ODE

Midterm 3
Math 3331 (Summer 2014)
July 2, 2014

Name and ID: \qquad
50 points 1. Find the solution of the initial-value problem

$$
\begin{aligned}
x^{\prime} & =-3 x \\
y^{\prime} & =-5 x+6 y-4 z \\
z^{\prime} & =-5 x+2 y
\end{aligned}
$$

with $x(0)=-1, y(0)=0$ and $z(0)=1$.

50 points

20 points
2. Find the solution of the initial-value problem

$$
\begin{aligned}
x^{\prime} & =6 x-4 z \\
y^{\prime} & =8 x-2 y \\
z^{\prime} & =8 x-2 z
\end{aligned}
$$

with $x(0)=-2, y(0)=-1$ and $z(0)=0$.
3. (BONUS PROBLEM) Classify the equilibrium point of the system $y^{\prime}=A y$. Sketch the phase portrait by hand.
(1) $A=\left(\begin{array}{cc}-16 & 9 \\ -18 & 11\end{array}\right)$
(2) $A=\left(\begin{array}{cc}2 & 1 \\ -10 & -5\end{array}\right)$

Eigenvalues and eigenvectors of matrices

- The eigen-pairs of $A=\left(\begin{array}{cc}2 & 1 \\ -10 & -5\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=0, \quad v_{1}=(1,-2)^{T} \\
& \lambda_{2}=-3, \quad v_{2}=(1,-5)^{T} .
\end{aligned}
$$

- The eigen-pairs of $A=\left(\begin{array}{cc}-16 & 9 \\ -18 & 11\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=-7, \quad v_{1}=(1,1)^{T} \\
& \lambda_{2}=2, \quad v_{2}=(1,2)^{T}
\end{aligned}
$$

- The eigen-pairs of $A=\left(\begin{array}{ccc}6 & 0 & -4 \\ 8 & -2 & 0 \\ 8 & 0 & -2\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=-2, \quad v_{1}=(0,1,0)^{T} \\
& \lambda_{2}=2+4 i, \quad v_{2}=(1+i, 2,2)^{T} \\
& \lambda_{3}=2-4 i, \quad v_{3}=(1-i, 2,2)^{T}
\end{aligned}
$$

- The eigen-pairs of $A=\left(\begin{array}{ccc}-3 & 0 & 0 \\ -5 & 6 & -4 \\ -5 & 2 & 0\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=4, \quad v_{1}=(0,2,1)^{T} \\
& \lambda_{2}=-3, \quad v_{2}=(1,1,1)^{T} \\
& \lambda_{3}=2, \quad v_{3}=(0,1,1)^{T}
\end{aligned}
$$

Name and ID:
Problem 1.

Name and ID:
Problem 2.

Name and ID:
Problem 3. (BONUS PROBLEM)

When you finish this exam, you should go back and reexamine your work for any errors that you may have made.

