ODE

Sample Midterm 3 Math 3331 (Summer 2014)
July 2, 2014

30 points

1. Find the solution of the initial-value problem

$$
\begin{aligned}
x^{\prime} & =-3 x-z \\
y^{\prime} & =3 x+2 y+3 z \\
z^{\prime} & =2 x
\end{aligned}
$$

with $x(0)=1, y(0)=-1$ and $z(0)=2$.
Solution In matrix form, the system is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
-3 & 0 & -1 \\
3 & 2 & 3 \\
2 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

The eigen-pairs of $A=\left(\begin{array}{ccc}-3 & 0 & -1 \\ 3 & 2 & 3 \\ 2 & 0 & 0\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=-2, \quad \lambda_{2}=-1, \quad \lambda_{3}=2 \\
& v_{1}=(-1,0,1)^{T}, \quad v_{2}=(1,1,-2)^{T}, \quad v_{3}=(0,1,0)^{T} .
\end{aligned}
$$

The general solution is

$$
\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=c_{1} e^{-2 t}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+c_{2} e^{-t}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)+c_{3} e^{2 t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

If $x(0)=1, y(0)=-1$ and $z(0)=2$, then

$$
\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)=c_{1}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

We find that $c_{1}=-4, c_{2}=-3$, and $c_{3}=2$. Hence the solution is

$$
\left(\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=-4 e^{-2 t}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)-3 e^{-t}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)+2 e^{2 t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
4 e^{-2 t}-3 e^{-t} \\
3 e^{-t}+2 e^{2 t} \\
-4 e^{-2 t}+6 e^{-t}
\end{array}\right)
$$

30 points 2. Find the solution of the initial-value problem

$$
\begin{aligned}
x^{\prime} & =-3 x \\
y^{\prime} & =-5 x+6 y-4 z \\
z^{\prime} & =-5 x+2 y
\end{aligned}
$$

with $x(0)=-2, y(0)=0$ and $z(0)=2$.
Solution In matrix form, the system is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
-3 & 0 & 0 \\
-5 & 6 & -4 \\
-5 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

The eigen-pairs of $A=\left(\begin{array}{ccc}-3 & 0 & 0 \\ -5 & 6 & -4 \\ -5 & 2 & 0\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=4, \quad \lambda_{2}=-3, \quad \lambda_{3}=2 \\
& v_{1}=(0,2,1)^{T}, \quad v_{2}=(1,1,1)^{T}, \quad v_{3}=(0,1,1)^{T}
\end{aligned}
$$

The general solution is

$$
\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=c_{1} e^{4 t}\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)+c_{2} e^{-3 t}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+c_{3} e^{2 t}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

If $x(0)=-2, y(0)=0$ and $z(0)=2$, then

$$
\left(\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right)=c_{1}\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

We find that $c_{1}=-2, c_{2}=-2$, and $c_{3}=6$. Hence the solution is

$$
\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=-2 e^{4 t}\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)-2 e^{-3 t}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+6 e^{2 t}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-2 e^{-3 t} \\
-4 e^{4 t}-2 e^{-3 t}+6 e^{2 t} \\
-2 e^{4 t}-2 e^{-3 t}+6 e^{2 t}
\end{array}\right)
$$

30 points
3. Find the solution of the initial-value problem

$$
\begin{aligned}
x^{\prime} & =-4 x+8 y+8 z \\
y^{\prime} & =-4 x+4 y+2 z \\
z^{\prime} & =2 z
\end{aligned}
$$

with $x(0)=1, y(0)=0$ and $z(0)=0$.
Solution In matrix form, the system is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
-4 & 8 & 8 \\
-4 & 4 & 2 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

The eigen-pairs of $A=\left(\begin{array}{ccc}-4 & 8 & 8 \\ -4 & 4 & 2 \\ 0 & 0 & 2\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=2, \quad \lambda_{2}=4 i, \quad \lambda_{3}=-4 i \\
& v_{1}=(0,-1,1)^{T}, \quad v_{2}=(1-i, 1,0)^{T}, \quad v_{3}=(1+i, 1,0)^{T} .
\end{aligned}
$$

