ODE

Sample Midterm 3 Math 3331 (Summer 2014)
July 2, 2014

50 points

1. Find the solution of the initial-value problem

$$
\begin{aligned}
x^{\prime} & =-3 x \\
y^{\prime} & =-5 x+6 y-4 z \\
z^{\prime} & =-5 x+2 y
\end{aligned}
$$

with $x(0)=-1, y(0)=0$ and $z(0)=1$.
Solution In matrix form, the system is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
-3 & 0 & 0 \\
-5 & 6 & -4 \\
-5 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

The eigen-pairs of $A=\left(\begin{array}{ccc}-3 & 0 & 0 \\ -5 & 6 & -4 \\ -5 & 2 & 0\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=4, \quad \lambda_{2}=-3, \quad \lambda_{3}=2 \\
& v_{1}=(0,2,1)^{T}, \quad v_{2}=(1,1,1)^{T}, \quad v_{3}=(0,1,1)^{T} .
\end{aligned}
$$

The general solution is

$$
\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=c_{1} e^{4 t}\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)+c_{2} e^{-3 t}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+c_{3} e^{2 t}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

If $x(0)=-1, y(0)=0$ and $z(0)=1$, then

$$
\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)=c_{1}\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

We find that $c_{1}=-1, c_{2}=-1$, and $c_{3}=3$. Hence the solution is

$$
\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=-e^{4 t}\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)-e^{-3 t}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+3 e^{2 t}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-e^{-3 t} \\
-2 e^{4 t}-e^{-3 t}+3 e^{2 t} \\
-e^{4 t}-e^{-3 t}+3 e^{2 t}
\end{array}\right)
$$

50 points
2. Find the solution of the initial-value problem

$$
\begin{aligned}
x^{\prime} & =6 x-4 z \\
y^{\prime} & =8 x-2 y \\
z^{\prime} & =8 x-2 z
\end{aligned}
$$

with $x(0)=-2, y(0)=-1$ and $z(0)=0$.
Solution In matrix form, the system is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
6 & 0 & -4 \\
8 & -2 & 0 \\
8 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

The eigen-pairs of $A=\left(\begin{array}{ccc}6 & 0 & -4 \\ 8 & -2 & 0 \\ 8 & 0 & -2\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=-2, \quad \lambda_{2}=2+4 i, \quad \lambda_{3}=2-4 i \\
& v_{1}=(0,1,0)^{T}, \quad v_{2}=(1+i, 2,2)^{T}, \quad v_{3}=(1-i, 2,2)^{T} .
\end{aligned}
$$

The general solution is

$$
\left(\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=c_{1} e^{-2 t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c_{2} e^{2 t}\left(\begin{array}{c}
\cos 4 t-\sin 4 t \\
2 \cos 4 t \\
2 \cos 4 t
\end{array}\right)+c_{3} e^{2 t}\left(\begin{array}{c}
\cos 4 t+\sin 4 t \\
2 \sin 4 t \\
2 \sin 4 t
\end{array}\right)
$$

If $x(0)=-2, y(0)=-1$ and $z(0)=0$, then

$$
\left(\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right)=c_{1}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)+c_{3}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

We find that $c_{1}=-1, c_{2}=0$, and $c_{3}=-2$. Hence the solution is

$$
\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=-e^{-2 t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-2 e^{2 t}\left(\begin{array}{c}
\cos 4 t+\sin 4 t \\
2 \sin 4 t \\
2 \sin 4 t
\end{array}\right)=\left(\begin{array}{c}
-2 e^{2 t}(\cos 4 t+\sin 4 t) \\
-e^{-2 t}-4 e^{2 t} \sin 4 t \\
-4 e^{2 t} \sin 4 t
\end{array}\right)
$$

20 points
3. (BONUS PROBLEM) Classify the equilibrium point of the system $y^{\prime}=A y$. Sketch the phase portrait by hand.

$$
\text { (1) } A=\left(\begin{array}{cc}
-16 & 9 \\
-18 & 11
\end{array}\right) \quad \text { (2) } A=\left(\begin{array}{cc}
2 & 1 \\
-10 & -5
\end{array}\right)
$$

Solution (1) If

$$
A=\left(\begin{array}{cc}
-16 & 9 \\
-18 & 11
\end{array}\right)
$$

then the trace is $T=-5$ and the deternimant is $D=-14<0$. Hence, the equilibrium point at the origin is a saddle. The eigen-pairs of $A=\left(\begin{array}{cc}-16 & 9 \\ -18 & 11\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=-7, \quad v_{1}=(1,1)^{T} \\
& \lambda_{2}=2, \quad v_{2}=(1,2)^{T}
\end{aligned}
$$

The general solution is

$$
y(t)=c_{1} e^{-7 t}\binom{1}{1}+c_{2} e^{2 t}\binom{1}{2}
$$

Solutions approach the halfline generated by $c_{2}(1,2)^{T}$ as they move forward in time, but they approach the halfline generated by $c_{1}(1,1)^{T}$ as they move backward in time. A hand sketch follows

(2) If

$$
A=\left(\begin{array}{cc}
2 & 1 \\
-10 & -5
\end{array}\right)
$$

then the trace is $T=-3<0$ and the deternimant is $D=0$. Thus, this degenerate case lies on the horizontal axis in the trace-determinant plane, separating the saddles from the nodal sinks. The eigen-pairs of $A=\left(\begin{array}{cc}2 & 1 \\ -10 & -5\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=0, \quad v_{1}=(1,-2)^{T} \\
& \lambda_{2}=-3, \quad v_{2}=(1,-5)^{T}
\end{aligned}
$$

The general solution is

$$
y(t)=c_{1}\binom{1}{-2}+c_{2} e^{-3 t}\binom{1}{-5}
$$

Each Solution in this family is the sum of a fixed multiple of $(1,-2)^{T}$ and a decaying multiple of $(1,-5)^{T}$. Thus, as $t \rightarrow \infty$, solutions move in lines parallel to $(1,-5)^{T}$, decaying into the line of equilibrium generated by v_{1}.
A hand sketch follows

Infinitely many half line solutions on straight lines parallel to line generated by v2

Eigenvalues and eigenvectors of matrices

- The eigen-pairs of $A=\left(\begin{array}{cc}2 & 1 \\ -10 & -5\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=0, \quad v_{1}=(1,-2)^{T}, \\
& \lambda_{2}=-3, \quad v_{2}=(1,-5)^{T} .
\end{aligned}
$$

- The eigen-pairs of $A=\left(\begin{array}{cc}-16 & 9 \\ -18 & 11\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=-7, \quad v_{1}=(1,1)^{T} \\
& \lambda_{2}=2, \quad v_{2}=(1,2)^{T}
\end{aligned}
$$

- The eigen-pairs of $A=\left(\begin{array}{ccc}6 & 0 & -4 \\ 8 & -2 & 0 \\ 8 & 0 & -2\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=-2, \quad v_{1}=(0,1,0)^{T} \\
& \lambda_{2}=2+4 i, \quad v_{2}=(1+i, 2,2)^{T} \\
& \lambda_{3}=2-4 i, \quad v_{3}=(1-i, 2,2)^{T}
\end{aligned}
$$

- The eigen-pairs of $A=\left(\begin{array}{ccc}-3 & 0 & 0 \\ -5 & 6 & -4 \\ -5 & 2 & 0\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=4, \quad v_{1}=(0,2,1)^{T} \\
& \lambda_{2}=-3, \quad v_{2}=(1,1,1)^{T} \\
& \lambda_{3}=2, \quad v_{3}=(0,1,1)^{T}
\end{aligned}
$$

