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The nth Taylor polynomial in x — a for a function f is
f'(a f()(a
Pn(x) = f(a)+f'(a)(x—a)+ 2(| )(x—a)2+---—|- n|( )(x—a)";
Py is the polynomial that has the same value as f at a and the
same first n derivatives:

Pa(a) = f(a), Pi(a) = f'(a), P (a) = £ (a), -, PY"(a) = £F((a).

Best Approximation

P,, provides the best local approximation of f(x) near a by a
polynomial of degree < n.

Po(x) = f(a),
Pi(x) = f(a) + f'(a)(x — a),
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Taylor Polynomials in Powers of x — a

The nth Taylor polynomial in x — a for a function f is

f'(a f(n)(a
Pn(x) = f(a)+f'(a)(x—a)+ 2(| )(x—a)2+---—|- n|( )(x—a)";
Py is the polynomial that has the same value as f at a and the
same first n derivatives:

Pa(a) = f(a), Pi(a) = f'(a), P (a) = £ (a), -, PY"(a) = £F((a).

Best Approximation

P,, provides the best local approximation of f(x) near a by a
polynomial of degree < n.

Po(x) = f(a),
Pu(x) = (2) + F(3)(x - 2).
Py(x) = f(a) + f'(a)x + f2(!a)( — &) [lll
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Taylor's Theorem and Remainder Term

Taylor's Theorem

If f has n+ 1 continuous derivatives on an open interval [ that
contains a, then for each x € [,

f(X):f(3)+f/(a)(x—a)_|_..._|_
1/X f(n+1)(t)(X—t)ndt.

n! J,

f(")(a)
n!

(x = a)" + Ra(x);

Ra(x) =

Lagrange Formula for the Remainder
f(n—i—l)(c)

(n+1)!
where ¢ is some number between a and x.

Ra(x) = (x— 2"+

Estimate for the Remainder Term

Ra(e)| < (maxl o))

|x — a1

NCEER J =[a,x] or [x, a]. [l]l

Jiwen He, University of Houston
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If f(x) is infinitely differentiable on interval / containing a, then

(n)
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If f(x) is infinitely differentiable on interval / containing a, then

(n)
f(x)=f(a)+ f(a)(x —a)+ -+ f n!(a)(x —a)" + Ra(x);
x — a|"t!
Ra)] < (gl ) B2, U= o or el

Taylor Series in x — a

If Rp(x) — 0 as n— oo, then Pp(x) — f(x),

(n(a
f(x)=f(a)+f(a)(x—a)+ -+ f n!( )(x—a)"—I—‘--
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F(x)=e, fa)=¢? Vk=0,1,2, -

Taylor Polynomials in x — a of the Exponential f(x) = e*

a a e’ 2 €
Pix)=e’+e(x—a)+ —=(x—a) "+ +

a
T H(X_ a)".

Taylor Series in x — a of the Exponential f(x) = e*
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Taylor Polynomials and Taylor Series in x — a of f(x) =

f(k)(X) = eXa f(k)( ) eav Vk = Oa 15 25 T

Taylor Polynomials in x — a of the Exponential f(x) = e*

e? e?
|

Pn(x) = e+ €e%(x —a) + (X—a)2+ ~-—|—n.(x—a)”.

Taylor Series in x — a of the Exponential f(x) = e*

> 1 e?
eaz E —a)f = e?+e?(x—a)+- - -+E(X—a)”+- e, X [H
k=0
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f(t+ a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Exponential f(x) = e*
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Another way to expand f(x) in in powers of x — a is to expand
f(t+ a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Exponential f(x) = e*

ea a

eX:ea+ea(x—a)+j(x—a)2+-~+f(xfa)"+~-, Vx.

A

1. Expand e'™2 in powers of t =

et+a

Jiwen He, University of Houston



Taylor Polynomials
Expansion of ¥ in x — a

Taylor Series in x — a by Translation

Another way to expand f(x) in in powers of x — a is to expand
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Taylor Series in x — a of the Exponential f(x) = e*

ea a

eX:ea+ea(x—a)+j(x—a)2+-~+f(xfa)"+~-, Vx.

