \cos^2 x$

$$\cos^2 x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k 2^{2k-1}}{(2k)!} (x - \pi)^{2k}, \quad \forall x$$

1. Expand $\cos^2(t+\pi)$ in powers of $t \Rightarrow$

$$\cos^{2}(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos 2(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos(2t+2\pi)$$
$$= \frac{1}{2} + \frac{1}{2}\cos 2t = \frac{1}{2} + \frac{1}{2}\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(2k)!}(2t)^{2k} = 1 + \sum_{k=1}^{\infty}\frac{(-1)^{k}2^{2k-1}}{(2k)!}t^{2k}$$

2. Set $t = x - \pi \Rightarrow$

$$\cos^2 x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k 2^{2k-1}}{(2k)!} (x - \pi)^{2k}, \text{ for all real } x.$$

Jiwen He, University of Houston

Taylor Series in
$$x - \pi$$
 of $f(x) = \cos^2 x$

$$\cos^2 x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k 2^{2k-1}}{(2k)!} (x - \pi)^{2k}, \quad \forall x$$

1. Expand $\cos^2(t+\pi)$ in powers of $t \Rightarrow$

$$\cos^{2}(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos 2(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos(2t+2\pi)$$
$$= \frac{1}{2} + \frac{1}{2}\cos 2t = \frac{1}{2} + \frac{1}{2}\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(2k)!}(2t)^{2k} = 1 + \sum_{k=1}^{\infty}\frac{(-1)^{k}2^{2k-1}}{(2k)!}t^{2k}$$

2. Set
$$t = x - \pi \Rightarrow$$

$$\cos^2 x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k 2^{2k-1}}{(2k)!} (x - \pi)^{2k}$$
, for all real x.

Jiwen He, University of Houston

坍

Taylor Series in
$$x - \pi$$
 of $f(x) = \cos^2 x$

$$\cos^2 x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k 2^{2k-1}}{(2k)!} (x - \pi)^{2k}, \quad \forall x$$

1. Expand $\cos^2(t+\pi)$ in powers of $t \Rightarrow$

$$\cos^{2}(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos 2(t+\pi) = \frac{1}{2} + \frac{1}{2}\cos(2t+2\pi)$$
$$= \frac{1}{2} + \frac{1}{2}\cos 2t = \frac{1}{2} + \frac{1}{2}\sum_{k=0}^{\infty}\frac{(-1)^{k}}{(2k)!}(2t)^{2k} = 1 + \sum_{k=1}^{\infty}\frac{(-1)^{k}2^{2k-1}}{(2k)!}t^{2k}$$

2. Set
$$t = x - \pi \Rightarrow$$

$$\cos^2 x = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k 2^{2k-1}}{(2k)!} (x - \pi)^{2k}$$
, for all real x .

Jiwen He, University of Houston

H

Taylor PolynomialsTaylor PolynomialsTaylor SeriesPowers in x - a	
Expansion of $(1 - x)^{-1}$ in x and Related	
Expansion of $(1 - x)^{-1}$ in x and Geometric Series	
$(1-x)^{-1} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \cdots, x < 1.$	
Expand $f(x) = (1 - 2x)^{-1}$ in powers of $x + 2$.	j
1. Expand $f(t-2)$ in powers of $t \Rightarrow$	i.
2. Set $t = x + 2$, $-1 < \frac{2}{5}t < 1$, $-\frac{5}{2} < t < \frac{5}{2}$, $-\frac{9}{2} < t - 2 < \frac{1}{2}$, $f(x) = (1 - 2x)^{-1} = \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}\right)^k (x + 2)^k$, $-\frac{9}{2} < x < \frac{1}{2}$.	H

Math 1432 – Section 26626, Lecture 26

April 17, 2008

Math 1432 – Section 26626, Lecture 20

April 17, 2008

$$\begin{aligned} & \text{Expansion of } (1-x)^{-1} \text{ in } x \text{ and Related} \\ \\ & \text{Expansion of } (1-x)^{-1} \text{ in } x \text{ and Geometric Series} \\ & (1-x)^{-1} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \cdots, \quad |x| < 1. \\ & \text{Expand } f(x) = (1-2x)^{-1} \text{ in powers of } x + 2. \\ & \text{I. Expand } f(t-2) \text{ in powers of } t \Rightarrow \\ & f(t-2) = [1-2(t-2)]^{-1} = (5-2t)^{-1} = \frac{1}{5} \left[1 - \left(\frac{2}{5}t \right) \right]^{-1} \\ & = \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}t \right)^k = 1 \\ & \text{Set } t = x + 2 \\ & \text{Set } t = x + 2 \\ & \text{$$