The general solution is

$$
\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=c_{1} e^{2 t}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{c}
\cos 4 t+\sin 4 t \\
\cos 4 t \\
0
\end{array}\right)+c_{3}\left(\begin{array}{c}
-\cos 4 t+\sin 4 t \\
\sin 4 t \\
0
\end{array}\right)
$$

If $x(0)=1, y(0)=0$ and $z(0)=0$, then

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=c_{1}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right)
$$

We find that $c_{1}=0, c_{2}=0$, and $c_{3}=-1$. Hence the solution is

$$
\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=\left(\begin{array}{c}
\cos 4 t-\sin 4 t \\
-\sin 4 t \\
0
\end{array}\right)
$$

30 points
4. Find the solution of the initial-value problem

$$
\begin{aligned}
x^{\prime} & =6 x-4 z \\
y^{\prime} & =8 x-2 y \\
z^{\prime} & =8 x-2 z
\end{aligned}
$$

with $x(0)=-2, y(0)=-1$ and $z(0)=0$.
Solution In matrix form, the system is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
6 & 0 & -4 \\
8 & -2 & 0 \\
8 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

The eigen-pairs of $A=\left(\begin{array}{ccc}6 & 0 & -4 \\ 8 & -2 & 0 \\ 8 & 0 & -2\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=-2, \quad \lambda_{2}=2+4 i, \quad \lambda_{3}=2-4 i \\
& v_{1}=(0,1,0)^{T}, \quad v_{2}=(1+i, 2,2)^{T}, \quad v_{3}=(1-i, 2,2)^{T} .
\end{aligned}
$$

The general solution is

$$
\left(\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=c_{1} e^{-2 t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c_{2} e^{2 t}\left(\begin{array}{c}
\cos 4 t-\sin 4 t \\
2 \cos 4 t \\
2 \cos 4 t
\end{array}\right)+c_{3} e^{2 t}\left(\begin{array}{c}
\cos 4 t+\sin 4 t \\
2 \sin 4 t \\
2 \sin 4 t
\end{array}\right)
$$

If $x(0)=-2, y(0)=-1$ and $z(0)=0$, then

$$
\left(\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right)=c_{1}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)+c_{3}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

We find that $c_{1}=-1, c_{2}=0$, and $c_{3}=-2$. Hence the solution is

$$
\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=-e^{-2 t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-2 e^{2 t}\left(\begin{array}{c}
\cos 4 t+\sin 4 t \\
2 \sin 4 t \\
2 \sin 4 t
\end{array}\right)=\left(\begin{array}{c}
-2 e^{2 t}(\cos 4 t+\sin 4 t) \\
-e^{-2 t}-4 e^{2 t} \sin 4 t \\
-4 e^{2 t} \sin 4 t
\end{array}\right)
$$

5. Find the general solution of the system

$$
\begin{aligned}
x^{\prime} & =6 x-5 y+10 z \\
y^{\prime} & =-x+2 y-2 z \\
z^{\prime} & =-x+y-z
\end{aligned}
$$

Solution In matrix form, the system is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
6 & -5 & 10 \\
-1 & 2 & -2 \\
-1 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

The eigen-pairs of $A=\left(\begin{array}{ccc}6 & -5 & 10 \\ -1 & 2 & -2 \\ -1 & 1 & -1\end{array}\right)$ are

$$
\lambda_{1}=5, \quad \lambda_{2}=\lambda_{3}=1 \quad v_{1}=(-5,1,1)^{T}, \quad v_{2}=(1,1,0)^{T}, \quad v_{3}=(-2,0,1)^{T} .
$$

Note that the eigenvalue $\lambda_{2}=1$ has geometric multiplicity 2 equal to its algebraic multiplicity. The general solution is

$$
\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=c_{1} e^{5 t}\left(\begin{array}{c}
-5 \\
1 \\
1
\end{array}\right)+c_{2} e^{t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c_{3} e^{t}\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)
$$

6. Find the general solution of the system

$$
\begin{aligned}
x^{\prime} & =-2 x+y-z \\
y^{\prime} & =x-3 y \\
z^{\prime} & =3 x-5 y
\end{aligned}
$$

Solution In matrix form, the system is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
-2 & 1 & -1 \\
1 & -3 & 0 \\
3 & -5 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

