Math 3331 Differential Equations 4.1 Second-Order Equations

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math3331

4.1 Second-Order Equations

- Second-Order Equation: Models
- Vibrating Spring
- Vibrating Spring with Damping
- General Solution
- Solution Structure
- Linear Independence and Wronskian
- Existence and Uniqueness
- Worked out Examples from Exercises
- 2, 4, 22, 24

Definition

Second-Order Equation

$$
y^{\prime \prime}=f\left(t, y, y^{\prime}\right)
$$

Linear Equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

where the coefficients $p(t), q(t)$ and $g(t)$ are functions of t.

Homogeneous Equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

that is, the forcing term $g(t)$ is equal to 0 .

- Hooke's low: $R(x)=-k x$ with k the spring constant.
- Spring-mass equilibrium: $R\left(x_{0}\right)+m g=0$.

Newton's second law:

$$
m x^{\prime \prime}=m g+R(x)+D\left(x^{\prime}\right)+F(t)
$$

where

- $m g$ is the force of gravity,
- $R(x)$ the restoring force of the spring,
- $D\left(x^{\prime}\right)$ a damping force, and
- $F(t)$ is an external force.

Let $y=x-x_{0}$ the displacement.

$$
m y^{\prime \prime}=-k y+D\left(y^{\prime}\right)+F(t)
$$

Example: Vibrating Spring with Damping

Let the damping force

$$
D\left(y^{\prime}\right)=-\mu y^{\prime}
$$

with μ the dampling constant.
The 2nd order linear DE for y

$$
m y^{\prime \prime}+\mu y^{\prime}+k y=F(t)
$$

For undamped $\mu=0$ and unforced $F(t)=0$ spring, the DE reduces to the harmonic equation

$$
y^{\prime \prime}+\omega_{0}^{2} y=0
$$

with $\omega_{0}=\sqrt{k / m}$ the natural frequency.

The general solution to the harmonic equation is
$y(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)$

Figure 2 A vibrating spring with no damping.

Structure of the General Solution

Theorem 1.23

Suppose that y_{1} and y_{2} are linearly independent solutions to the equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

Its general solution is

$$
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

where C_{1} and C_{2} are arbitrary constants.

It can be shown that

$$
y_{1}(t)=\cos \left(\omega_{0} t\right) \text { and } y_{2}(t)=\sin \left(\omega_{0} t\right)
$$

are linearly independent solutions to the harmonic equation

$$
y^{\prime \prime}+\omega_{0}^{2} y=0
$$

Linear Independence and Wronskian

Definition 1.22

Two functions u and v are linearly independent on the interval (α, β) if neither is a constant multiple of the other on that interval.

Proposition 1.27

Suppose that u and v are solutions to the equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

in the interval (α, β). Then u and v are linearly independent if and only if their Wronskian

$$
W(t)=\operatorname{det}\left(\begin{array}{cc}
u(t) & v(t) \\
u^{\prime}(t) & v^{\prime}(t)
\end{array}\right)=u(t) v^{\prime}(t)-v(t) u^{\prime}(t)
$$

never vanishes in (α, β), i.e., $W\left(t_{0}\right) \neq 0$ for some t_{0} in (α, β).

IVP and EUT

Theorem 1.17 (Existence and Uniqueness of Solution)

Suppose that $p(t), q(t)$, and $g(t)$ are continuous on (α, β). Let $t_{0} \in(\alpha, \beta)$. Then for any real numbers y_{0} and y_{1}, there is one and only one function $y(t)$ defined on (α, β), which is a solution to the the initial value problem

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \quad \text { for } \alpha<t<\beta
$$

with the initial conditions

$$
y\left(t_{0}\right)=y_{0}, \quad \text { and } \quad y^{\prime}\left(t_{0}\right)=y_{1} .
$$

Example 1.31

Example

Find the solution to the harmonic equation $x^{\prime \prime}+4 x=0$ with intial conditions $x(0)=4$ and $x^{\prime}(0)=2$.

We know from Example 1.24 that the general solution has the form

$$
x(t)=a \cos 2 t+b \sin 2 t
$$

where a and b are arbitrary constants. Substituting the initial conditions we get

$$
4=x(0)=a, \quad \text { and } \quad 2=x^{\prime}(0)=2 b
$$

Thus $a=4$ and $b=1$ and our solution is

$$
x(t)=4 \cos 2 t+\sin 2 t
$$

Exercise 4.1.2

Determine whether the equation

$$
t^{2} y^{\prime \prime}=4 y^{\prime}-\sin t
$$

is linear or nonlinear. If linear, state whether it is homogeneous or inhomogeneous.

Divide both sides of $t^{2} y^{\prime \prime}=4 y^{\prime}-\sin t$ by t^{2}, then rearrange to obtain

$$
y^{\prime \prime}-\frac{4}{t^{2}} y^{\prime}=-\frac{\sin t}{t^{2}}
$$

Compare this with

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

and note that $p(t)=-4 / t^{2}, q(t)=0$, and $g(t)=$ $-(\sin t) / t^{2}$. Hence, the equation is linear and inhomogeneous.

Exercise 4.1.4

Determine whether the equation

$$
t y^{\prime \prime}+(\sin t) y^{\prime}=4 y-\cos 5 t
$$

is linear or nonlinear. If linear, state whether it is homogeneous or inhomogeneous.

