Math 3331 Differential Equations 2.9 Autonomous Equations and Stability

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math3331

Jiwen He, University of Houston

2.9 Autonomous Equations and Stability

2.9

- Autonomous Equations
- Equilibrium Points and Solutions
- Direction Field and Stability of Equilibrium
 - Example: Falling Object and Terminal Velocity
- Qualitative Analysis
 - Properties of Solutions
 - Phase Line Plots
 - Stability Criteria

Autonomous Equations

Form:
$$x' = f(x)$$

Implicit Solution:
 $\int [1/f(x)] dx = \int dt$
 $\Rightarrow G(x) = t + C$
where $G(x) = \int [1/f(x)] dx$ is an
antiderivative of $1/f(x)$
Consequence: If $x(t)$ is solution
 $\Rightarrow x(t + C)$ is solution

2.9

- 一司

э

Ex:
$$x' = \sin(x), y' = y^2 + 1$$

are autonomous
 $x' = \sin(tx), y' = xy$
are *not* autonomous

2.9

Jiwen He, University of Houston

3

<ロ> (日) (日) (日) (日) (日)

Equilibrium Points and Solutions

Equilibrium Point x_0 : Solution of $f(x_0) = 0 \Rightarrow$ $x(t) = x_0$ is constant solution

29

Ex.:
$$v' = -g - kv/m$$

 $f(v) = 0 \Rightarrow v_{term} = -gm/k$
is equilibrium point

(Falling Object, Air Resistance and Terminal Velocity)

Jiwen He, University of Houston

Math 3331 Differential Equations

< 🗇 🕨 < 🖃 🕨

Example 2.9.6

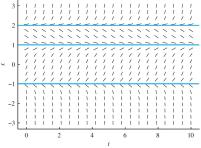


2.9

Jiwen He, University of Houston

Math 3331 Differential Equation

Direction Field and Stability of Equilibrium



- Direction Field: same slopes on horizontal lines
- Equilibrium Solutions $x(t) = x_0$:

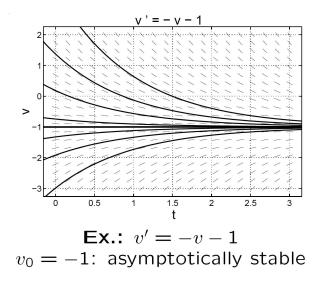
 $f(x_0) = 0 \Rightarrow$ solution curves are horizontal line

- **Stability of Equilibrium:** Equilibrium point *x*₀ is
 - <u>asymptotically stable</u> if $x(t) \to x_0$ for $t \to \infty$ when $|x(0) x_0|$ is sufficiently small
 - <u>unstable</u> if there are solutions x(t) with $|x(0)-x_0|$ arbitrarily small that move away from x_0 when t increases

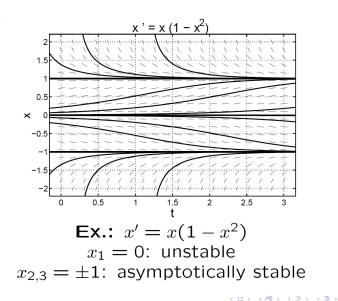
イロト イ押ト イヨト イヨト

Example: Falling Object and Terminal Velocity

2.9

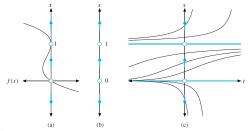


< ロ > < 同 > < 三 > < 三



2.9

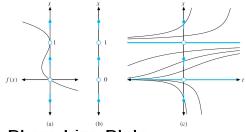
Properties of Solutions



Properties of Solutions

- Equilibrium solutions divide *tx*-plane into horizontal funnels
- In each funnel solutions are
 - -increasing if x' = f(x) > 0
 - -decreasing if x' = f(x) < 0

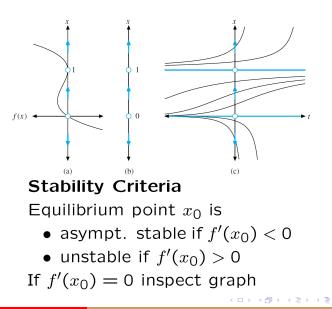
Phase Line Plots



Phase Line Plots

- Sketch graph f(x) versus x
- Mark equilibrium points on *x*-axis
- Indicate direction of motion (x(t) decreasing or increasing) by arrows
- Use this to sketch solutions

Stability Criteria

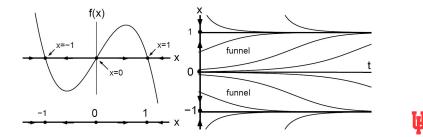


2.9

Ex.: $x' = x - x^3 = x(1 - x)(1 + x)$

2.9

- $f(x) = 0 \Rightarrow x = 0, 1, -1$
- $f'(0) = 1 \Rightarrow 0$ is unstable
- $f'(\pm 1) = -1 \Rightarrow \pm 1$ are as. stable



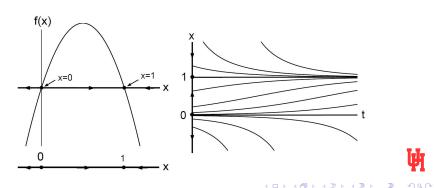
- 4 @ > - 4 @ > - 4 @ >

Ex.:
$$x' = x - x^2 = x(1 - x)$$

Equilibria:

2.9

• $x = 0 \Rightarrow f'(0) = 1 \Rightarrow$ unstable • $x = 1 \Rightarrow f'(1) = -1 \Rightarrow$ as. stable



Jiwen He, University of Houston

Summer, 2014

Ex.:
$$x' = x(1 - x)^3$$

Equilibria:
• $x = 0 \Rightarrow f'(0) = 1 \Rightarrow$ unstable
• $x = 1 \Rightarrow f'(1) = 0 \Rightarrow ??$
Graph \Rightarrow asympt. stable
f(x)
• $x = 1 \xrightarrow{x=1} x \xrightarrow{1} 0$

Jiwen He, University of Houston

0

3

<ロ> (日) (日) (日) (日) (日)

t

볫

Ex.:
$$x' = -x(1-x)^2$$

Equilibria:
• $x = 0 \Rightarrow f'(0) = -1 \Rightarrow as. stable$
• $x = 1 \Rightarrow f'(1) = 0 \Rightarrow ??$
• Inspect graph: $\Rightarrow x = 1$ is as. stable on right side, unstable on left side (semistable)

2

-∢≣⇒

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A