The eigenvalues of $A=\left(\begin{array}{ccc}-2 & 1 & -1 \\ 1 & -3 & 0 \\ 3 & -5 & 0\end{array}\right)$ are

$$
\lambda_{1}=-1, \quad \lambda_{2}=\lambda_{3}=-2
$$

The eigenvalue $\lambda_{1}=-1$ has geometric multiplicity 1 , and an eigenvector is $v_{1}=$ $(-2,-1,1)^{T}$, leading to the solution

$$
y_{1}(t)=e^{t A} v_{1}=e^{\lambda_{1} t} v_{1}=e^{-t}\left(\begin{array}{c}
-2 \\
-1 \\
1
\end{array}\right)
$$

The eigenvalue $\lambda_{2}=-2$ has geometric multiplicity 1 , less than its algebraic multiplicity, and an eigenvector is $v_{2}=(1,1,1)^{T}$, leading to the solution

$$
y_{2}(t)=e^{t A} v_{2}=e^{\lambda_{2} t} v_{2}=e^{-2 t}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Note that

$$
\left(A-\lambda_{2} I\right)^{2}=(A+2 I)^{2}=\left(\begin{array}{ccc}
-2 & 4 & -2 \\
-1 & 2 & -1 \\
1 & -2 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Thus null $\left(\left(A-\lambda_{2} I\right)^{2}\right)$ has dimension two, equalling its algebraic multiplicity. We pick a vector in the nullspace of $\left.\left(A-\lambda_{2} I\right)^{2}\right)$ that is not in the nullspace of $A-\lambda_{2}$, for example, $v_{3}=(-1,0,1)^{T}$, leading to the solution

$$
\begin{aligned}
y_{3}(t) & =e^{t A} v_{3}=e^{\lambda_{2} t}\left(v_{3}+t\left(A-\lambda_{2} I\right) v_{3}\right) \\
& =e^{-2 t}\left(\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+t\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & -1 & 0 \\
3 & -5 & 2
\end{array}\right)\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)\right) \\
& =e^{-2 t}\left(\begin{array}{c}
-1-t \\
-t \\
1-t
\end{array}\right)
\end{aligned}
$$

The general solution is

$$
\left(\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+c_{3} y_{3}(t)=c_{1} e^{-t}\left(\begin{array}{c}
-2 \\
-1 \\
1
\end{array}\right)+c_{2} e^{-2 t}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+c_{3} e^{-2 t}\left(\begin{array}{c}
-1-t \\
-t \\
1-t
\end{array}\right)
$$

30 points 7. Classify the equilibrium point of the system $y^{\prime}=A y$. Sketch the phase portrait by hand.
(1) $A=\left(\begin{array}{cc}-16 & 9 \\ -18 & 11\end{array}\right)$
(2) $A=\left(\begin{array}{cc}8 & 3 \\ -6 & -1\end{array}\right)$
(3) $A=\left(\begin{array}{cc}-11 & -5 \\ 10 & 4\end{array}\right)$
(4) $A=\left(\begin{array}{cc}2 & -4 \\ 8 & 6\end{array}\right)$
(5) $A=\left(\begin{array}{cc}6 & -5 \\ 10 & -4\end{array}\right)$
(6) $A=\left(\begin{array}{cc}-4 & 10 \\ -2 & 4\end{array}\right)$
(7) $A=\left(\begin{array}{cc}6 & 4 \\ -1 & 2\end{array}\right)$
(8) $A=\left(\begin{array}{cc}-4 & -4 \\ 1 & 0\end{array}\right)$
(9) $A=\left(\begin{array}{cc}2 & 1 \\ -10 & -5\end{array}\right)$

