ODE

Sample Midterm 2 Math 3331 (Summer 2014)
June 24, 2014

20 points

1. Use the Laplace Transform to find the solution of the following initial-value problems
a. $\quad y^{\prime \prime}+y=\cos 2 t, \quad y(0)=0, \quad y^{\prime}(0)=1$.
b. $\quad y^{\prime \prime}-y=e^{t}, \quad y(0)=0, \quad y^{\prime}(0)=0$.

20 points

20 points
2. Consider the initial value problem

$$
\begin{equation*}
x^{\prime}=-x+t, \quad 0 \leq t \leq 1, \quad x(0)=0.5 \tag{1}
\end{equation*}
$$

Use the Euler, RK2 and RK4 methods to approximate the value of $x(1)$ for a step size $h=0.5$ and compute the error of your numerical solution.
3. Consider the initial value problem

$$
\begin{equation*}
x^{\prime}=x \sin t, \quad t \geq 0, \quad x(0)=1 \tag{2}
\end{equation*}
$$

The equation is separable and the solution is $x(t)=e^{1-\cos t}$. The Euler method, RK2 and RK4 methods, with step sizes $h=1,0.5,0.1$ and 0.05 produce the following results. Indicate each graph $(1,2,3)$ by its corresponding numerical method and explain your answer.
(1)

(2)

20 points
4. Consider the initial value problem

$$
\begin{equation*}
x^{\prime}=x, \quad 0 \leq t \leq 1, \quad x(0)=1 \tag{3}
\end{equation*}
$$

The equation is separable and the solution is $x(t)=e^{t}$. We used the Euler method, RK2 and RK4 methods to compute the value of $x(1)$ and constructed a plot of the logarithm of the error versus the logarithm of the step size for each numerical method. The slope of the solid line is 0.9716 , the slope of the dashed line is 1.9755 , and the slope of the dotted line is 3.9730 . Indicate each line by its corresponding numerical method and explain your answer.

20 points 5. Write each initial value problems as a system of the first-order equations using vector notation.
a. $\quad x^{\prime \prime}+\delta x^{\prime}-x+x^{3}=\gamma \cos \omega t, \quad x(0)=x_{0}, x^{\prime}(0)=v_{0}$
b. $\quad x^{\prime \prime}+\mu\left(x^{2}-1\right) x^{\prime}+x=0, \quad x(0)=x_{0}, x^{\prime}(0)=v_{0}$

