Math 3331 Differential Equations 2.8 Dependence of Solutions on Initial Conditions

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math3331

Jiwen He, University of Houston

2.8 Dependence of Solutions on Initial Conditions

- Continuity with respect to Initial Conditions
- Sensitivity to Initial Conditions

Dependence of Solutions on Initial Conditions

2.8

- Q1. Continuity of the solution with respect to initial data: Can we ensure that the solution with incorrect initial data is close enough to the real solution that we can use it to predict behavior?
- Q2. Sensitivity to initial conditions: Given that we have an error in the initial conditions, just how far from the true solution can the solution be?

Theorem 7.15

Theorem 7.15

Suppose the function f(t,x) and its partial derivative $\frac{\partial f}{\partial x}$ are both continuous on the rectange R in the *tx*-plane and let

2.8

$$M = \max_{(t,x)\in R} \left| \frac{\partial f}{\partial x} \right|$$

Suppose (t_0, x_0) and (t_0, y_0) are in R and that

$$x'(t) = f(t, x(t)),$$
 and $x(t_0) = x_0$
 $y'(t) = f(t, y(t)),$ and $y(t_0) = y_0$

Then as long as (t, x(t)) and (t, y(t)) belong to R, we have

$$|x(t) - y(t)| \le |x_0 - y_0|e^{M|t-t_0|}$$

2.8 Th

eorem Continuity Sensitivity

Example 2.8.1: Continuity w.r.t. Initial Conditions

Example 2.8.1: Consider $x' = (x - 1) \cos t$. Since

$$M = \max_{(t,x) \in R} \left| \frac{\partial f}{\partial x} \right| = \max_{(t,x) \in R} |\cos t| \le 1$$

then

$$|x(t) - y(t)| \le |x_0 - y_0|e^{|t-t_0|},$$
 for all t .

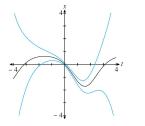


Figure 1 A solution to (8.2) with $|x(0)| \le 0.1$ must lie between the colored curves.

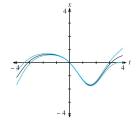


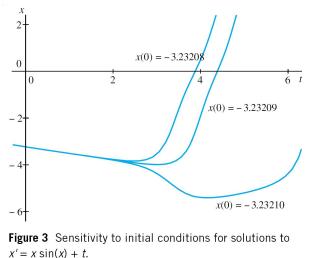
Figure 2 A solution to (8.2) with $|x(0)| \le 0.01$ must lie between the colored curves.

• • • • • • • • • • • •

Example 2.8.6: Sensitivity to Initial Conditions

2.8

Example 2.8.6: Consider $x' = x \sin x + t$.



Jiwen He, University of Houston