30 points 1. Find the solution of the initial-value problem

$$
\begin{aligned}
x^{\prime} & =-3 x-z \\
y^{\prime} & =3 x+2 y+3 z \\
z^{\prime} & =2 x
\end{aligned}
$$

with $x(0)=1, y(0)=-1$ and $z(0)=2$.
30 points 2. Find the solution of the initial-value problem

$$
\begin{aligned}
x^{\prime} & =-3 x \\
y^{\prime} & =-5 x+6 y-4 z \\
z^{\prime} & =-5 x+2 y
\end{aligned}
$$

with $x(0)=-2, y(0)=0$ and $z(0)=2$.
30 points
3. Find the solution of the initial-value problem

$$
\begin{aligned}
x^{\prime} & =-4 x+8 y+8 z \\
y^{\prime} & =-4 x+4 y+2 z \\
z^{\prime} & =2 z
\end{aligned}
$$

with $x(0)=1, y(0)=0$ and $z(0)=0$.
4. Find the solution of the initial-value problem

$$
\begin{aligned}
x^{\prime} & =6 x-4 z \\
y^{\prime} & =8 x-2 y \\
z^{\prime} & =8 x-2 z
\end{aligned}
$$

with $x(0)=-2, y(0)=-1$ and $z(0)=0$.
30 points
5. Find the general solution of the system

$$
\begin{aligned}
& x^{\prime}=6 x-5 y+10 z \\
& y^{\prime}=-x+2 y-2 z \\
& z^{\prime}=-x+y-z
\end{aligned}
$$

30 points
6. Find the general solution of the system

$$
\begin{aligned}
x^{\prime} & =-2 x+y-z \\
y^{\prime} & =x-3 y \\
z^{\prime} & =3 x-5
\end{aligned}
$$

30 points 7. Classify the equilibrium point of the system $y^{\prime}=A y$. Sketch the phase portrait by hand.
(1) $A=\left(\begin{array}{cc}-16 & 9 \\ -18 & 11\end{array}\right)$
(2) $A=\left(\begin{array}{cc}8 & 3 \\ -6 & -1\end{array}\right)$
(3) $A=\left(\begin{array}{cc}-11 & -5 \\ 10 & 4\end{array}\right)$
(4) $A=\left(\begin{array}{cc}2 & -4 \\ 8 & 6\end{array}\right)$
(5) $A=\left(\begin{array}{cc}6 & -5 \\ 10 & -4\end{array}\right)$
(6) $A=\left(\begin{array}{cc}-4 & 10 \\ -2 & 4\end{array}\right)$
(7) $A=\left(\begin{array}{cc}6 & 4 \\ -1 & 2\end{array}\right)$
(8) $A=\left(\begin{array}{cc}-4 & -4 \\ 1 & 0\end{array}\right)$
(9) $A=\left(\begin{array}{cc}2 & 1 \\ -10 & -5\end{array}\right)$