Solution (1) If

$$
A=\left(\begin{array}{cc}
-16 & 9 \\
-18 & 11
\end{array}\right)
$$

then the trace is $T=-5$ and the deternimant is $D=-14<0$. Hence, the equilibrium point at the origin is a saddle. Further, the characteristic polynomial is

$$
p(\lambda)=\lambda^{2}-T \lambda+D=\lambda^{2}+5 \lambda-14
$$

which produces eigenvalues $\lambda_{1}=-7$ and $\lambda_{2}=2$. Because

$$
A-\lambda_{1} I=A+7 I=\left(\begin{array}{cc}
-9 & 9 \\
-18 & 18
\end{array}\right) \rightarrow v_{1}=(1,1)^{T}
$$

leading to the exponential solution

$$
y_{1}(t)=e^{\lambda_{1} t} v_{1}=e^{-7 t}\binom{1}{1}
$$

Because

$$
A-\lambda_{2} I=A-2 I=\left(\begin{array}{ll}
-18 & 9 \\
-18 & 9
\end{array}\right) \rightarrow v_{2}=(1,2)^{T}
$$

leading to the exponential solution

$$
y_{2}(t)=e^{\lambda_{2} t} v_{2}=e^{2 t}\binom{1}{2}
$$

The general solution is

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)=c_{1} e^{-7 t}\binom{1}{1}+c_{2} e^{2 t}\binom{1}{2}
$$

Solutions approach the halfline generated by $c_{2}(1,2)^{T}$ as they move forward in time, but they approach the halfline generated by $c_{1}(1,1)^{T}$ as they move backward in time. A hand sketch follows

(2) If

$$
A=\left(\begin{array}{cc}
8 & 3 \\
-6 & -1
\end{array}\right)
$$

then the trace is $T=7$ and the deternimant is $D=10>0$. Further, $T^{2}-4 D=9>0$, so the equilibrium point at the origin is a nodal source. Further, the characteristic polynomial is

$$
p(\lambda)=\lambda^{2}-T \lambda+D=\lambda^{2}-7 \lambda+10
$$

which produces eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=5$. Because

$$
A-\lambda_{1} I=A-2 I=\left(\begin{array}{cc}
6 & 3 \\
-6 & -3
\end{array}\right) \rightarrow v_{1}=(1,-2)^{T}
$$

leading to the exponential solution

$$
y_{1}(t)=e^{\lambda_{1} t} v_{1}=e^{2 t}\binom{1}{-2}
$$

Because

$$
A-\lambda_{2} I=A-5 I=\left(\begin{array}{cc}
3 & 3 \\
-6 & -6
\end{array}\right) \rightarrow v_{2}=(1,-1)^{T}
$$

leading to the exponential solution

$$
y_{2}(t)=e^{\lambda_{2} t} v_{2}=e^{5 t}\binom{1}{-1}
$$

The general solution is

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)=c_{1} e^{2 t}\binom{1}{-2}+c_{2} e^{5 t}\binom{1}{-1}
$$

Solutions emanate from the source tangent to the "slow" halfline generated by $c_{1}(1,-2)^{T}$ and eventually parallel the "fast" halfline generated by $c_{2}(1,-1)^{T}$ as they move forward in time. A hand sketch follows

(3) If

$$
A=\left(\begin{array}{cc}
-11 & -5 \\
10 & 4
\end{array}\right)
$$

then the trace is $T=-7$ and the deternimant is $D=6>0$. Further, $T^{2}-4 D=$ $25>0$, so the equilibrium point at the origin is a nodal sink. Further, the characteristic polynomial is

$$
p(\lambda)=\lambda^{2}-T \lambda+D=\lambda^{2}+7 \lambda+6
$$

which produces eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=-6$. Because

$$
A-\lambda_{1} I=A+I=\left(\begin{array}{cc}
-10 & -5 \\
10 & 5
\end{array}\right) \rightarrow v_{1}=(1,-2)^{T}
$$

leading to the exponential solution

$$
y_{1}(t)=e^{\lambda_{1} t} v_{1}=e^{-t}\binom{1}{-2}
$$

Because

$$
A-\lambda_{2} I=A+6 I=\left(\begin{array}{cc}
-5 & -5 \\
10 & 10
\end{array}\right) \rightarrow v_{2}=(1,-1)^{T}
$$

leading to the exponential solution

$$
y_{2}(t)=e^{\lambda_{2} t} v_{2}=e^{-6 t}\binom{1}{-1}
$$

The general solution is

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)=c_{1} e^{-t}\binom{1}{-2}+c_{2} e^{-6 t}\binom{1}{-1}
$$