A

1. Expand e'™2 in powers of t =

et+a — eaet

Jiwen He, University of Houston



Taylor Polynomials
Expansion of ¥ in x — a

Taylor Series in x — a by Translation

Another way to expand f(x) in in powers of x — a is to expand
f(t+ a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Exponential f(x) = e*

ea a
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Another way to expand f(x) in in powers of x — a is to expand
f(t+ a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Exponential f(x) = e*

a a
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Taylor Series in x — a of the Exponential f(x) = e*
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1. Expand e'™2 in powers of t =
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Expansion of ¥ in x — a

Taylor Series in x — a by Translation

Another way to expand f(x) in in powers of x — a is to expand
f(t+ a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Exponential f(x) = e*

a a
eX:ea+ea(x—a)+%(X—a)2+-~+f(xfa)"+~-, Vx.

A

1. Expand e'™2 in powers of t =
o
1
t+a _ a .t _ _.a - __ aa = 4k
e =¢ee" =e =e Zk!t.
2. Sett=x—a =

— 1
X = eaz E(X —a)k,  for all real x. [lll

k=0

Jiwen He, University of Houston
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One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.
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Expansion of f(x) in x — a as Expansion of f(t+ a) in ¢

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

This is the approach to take when the expansion in t is either
known or is readily available.

Example

\ \ |
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Expansion of f(x) in x — a as Expansion of f(t+ a) in ¢

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

This is the approach to take when the expansion in t is either
known or is readily available.

|

Example

Expand f(x) = e*/? in powers of x — 3.

N
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Expansion of f(x) in x — a as Expansion of f(t+ a) in ¢

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

This is the approach to take when the expansion in t is either
known or is readily available.

Example

|

Expand f(x) = e*/? in powers of x — 3.

N

1. Expand f(t+ 3) in powers of t =
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Expansion of f(x) in x — a as Expansion of f(t+ a) in ¢

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

This is the approach to take when the expansion in t is either
known or is readily available.

|

Example

Expand f(x) = e*/? in powers of x — 3.

N

1. Expand f(t+ 3) in powers of t =
f(t+3) = et73)/2

Jiwen He, University of Houston
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Expansion of f(x) in x — a as Expansion of f(t+ a) in ¢

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

This is the approach to take when the expansion in t is either
known or is readily available.

|

Example

Expand f(x) = e*/? in powers of x — 3.

N

1. Expand f(t+ 3) in powers of t =
f(t+3) = e(t13)/2 — ¢3/2t/2

Jiwen He, University of Houston
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Expansion of f(x) in x — a as Expansion of f(t+ a) in ¢

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

This is the approach to take when the expansion in t is either
known or is readily available.

|

Example

Expand f(x) = e*/? in powers of x — 3.

N

1. Expand f(t+ 3) in powers of t =

o k
_(e+3)/2 _ 322 _ 320 (8/2)
f(t+3)=e =e’%e' =e kEO i

Jiwen He, University of Houston
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Expansion of f(x) in x — a as Expansion of f(t+ a) in ¢

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

This is the approach to take when the expansion in t is either
known or is readily available.

|

Example

Expand f(x) = e*/? in powers of x — 3.

N

1. Expand f(t+ 3) in powers of t :>
F(t4+3) = e(t+3)/2 — 3/2¢t/2 — 3/22 t/2 3/22 kkl
2

Jiwen He, University of Houston
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Expansion of f(x) in x — a as Expansion of f(t+ a) in ¢

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

This is the approach to take when the expansion in t is either
known or is readily available.

Expand f(x) = e*/? in powers of x — 3.

1. Expand f(t+ 3) in powers of t :>
F(t43) = elt+3)/2 — ¢3/2¢t/2 _ o3/2 Z t/2 &3/2 Z itk.

2. Sett=x-3 =

Jiwen He, University of Houston
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Expansion of f(x) in x — a as Expansion of f(t+ a) in ¢

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

This is the approach to take when the expansion in t is either
known or is readily available.

Expand f(x) = e*/? in powers of x — 3.

1. Expand f(t+ 3) in powers of t :>
F(t43) = elt+3)/2 — 3/2t/2 — 3/22 t/2 &3/2 Z klkl £k
2K k!
2. Sett=x-3 = -
f(x):ex/2:e3/QZ—2kk!(x—3) , [H
k=0
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Expansion of f(x) in x — a as Expansion of f(t+ a) in ¢

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.
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Taylor Series in x — a of the Logarithm f(x) = Inx
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One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Logarithm f(x) = Inx

