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4.1 Exercises Definition Vibrating Spring General Solution IVP

Definition

Second-Order Equation

y ′′ = f (t, y , y ′)

Linear Equation

y ′′ + p(t)y ′ + q(t)y = g(t)

where the coefficients p(t), q(t) and g(t) are functions of t.

Homogeneous Equation

y ′′ + p(t)y ′ + q(t)y = 0

that is, the forcing term g(t) is equal to 0.
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Example: Vibrating Spring

Hooke’s low: R(x) = −kx
with k the spring constant.

Spring-mass equilibrium:
R(x0) + mg = 0.

Newton’s second law:

mx ′′ = mg +R(x) +D(x ′) +F (t)

where

mg is the force of gravity,

R(x) the restoring force of
the spring,

D(x ′) a damping force, and

F (t) is an external force.

Let y = x − x0 the displacement.

my ′′ = −ky + D(y ′) + F (t)
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Example: Vibrating Spring with Damping

Let the damping force
D(y ′) = −µy ′

with µ the dampling constant.

The 2nd order linear DE for y

my ′′ + µy ′ + ky = F (t)

For undamped µ = 0 and
unforced F (t) = 0 spring, the DE
reduces to the harmonic equation

y ′′ + ω2
0y = 0

with ω0 =
√

k/m the natural
frequency.

The general solution to the
harmonic equation is

y(t) = C1 cos(ω0t) + C2 sin(ω0t)
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Structure of the General Solution

Theorem 1.23

Suppose that y1 and y2 are linearly independent solutions to the
equation

y ′′ + p(t)y ′ + q(t)y = 0.

Its general solution is

y(t) = C1y1(t) + C2y2(t)

where C1 and C2 are arbitrary constants.

It can be shown that

y1(t) = cos(ω0t) and y2(t) = sin(ω0t)

are linearly independent solutions to the harmonic equation

y ′′ + ω2
0y = 0
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Linear Independence and Wronskian

Definition 1.22

Two functions u and v are linearly independent on the interval
(α, β) if neither is a constant multiple of the other on that interval.

Proposition 1.27

Suppose that u and v are solutions to the equation

y ′′ + p(t)y ′ + q(t)y = 0

in the interval (α, β). Then u and v are linearly independent if and
only if their Wronskian

W (t) = det

(
u(t) v(t)
u′(t) v ′(t)

)
= u(t)v ′(t)− v(t)u′(t)

never vanishes in (α, β), i.e., W (t0) 6= 0 for some t0 in (α, β).
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IVP and EUT

Theorem 1.17 (Existence and Uniqueness of Solution)

Suppose that p(t),q(t), and g(t) are continuous on (α, β). Let
t0 ∈ (α, β). Then for any real numbers y0 and y1, there is one and
only one function y(t) defined on (α, β), which is a solution to the
the initial value problem

y ′′ + p(t)y ′ + q(t)y = g(t) for α < t < β

with the initial conditions

y(t0) = y0, and y ′(t0) = y1.
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Example 1.31

Example

Find the solution to the harmonic equation x ′′ + 4x = 0 with intial
conditions x(0) = 4 and x ′(0) = 2.

Jiwen He, University of Houston Math 3331 Differential Equations Summer, 2014 9 / 13



4.1 Exercises

Exercise 4.1.2

Determine whether the equation

t2y ′′ = 4y ′ − sin t

is linear or nonlinear. If linear, state whether it is homogeneous or

inhomogeneous.
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4.1 Exercises

Exercise 4.1.4

Determine whether the equation

ty ′′ + (sin t) y ′ = 4y − cos 5t

is linear or nonlinear. If linear, state whether it is homogeneous or

inhomogeneous.
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Exercise 4.1.22

Show that y1(t) = et and y2(t) = e−3t form a fundamental set of
solutions for

y ′′ + 2y ′ − 3y = 0,

then find a solution satisfying y(0) = 1 and y ′(0) = −2.
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Exercise 4.1.24

Show that y1(t) = e−t cos 2t and y2(t) = e−t sin 2t form a fundamental
set of solutions for

y ′′ + 2y ′ + 5y = 0,

then find a solution satisfying y(0) = −1 and y ′(0) = 0.
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