Divide both sides of $t y^{\prime \prime}+(\sin t) y^{\prime}=4 y-\cos 5 t$ by t, then rearrange to obtain

$$
y^{\prime \prime}+\frac{\sin t}{t} y^{\prime}-\frac{4}{t}=-\frac{\cos 5 t}{t}
$$

Compare this with

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

and note that $p(t)=(\sin t) / t, q(t)=-4 / t$, and $g(t)=-(\cos 5 t) / t$. Hence, the equation is linear and inhomogeneous.

Exercise 4.1.22

Show that $y_{1}(t)=e^{t}$ and $y_{2}(t)=e^{-3 t}$ form a fundamental set of solutions for

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0,
$$

then find a solution satisfying $y(0)=1$ and $y^{\prime}(0)=-2$.

If $y_{1}(t)=e^{t}$, then

$$
y^{\prime \prime}+2 y^{\prime}-3 y=e^{t}+2 e^{t}-3 e^{t}=0
$$

and if $y_{2}(t)=e^{-3 t}$, then

$$
y^{\prime \prime}+2 y^{\prime}-3 y=9 e^{-3 t}-6 e^{-3 t}-3 e^{-3 t}=0
$$

Furthermore,

$$
\frac{y_{1}(t)}{y_{2}(t)}=\frac{e^{t}}{e^{-3 t}}=e^{4 t}
$$

which is nonconstant. Thus, y_{1} is not a constant multiple of y_{2} and the solutions $y_{1}(t)=e^{t}$ and $y_{2}(t)=e^{-3 t}$ form a fundamental set of solutions.

Thus, the general solution of $y^{\prime \prime}+2 y^{\prime}-3 y=0$ is

$$
y(t)=C_{1} e^{t}+C_{2} e^{-3 t}
$$

and its derivative is

$$
y^{\prime}(t)=C_{1} e^{t}-3 C_{2} e^{-3 t} t
$$

The initial conditions, $y(0)=1$ and $y^{\prime}(0)=-2$ lead to the equations

$$
\begin{aligned}
1 & =C_{1}+C_{2} \\
-2 & =C_{1}-3 C_{2}
\end{aligned}
$$

and the constants $C_{1}=1 / 4$ and $C_{2}=3 / 4$. Thus, the solution of the initial value problem is

$$
y(t)=\frac{1}{4} e^{t}+\frac{3}{4} e^{-3 t}
$$

Exercise 4.1.24

Show that $y_{1}(t)=e^{-t} \cos 2 t$ and $y_{2}(t)=e^{-t} \sin 2 t$ form a fundamental set of solutions for

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

then find a solution satisfying $y(0)=-1$ and $y^{\prime}(0)=0$.

If $y_{1}(t)=e^{-t} \cos 2 t$, then

$$
\begin{aligned}
& y_{1}^{\prime}(t)=-e^{-t} \cos 2 t-2 e^{-t} \sin 2 t, \quad \text { and } \\
& y_{1}^{\prime \prime}(t)=-3 e^{-t} \cos 2 t+4 e^{-t} \sin 2 t
\end{aligned}
$$

Thus,

$$
\begin{aligned}
y_{1}^{\prime \prime}+ & 2 y_{1}^{\prime}+5 y_{1} \\
= & -3 e^{-t} \cos 2 t+4 e^{-t} \sin 2 t \\
& -2 e^{-t} \cos 2 t-4 e^{-t} \sin 2 t+5 e^{-t} \cos 2 t \\
= & 0
\end{aligned}
$$

If $y_{2}(t)=e^{-t} \sin 2 t$, then
$y_{2}^{\prime}(t)=-e^{-t} \sin 2 t+2 e^{-t} \cos 2 t, \quad$ and
$y_{2}^{\prime \prime}(t)=-3 e^{-t} \sin 2 t-4 e^{-t} \cos 2 t$.
Thus,

$$
\begin{aligned}
y_{2}^{\prime \prime}+ & 2 y_{2}^{\prime}+5 y_{2} \\
= & -3 e^{-t} \sin 2 t-4 e^{-t} \cos 2 t \\
& -2 e^{-t} \sin 2 t+4 e^{-t} \cos 2 t+5 e^{-t} \sin 2 t \\
= & 0
\end{aligned}
$$

Furthermore,

$$
\frac{y_{1}(t)}{y_{2}(t)}=\frac{e^{-t} \cos 2 t}{e^{-t} \sin 2 t}=\cot 2 t,
$$

which is nonconstant. Thus, y_{1} is not a constant multiple of y_{2} and the solutions $y_{1}(t)=e^{-t} \cos 2 t$ and $y_{2}(t)=e^{-t} \sin 2 t$ form a fundamental set of solutions. Thus, the general solution of $y^{\prime \prime}+2 y^{\prime}+5 y=0$ is

$$
y(t)=C_{1} e^{-t} \cos 2 t+C_{2} e^{-t} \sin 2 t
$$

and its derivative is

$$
\begin{aligned}
y^{\prime}(t)= & -C_{1} e^{-t} \cos 2 t-2 C_{1} e^{-t} \sin 2 t \\
& -C_{2} e^{-t} \sin 2 t+2 C_{2} e^{-t} \cos 2 t
\end{aligned}
$$

The initial conditions, $y(0)=-1$ and $y^{\prime}(0)=0$ lead to the equations

$$
\begin{aligned}
-1 & =C_{1} \\
0 & =-C_{1}+2 C_{2}
\end{aligned}
$$

and the constants $C_{1}=-1$ and $C_{2}=-1 / 2$. Thus, the solution of the initial value problem is

$$
y(t)=-e^{-t} \cos 2 t-\frac{1}{2} e^{-t} \sin 2 t
$$