Math 1432 - Section 26626, Lecture 20

April 17, 2008

$$\begin{aligned} & \text{Expansion of } (1-x)^{-1} \text{ in } x \text{ and Related} \\ \\ & \text{Expansion of } (1-x)^{-1} \text{ in } x \text{ and Geometric Series} \\ & (1-x)^{-1} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \cdots, \quad |x| < 1. \\ & \text{Expand } f(x) = (1-2x)^{-1} \text{ in powers of } x + 2. \\ & 1. & \text{Expand } f(t-2) \text{ in powers of } t \Rightarrow \\ & f(t-2) = [1-2(t-2)]^{-1} = (5-2t)^{-1} = \frac{1}{5} \left[1 - \left(\frac{2}{5}t\right) \right]^{-1} \\ & = \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}t\right)^k = \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}\right)^k t^k \end{aligned}$$

Math 1432 - Section 26626, Lecture 20

April 17, 2008

Expansion of
$$(1 - x)^{-1}$$
 in x and Related
Expansion of $(1 - x)^{-1}$ in x and Geometric Series
 $(1 - x)^{-1} = \sum_{k=0}^{\infty} x^{k} = 1 + x + x^{2} + \cdots, |x| < 1.$
Expand $f(x) = (1 - 2x)^{-1}$ in powers of $x + 2.$
1. Expand $f(t - 2)$ in powers of $t \Rightarrow$
 $f(t - 2) = [1 - 2(t - 2)]^{-1} = (5 - 2t)^{-1} = \frac{1}{5} \left[1 - \left(\frac{2}{5}t\right) \right]^{-1}$
 $= \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}t\right)^{k} = \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}\right)^{k} t^{k}$

Math 1432 – Section 26626, Lecture 2

April 17, 2008

. مەرە

Taylor Polynomials Taylor Series Powers in x - aExpansion of
$$(1 - x)^{-1}$$
 in x and RelatedExpansion of $(1 - x)^{-1}$ in x and Geometric Series $(1 - x)^{-1} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \cdots, \quad |x| < 1.$ Expand $f(x) = (1 - 2x)^{-1}$ in powers of $x + 2$.1. Expand $f(t - 2)$ in powers of $t \Rightarrow$ $f(t - 2x)^{-1}$ in $f(t - 2)$ in powers of $t \Rightarrow$

 $f(t-2) = \left[1 - 2(t-2)\right]^{-1} = (5-2t)^{-1} = \frac{1}{5} \left[1 - \left(\frac{2}{5}t\right)\right]^{-1}$ $= \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}t\right)^k = \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}\right)^k t^k$

2. Set t = x + 2, $-1 < \frac{2}{5}t < 1$, $-\frac{5}{2} < t < \frac{5}{2}$, $-\frac{9}{2} < t - 2$

 $f(t-2) = \left[1 - 2(t-2)\right]^{-1} = (5-2t)^{-1} = \frac{1}{5} \left[1 - \left(\frac{2}{5}t\right)\right]^{-1}$ $= \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}t\right)^{k} = \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}\right)^{k} t^{k}$

2. Set t = x + 2, $-1 < \frac{2}{5}t < 1$, $-\frac{5}{2} < t < \frac{5}{2}$, $-\frac{9}{2}$

屮

1. Expand f(t-2) in powers of $t \Rightarrow$ $f(t-2) = [1-2(t-2)]^{-1} = (5-2t)^{-1} = \frac{1}{5} \left[1 - \left(\frac{2}{5}t\right) \right]^{-1}$ $= \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}t\right)^k = \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}\right)^k t^k$