Solutions approach the origin tangent to the "slow" halfline generated by $c_{1}(1,-2)^{T}$. As time move backward, solutions eventually parallel the "fast" halfline generated by $c_{2}(1,-1)^{T}$. A hand sketch follows

(4) If

$$
A=\left(\begin{array}{cc}
2 & -4 \\
8 & 6
\end{array}\right)
$$

then the trace is $T=-4$ and the deternimant is $D=20>0$. Further, $T^{2}-4 D=$ $-64<0$, so the equilibrium point at the origin is a spiral sink. At $(1,0)$,

$$
\left(\begin{array}{cc}
2 & -4 \\
8 & 6
\end{array}\right)\binom{1}{0}=\binom{2}{8}
$$

so the motion is counterclockwise. A hand sketch follows

(5) If

$$
A=\left(\begin{array}{cc}
6 & -5 \\
10 & -4
\end{array}\right)
$$

then the trace is $T=2$ and the deternimant is $D=26>0$. Further, $T^{2}-4 D=-100<$ 0 , so the equilibrium point at the origin is a spiral source. At $(1,0)$,

$$
\left(\begin{array}{cc}
6 & -5 \\
10 & -4
\end{array}\right)\binom{1}{0}=\binom{6}{10}
$$

so the motion is counterclockwise. A hand sketch follows

(6) If

$$
A=\left(\begin{array}{cc}
-4 & 10 \\
-2 & 4
\end{array}\right)
$$

then the trace is $T=0$ and the deternimant is $D=4$, so the equilibrium point at the origin is a center. At $(1,0)$,

$$
\left(\begin{array}{cc}
-4 & 10 \\
-2 & 4
\end{array}\right)\binom{1}{0}=\binom{-4}{-2}
$$

so the rotation is clockwise. A hand sketch follows

(7) If

$$
A=\left(\begin{array}{cc}
6 & 4 \\
-1 & 2
\end{array}\right)
$$

then the trace is $T=8>0$ and the deternimant is $D=16>0$. Further, $T^{2}-4 D=$ 0 , so the equilibrium point at the origin is a degenerate nodal source. Further, the characteristic polynomial is

$$
p(\lambda)=\lambda^{2}-T \lambda+D=\lambda^{2}-8 \lambda+16
$$

which produces a single eigenvalue $\lambda=4$. Because

$$
A-\lambda I=A-4 I=\left(\begin{array}{cc}
2 & 4 \\
-1 & -2
\end{array}\right) \rightarrow v_{1}=(2,-1)^{T}
$$

leading to the exponential solution

$$
y_{1}(t)=e^{\lambda t} v_{1}=e^{4 t}\binom{2}{-1}
$$

To find another solution, we must solve $(A-\lambda I) v_{2}=v_{1}$. Start with any vector that is not a multiple of v_{1}, say $w=(1,0)^{T}$. Then

$$
(A-\lambda I) w=\left(\begin{array}{cc}
2 & 4 \\
-1 & -2
\end{array}\right)\binom{1}{0}=\binom{2}{-1}=v_{1}
$$

Thus, let $v_{2}=w=(1,0)^{T}$. A second, independent solution is

$$
y_{2}(t)=e^{\lambda t}\left(v_{2}+t v_{1}\right)=e^{4 t}\left(\binom{1}{0}+t\binom{2}{-1}\right)
$$

The general solution is

$$
\begin{aligned}
y(t) & =c_{1} y_{1}(t)+c_{2} y_{2}(t)=c_{1} e^{4 t}\binom{2}{-1}+c_{2} e^{4 t}\left(\binom{1}{0}+t\binom{2}{-1}\right) \\
& =e^{4 t}\left(\left(c_{1}+c_{2} t\right)\binom{2}{-1}+c_{2}\binom{1}{0}\right)
\end{aligned}
$$