1 1 1
Inx =In a—i—g(x—a)—@(X—a)z—i—g(x—af—- -+, 0<x<2a

1. Expand In(t + a) in powers of t =

In(t+a) = In {a (1 + 2)}

Jiwen He, University of Houston



Taylor Polynomials
Expansion of Inx in x —a, a>0

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Logarithm f(x) = Inx

1 1 1
Inx =In a—i—g(x—a)—@(X—a)z—i—g(x—af—- -+, 0<x<2a

1. Expand In(t + a) in powers of t =

In(t+a) = In {a (1 + 2)} = Ina+In (1 + g)

Jiwen He, University of Houston



Taylor Polynomials
Expansion of Inx in x —a, a>0

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Logarithm f(x) = Inx

1 1 1
Inx =In a—i—g(x—a)—@(X—a)z—i—g(x—af—- -+, 0<x<2a

1. Expand In(t + a) in powers of t =

In(t+a) = In {a (1 + 2)} = Ina+In (1 + g) =In ‘H’Z

Jiwen He, University of Houston



Taylor Polynomials
Expansion of Inx in x —a, a>0

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Logarithm f(x) = Inx

1 1 1
Inx =In a—i—g(x—a)—@(X—a)z—i—g(x—af—- -+, 0<x<2a

1. Expand In(t + a) in powers of t =

In(t+a) = In {a (1 + 2)} = Ina+In (1 + g) =In ‘H’Z

Jiwen He, University of Houston



Taylor Polynomials
Expansion of Inx in x —a, a>0

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Logarithm f(x) = Inx

1 1 1
Inx =In a—i—g(x—a)—@(X—a)z—i—g(x—af—- -+, 0<x<2a

1. Expand In(t + a) in powers of t =

In(t+a) = In {a (1 + 2)} = Ina+In (1 + g) =In ‘H’Z

2. Sett=x—a,

Jiwen He, University of Houston



Taylor Polynomials
Expansion of Inx in x —a, a>0

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Logarithm f(x) = Inx

1 1 1
Inx =In a—i—g(x—a)—@(X—a)z—i—g(x—af—- -+, 0<x<2a

1. Expand In(t + a) in powers of t =

In(t+a) = In {a (1 + 2)} = Ina+In (1 + g) =In ‘H’Z

2. Sett=x—a, -1<i<1,

Jiwen He, University of Houston



Taylor Polynomials
Expansion of Inx in x —a, a>0

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Logarithm f(x) = Inx

1 1 1
Inx =In a—i—g(x—a)—@(X—a)z—i—g(x—af—- -+, 0<x<2a

1. Expand In(t + a) in powers of t = N
In(t+a) = In {a (1 + 2)} = Ina+In (1 I g) =In a+z (_12k+1 <t)’<

2. Sett=x—a —-1<i<1 -a<t<a

Jiwen He, University of Houston



Taylor Polynomials
Expansion of Inx in x —a, a>0

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Logarithm f(x) = Inx

1 1 1
Inx =In a—i—g(x—a)—@(X—a)z—i—g(x—af—- -+, 0<x<2a

1. Expand In(t + a) in powers of t =

In(t+a) = In {a (1 4 g)} = Ina+In (1 + g) =In a+i lekﬂ <t)k

2. Sett=x—-a -1<i<1 -a<t<al0<t+a<2a,

Jiwen He, University of Houston



Taylor Polynomials
Expansion of Inx in x —a, a>0

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Logarithm f(x) = Inx

1 1 1
Inx =In a—i—g(x—a)—@(X—a)z—i—g(x—af—- -+, 0<x<2a

1. Expand In(t + a) in powers of t =

In(t+a) = In {a (1 4 g)} = Ina+In (1 + g) =In a+i lekﬂ <t)k

2. Sett=x—a -1<i<1, -a<t<al0<t+a<la =

Jiwen He, University of Houston



Taylor Polynomials
Expansion of Inx in x —a, a>0

Taylor Series in x — a by Translation

One way to expand f(x) in in powers of x — a is to expand
f(t + a) in powers of t and then set t = x — a.

Taylor Series in x — a of the Logarithm f(x) = Inx

1 1 1
Inx =In a—i—g(x—a)—@(X—a)z—i—g(x—af—- -+, 0<x<2a

1. Expand In(t + a) in powers of t =

In(t+a) = In {a <1 4 g)} = Ina+In (1 + g) =In a+i (_12k+1 <t)k

2. Sett=x—a -1<i<1, -a<t<al0<t+a<la =

k+1

_ — (=1)
Inxlna—i-kz::lkak(X—a)k: [Fl

Jiwen He, University of Houston




Taylor Polynomials
Expansion of Inx in x —a, a>0
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