2. Set t = x + 2, $-1 < \frac{2}{5}t < 1$, $-\frac{5}{2} < t < \frac{5}{2}$, $-\frac{9}{2} < t - 2 < \frac{1}{2}$,
| Taylor Polynomials Taylor Polynomials Taylor Series Powers in $x - a$ | | | |
|--|--|--|--|
| Expansion of $(1-x)^{-1}$ in x and Related | | | |
| Expansion of $(1 - x)^{-1}$ in x and Geometric Series | | | |
| $(1-x)^{-1} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \cdots, x < 1.$ | | | |
| Expand $f(x) = (1 - 2x)^{-1}$ in powers of $x + 2$. | | | |
| 1. Expand $f(t-2)$ in powers of $t \Rightarrow$ | | | |

 $f(t-2) = \left[1 - 2(t-2)\right]^{-1} = (5-2t)^{-1} = \frac{1}{5} \left[1 - \left(\frac{2}{5}t\right)\right]$ $= \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}t\right)^{k} = \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}\right)^{k} t^{k}$

2. Set t = x + 2, $-1 < \frac{2}{5}t < 1$, $-\frac{5}{2} < t < \frac{5}{2}$, $-\frac{9}{2} < t - 2 < \frac{1}{2}$,

Taylor Polynomials Taylor Polynomials Taylor Series Powers in $x - a$				
Expansion of $(1 - x)^{-1}$ in x and Related				
Expansion of $(1 - x)^{-1}$ in x and Geometric Series				
$(1-x)^{-1} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \cdots, x < 1.$				
Expand $f(x) = (1 - 2x)^{-1}$ in powers of $x + 2$.				
1. Expand $f(t-2)$ in powers of $t \Rightarrow$				
$f(t-2) = \left[1-2(t-2) ight]^{-1} = (5-2t)^{-1} = rac{1}{5}\left[1-\left(rac{2}{5}t ight) ight]^{-1}$				
$=\frac{1}{5}\sum_{k=0}^{\infty}\left(\frac{2}{5}t\right)^{k}=\frac{1}{5}\sum_{k=0}^{\infty}\left(\frac{2}{5}\right)^{k}t^{k}$				

2. Set t = x + 2, $-1 < \frac{2}{5}t < 1$, $-\frac{5}{2} < t < \frac{5}{2}$, $-\frac{9}{2} < t - 2 < \frac{1}{2}$, $f(x) = (1 - 2x)^{-1} = \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}\right)^{k} (x + 2)^{k}$, $-\frac{9}{2} < x < \frac{1}{2}$.

Jiwen He, University of Houston

	Taylor Polynomials	Taylor Polynomials Taylor Series Powers in x — a		
Expansion of ($(1-x)^{-1}$ in x	and Related		
Expansion of (1	$(1-x)^{-1}$ in x and	Geometric Series		
(1 - x)	$y^{-1} = \sum_{k=0}^{\infty} x^k = 1 + $	$+x+x^2+\cdots, x <1.$		
Expand $f(x) = (1 - 2x)^{-1}$ in powers of $x + 2$.				
1. Expand $f(t-2)$ in powers of $t \Rightarrow$				
f(t-2) = [1]	$[-2(t-2)]^{-1} =$	$(5-2t)^{-1} = \frac{1}{5} \left[1 - \left(\frac{2}{5}t\right) \right]^{-1}$		
$=rac{1}{5}$	$\sum_{k=0}^{\infty} \left(\frac{2}{5}t\right)^k = \frac{1}{5}\sum_{k=0}^{k}$	$\sum_{k=0}^{\infty} \left(\frac{2}{5}\right)^{k} t^{k}$		

2. Set t = x + 2, $-1 < \frac{2}{5}t < 1$, $-\frac{5}{2} < t < \frac{5}{2}$, $-\frac{9}{2} < t - 2 < \frac{1}{2}$, $f(x) = (1 - 2x)^{-1} = \frac{1}{5}\sum_{k=0}^{\infty} {\binom{2}{5}}^k (x + 2)^k$, $-\frac{9}{2} < x < \frac{1}{2}$.

