Math 3331 Differential Equations 2.1 Differential Equations and Solutions

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math3331

2.1 ODE and Solutions

2.1

- Definition of First Order ODE
 - Normal Form of ODE
- Solutions of ODE
 - General Solution and Solution Curves
 - Particular Solution
- Initial Value Problem
 - Solution of IVP
 - Interval of Existence
- Geometric Interpretation of ODE
 - Direction Field
 - Geometric interpretation of Solutions
 - Numerical Solution of IVP
- Worked out Examples from Exercises:
 - 2.4, 2.13, 2.19

Formal Definition of ODE

Definition of ODE

ODE is an equation involving an unknown function y of a single variable t together with one or more of its derivatives y', y'', etc.

First Order ODE: General (Implicit) Form

First order ODEs often arise naturally in the form

$$\phi(t,y,y')=0,$$

Example

$$t+4 y y'=0.$$

This form is too general to deal with, and we will find it necessary to solve equation for y' to place it into "normal form"

$$\gamma' = -\frac{t}{4y}$$

Normal Form of ODE

Normal Form

A first-order ODE of the form

$$y'=f(t,y)$$

is said to be in normal form.

Examples

$$y' = y - t$$

$$y' = -2 t y$$

$$y' = y^{2}$$

$$y' = \cos(t y)$$

Jiwen He, University of Houston

Image: A matrix

- ∢ ∃ ▶

Example

Example

Place the first order ODE

$$y^{\prime 2} + y^2 = 1$$

2.1

into normal form.

Jiwen He, University of Houston

- ∢ ≣ →

Image: A match a ma

э

Image: A math a math

Example

Example

Place the first order ODE

$$e^{y'} + y \, y' = 0$$

2.1

into normal form.

- ∢ ≣ →

э

Solutions of ODE

Solutions of ODE

A solution of the first-order ODE

$$y'=f(t,y)$$

is a differentiable function y(t) such that

$$y'(t) = f(t, y(t))$$

for all t in the interval where y(t) is defined.

Check Solutions: Example

Example

Show that $y(t) = t + 1 + Ce^t$ is a solution of

$$y'=y-t.$$

2.1

Jiwen He, University of Houston

- ₹ 🗦 🕨

General Solution and Solution Curves

Example

Show that $y(t) = Ce^{-t^2}$ is a solution of

$$y' = -2 t y$$

General Solution

The solution formula $y(t) = Ce^{-t^2}$, which depends on the arbitrary constant C, describes a family of solutions and is called a general solution.

Solution Curves

The graphs of these solutions, drawn in the figure, are called solution curves.

A (1) > A (2) >

Math 3331 Differential Equations

Summer 2014

Particular Solution

Example

() Show that y(t) = 1/(C - t) is a general solution of

$$y' = y^2$$

2 Find a particular solution satisfying y(0) = 1.

Given the value of the solution at a point, we can determine the unique particular solution.

<回と < 回と < 回り

Initial Value Problem

Initial Value Problem

A first-order ODE together with an initial condition,

$$y' = f(t, y), \quad y(t_0) = y_0$$

is called an initial value problem.

Solution of IVP

A solution of the IVP is a differentiable function y(t) such that

• y'(t) = f(t, y(t)) for all t in an interval containing t_0 where y(t) is defined, and

2
$$y(t_0) = y_0$$

Example

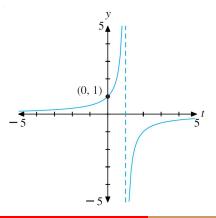
The function y(t) = 1/(1-t) is the solution of the IVP

$$y' = y^2$$
, with $y(0) = 1$.

Interval of Existence

Interval of Existence

The interval of existence of a solution to an IVP is defined to be the largest interval over which the solution can be defined and remain a solution.