Solutions emanate from the origin tangent to the halfline generated by $c_{1}(2,-1)^{T}$ and eventually parallel the halfline as they move forward in time. At $(1,0)$,

$$
\left(\begin{array}{cc}
6 & 4 \\
-1 & 2
\end{array}\right)\binom{1}{0}=\binom{6}{-1}
$$

so the rotation is clockwise. A hand sketch follows

(8) If

$$
A=\left(\begin{array}{cc}
-4 & -4 \\
1 & 0
\end{array}\right)
$$

then the trace is $T=-4<0$ and the deternimant is $D=4$. Further, $T^{2}-4 D=0$, so the equilibrium point at the origin is a degenerate nodal sink. Further, the characteristic polynomial is

$$
p(\lambda)=\lambda^{2}-T \lambda+D=\lambda^{2}+4 \lambda+4
$$

which produces a single eigenvalue $\lambda=-2$. Because

$$
A-\lambda I=A+2 I=\left(\begin{array}{cc}
-2 & -4 \\
1 & 2
\end{array}\right) \rightarrow v_{1}=(2,-1)^{T}
$$

leading to the exponential solution

$$
y_{1}(t)=e^{\lambda t} v_{1}=e^{-2 t}\binom{2}{-1}
$$

To find another solution, we must solve $(A-\lambda I) v_{2}=v_{1}$. Start with any vector that is not a multiple of v_{1}, say $w=(1,0)^{T}$. Then

$$
(A-\lambda I) w=\left(\begin{array}{cc}
-2 & -4 \\
1 & 2
\end{array}\right)\binom{1}{0}=\binom{-2}{1}=-v_{1}
$$

Thus, let $v_{2}=-w=(-1,0)^{T}$. A second, independent solution is

$$
y_{2}(t)=e^{\lambda t}\left(v_{2}+t v_{1}\right)=e^{-2 t}\left(\binom{-1}{0}+t\binom{2}{-1}\right)
$$

The general solution is

$$
\begin{aligned}
y(t) & =c_{1} y_{1}(t)+c_{2} y_{2}(t)=c_{1} e^{-2 t}\binom{2}{-1}+c_{2} e^{-2 t}\left(\binom{-1}{0}+t\binom{2}{-1}\right) \\
& =e^{-2 t}\left(\left(c_{1}+c_{2} t\right)\binom{2}{-1}+c_{2}\binom{-1}{0}\right)
\end{aligned}
$$

Solutions decay to the origin tangent to the halfline generated by $c_{1}(2,-1)^{T}$. As time marches backward, the solutions also turn parallel to the halfline. At $(1,0)$,

$$
\left(\begin{array}{cc}
-2 & -4 \\
1 & 2
\end{array}\right)\binom{1}{0}=\binom{-2}{1}
$$

so the rotation is counterclockwise. A hand sketch follows

(9) If

$$
A=\left(\begin{array}{cc}
2 & 1 \\
-10 & -5
\end{array}\right)
$$

then the trace is $T=-3<0$ and the deternimant is $D=0$. Thus, this degenerate case lies on the horizontal axis in the trace-determinant plane, separating the saddles from the nodal sinks. Further, the characteristic polynomial is

$$
p(\lambda)=\lambda^{2}-T \lambda+D=\lambda^{2}+3 \lambda
$$

which produces eigenvalues $\lambda_{1}=0$ and $\lambda_{2}=-3$. Because

$$
A-\lambda_{1} I=A=\left(\begin{array}{cc}
2 & 1 \\
-10 & -5
\end{array}\right) \rightarrow v_{1}=(1,-2)^{T}
$$

leading to the exponential solution

$$
y_{1}(t)=e^{\lambda_{1} t} v_{1}=\binom{1}{-2}
$$

which produces a whole line of equilibrium points. Everything on the line generated by v_{1} is an equilibrijm point. Because

$$
A-\lambda_{2} I=A+3 I=\left(\begin{array}{cc}
5 & 1 \\
-10 & -2
\end{array}\right) \rightarrow v_{2}=(1,-5)^{T}
$$

leading to the exponential solution

$$
y_{2}(t)=e^{\lambda_{2} t} v_{2}=e^{-3 t}\binom{1}{-5}
$$

The general solution is

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)=c_{1}\binom{1}{-2}+c_{2} e^{-3 t}\binom{1}{-5}
$$

Each Solution in this family is the sum of a fixed multiple of $(1,-2)^{T}$ and a decaying multiple of $(1,-5)^{T}$. Thus, as $t \rightarrow \infty$, solutions move in lines parallel to $(1,-5)^{T}$, decaying into the line of equilibrium. A hand sketch follows