Jiwen He, University of Houston

Taylor PolynomialsTaylor PolynomialsTaylor SeriesPowers in x - aExpansion of
$$(1 - x)^{-1}$$
 in x and RelatedExpansion of $(1 - x)^{-1}$ in x and Geometric Series $(1 - x)^{-1} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \cdots, \quad |x| < 1.$ Expand $f(x) = (1 - 2x)^{-1}$ in powers of $x + 2$.1. Expand $f(t - 2)$ in powers of $t \Rightarrow$ $f(t - 2x)^{-1}$ in powers of $t \Rightarrow$ $f(t - 2) = [1 - 2(t - 2x)]^{-1}$

$$f(t-2) = \left[1 - 2(t-2)\right]^{-1} = (5-2t)^{-1} = \frac{1}{5} \left[1 - \left(\frac{2}{5}t\right)\right]$$
$$= \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}t\right)^{k} = \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}\right)^{k} t^{k}$$

2. Set
$$t = x + 2$$
, $-1 < \frac{2}{5}t < 1$, $-\frac{5}{2} < t < \frac{5}{2}$, $-\frac{9}{2} < t - 2 < \frac{1}{2}$,
 $f(x) = (1 - 2x)^{-1} = \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}\right)^k (x + 2)^k$, $-\frac{9}{2} < x < \frac{1}{2}$.

H

Taylor Polynomials Taylor Polynomials Taylor Series Powers in x - aExpansion of
$$(1 - x)^{-1}$$
 in x and RelatedExpansion of $(1 - x)^{-1}$ in x and Geometric Series $(1 - x)^{-1} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \cdots, |x| < 1.$ Expand $f(x) = (1 - 2x)^{-1}$ in powers of $x + 2.$ 1. Expand $f(t - 2)$ in powers of $t \Rightarrow$ Taylor Polynomials Taylor Series Powers in $x - a$

$$f(t-2) = \left[1 - 2(t-2)\right]^{-1} = (5-2t)^{-1} = \frac{1}{5} \left[1 - \left(\frac{2}{5}t\right)\right]$$
$$= \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}t\right)^{k} = \frac{1}{5} \sum_{k=0}^{\infty} \left(\frac{2}{5}\right)^{k} t^{k}$$

2. Set
$$t = x + 2$$
, $-1 < \frac{2}{5}t < 1$, $-\frac{5}{2} < t < \frac{5}{2}$, $-\frac{9}{2} < t - 2 < \frac{1}{2}$,
 $f(x) = (1 - 2x)^{-1} = \frac{1}{5}\sum_{k=0}^{\infty} \left(\frac{2}{5}\right)^k (x + 2)^k$, $-\frac{9}{2} < x < \frac{1}{2}$.

H

Math 1432 - Section 26626, Lecture 26

Math 1432 - Section 26626, Lecture 26

Math 1432 - Section 26626, Lecture 26

$$(1-x)^{-m} = \frac{1}{(m-1)!} \sum_{k=0}^{\infty} (k+1) \cdots (k+m-1)!$$

Expand $f(x) = (1 - 2x)^{-3}$ in powers of x + 2.

Jiwen He, University of Houston

$$(1-x)^{-m} = \frac{1}{(m-1)!} \sum_{k=0}^{\infty} (k+1) \cdots (k+m-1) x^k$$

Expand $f(x) = (1 - 2x)^{-3}$ in powers of x + 2.

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 26

$$(1-x)^{-m} = \frac{1}{(m-1)!} \sum_{k=0}^{\infty} (k+1) \cdots (k+m-1) x^k$$

Expand $f(x) = (1 - 2x)^{-3}$ in powers of x + 2.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 26

$$(1-x)^{-m} = \frac{1}{(m-1)!} \sum_{k=0}^{\infty} (k+1) \cdots (k+m-1) x^k$$

Expand $f(x) = (1 - 2x)^{-3}$ in powers of x + 2.

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 26

$$(1-x)^{-m} = \frac{1}{(m-1)!} \sum_{k=0}^{\infty} (k+1) \cdots (k+m-1) x^k$$

Expand $f(x) = (1 - 2x)^{-3}$ in powers of x + 2.

Jiwen He, University of Houston

$$(1-x)^{-m} = \frac{1}{(m-1)!} \sum_{k=0}^{\infty} (k+1) \cdots (k+m-1) x^k$$

Expand $f(x) = (1 - 2x)^{-3}$ in powers of x + 2.

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 26

$$(1-x)^{-m} = \frac{1}{(m-1)!} \sum_{k=0}^{\infty} (k+1) \cdots (k+m-1) x^k$$

Expand $f(x) = (1 - 2x)^{-3}$ in powers of x + 2.

Jiwen He, University of Houston

Outline

- Taylor Polynomials in x a
 - Taylor Polynomials in x a
 - Taylor Series in x a
 - Powers in x a by Translation