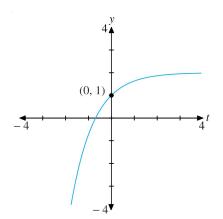


Example

Find the interval of existence for the solution to the $\ensuremath{\mathsf{IVP}}$

$$y' = y^2$$
 with $y(0) = 1$.

Example



Example

Show that y(t) = 2 - Ce^{-t} is a solution of

$$y' = 2 - y$$

for any constant C.

- Find the solution that satisfies the initial condition y(0) = 1.
- What is the interval of existence of this solution?

Geometric Meaning of ODE

Geometric Meaning of ODE: Solution Curve and Slopes

Let y(t) be a solution of the ODE

$$y=f(t,y).$$

The graph of the solution y(t) is called a solution curve. For any point (t_0, y_0) on the solution curve, $y(t_0) = y_0$ and the differential equation says that

$$y'(t_0) = f(t_0, y(t_0));$$

the LHS is the slope of the solution curve, and the RHS tells you what the slope is at (t_0, y_0) .

Direction Field

Direction Field for y' = f(t, y)

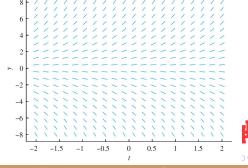
Draw a line segment with slope $f(t_i, y_j)$ attached to every grid point (t_i, y_j) in a rectangle R where f(t, y) is defined

$$R = \{ (t, y) \mid a \leq t \leq b \text{ and } c \leq y \leq d \}.$$

The result is called a direction field.

MATLAB:dfield6 generated the direction field for equation

$$y' = y$$



Geometric interpretation of Solutions

Direction field provides information about qualitative form of solution curves.

Finding a solution to the differential equation is equivalent to the geometric problem of finding a curve in *ty*-plane that is tangent to the direction field at every point.

MATLAB generated the solution curve of

$$y'=y, \quad y(0)=1$$

Definition of ODE Solutions IVP Geometric Interp. Exercises

Numerical Solution of IVP: Euler's Method

Euler's Method of the Solution of IVP y' = f(t, y), $y(t_0) = y_0$

1) Plot the point $P_0(t_0, y_0)$.

2) Move a prescribed distance along a line with slope $f(t_0, y_0)$ to the point $P_1(t_1, y_1)$.

3) Continue in this manner to produce an approximate solution curve of the IVP.

MATLAB generated an approximate solution curve of

$$y'=y, \quad y(0)=1$$

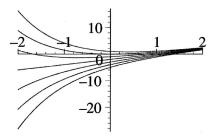
17 / 20

Exercise 2.4

Example (Exercise 2.4)

1). Show that the given solution is a general solution of the differential equation

$$y' + y = 2t$$
, $y(t) = 2t - 2 + Ce^{-t}$, $C = -3, -2, \cdots, 3$



 Use a computer or calculator to sketch members of the family of solutions for the given values of the arbitrary constant.
 Experiment with different intervals for t until you have a plot that shows what you consider to be the most important behavior of the family.

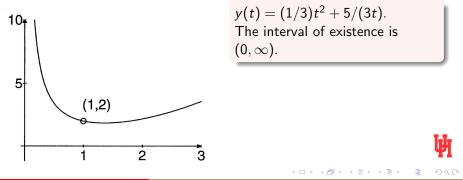
A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Exercise 2.13

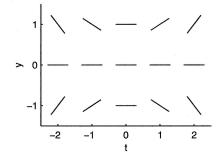
Example (Exercise 2.13)

Use the given general solution to find a solution of the differential equation having the given initial condition. Sketch the solution, the initial condition, and discuss the solutions interval of existence.

$$ty' + y = t^2$$
, $y(t) = (1/3)t^2 + C/t$, $y(1) = 2$



Exercise 2.19



Example (Exercise 2.19)

Plot the direction field for the differential equation by hand

 $y' = t \tan(y/2).$

Do this by drawing short lines of the appropriate slope centered at each of the integer valued coordinates (t, y), where $-2 \le t \le 2$ and $-1 \le y \le 1$

