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4.1 Second-Order Equations
@ Second-Order Equation: Models
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4.1 Exercises
Definition

Second-Order Equation

y'=1(t,y,y)

Linear Equation

y"+p(t)y + q(t)y = g(t)
where the coefficients p(t), q(t) and g(t) are functions of t.

Homogeneous Equation

y"+p(t)y +a(t)y =0
that is, the forcing term g(t) is equal to 0.
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4.1 Exercises

Example: Vibrating Spring

Newton's second law:

mx" = mg+ R(x)+ D(x") + F(t)

where

@ mg is the force of gravity,

@ R(x) the restoring force of
the spring,

e D(x') a damping force, and

@ F(t) is an external force.

@ Hooke's low: R(x) = —kx _
with k the spring constant. Let y = x — xo the displacement.

@ Spring-mass equilibrium: my" = —ky + D(y') + F(t)
R(x0) + mg = 0. [l!l
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4.1 Exercises

Example: Vibrating Spring with Damping

The general solution to the

Let the damping force _ SOt
harmonic equation is

D(y') = —ny’
with p the dampling constant.

The 2nd order linear DE for y

y(t) = G cos(wot) + Cosin(wot)

2
my" + py' + ky = F(t)
=1
=}
For undamped = 0 and %
unforced F(t) = 0 spring, the DE Li o9 ks 10 13 20
reduces to the harmonic equation B |
Y +uwgy =0 5
with wo = /k/m the natural Figure 2 A vibrating spring with
frequency. no damping. lll
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4.1 Exercises
Structure of the General Solution

Theorem 1.23

Suppose that y; and y» are linearly independent solutions to the
equation

y" +p(t)y’ +q(t)y = 0.
Its general solution is

y(t) = Cun(t) + Coya(t)

where C; and G, are arbitrary constants.

It can be shown that
y1(t) = cos(wot) and ys(t) = sin(wot)
are linearly independent solutions to the harmonic equation

y"—i—w%y:O [lll
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4.1 Exercises

Linear Independence and Wronskian

Definition 1.22

Two functions u and v are linearly independent on the interval
(a, B) if neither is a constant multiple of the other on that interval.

Proposition 1.27

Suppose that v and v are solutions to the equation

y"+p(t)y’ +q(t)y =0

in the interval (o, 3). Then u and v are linearly independent if and
only if their Wronskian

W(t) = det (:’((tt)) VV((’?)> — WV () — V(D) (8)

never vanishes in (a, (), i.e., W(ty) # 0 for some ty in (a, ). [lll
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Theorem 1.17 (Existence and Uniqueness of Solution)

Suppose that p(t),q(t), and g(t) are continuous on («, 3). Let

to € (a, 8). Then for any real numbers yp and y1, there is one and
only one function y(t) defined on («, ), which is a solution to the
the initial value problem

Y'+p(t)y +q(t)y =g(t) fora<t<p

with the initial conditions

y(to) =y, and y'(to) = y1.
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Example 1.31

Find the solution to the harmonic equation x” + 4x = 0 with intial
conditions x(0) = 4 and x’(0) = 2.

We know from Example 1.24 that the general solution has the form
x(t) =acos2t + bsin2t,
where a and b are arbitrary constants. Substituting the initial conditions we get
4=x0)=a, and 2=x'(0)=2b.
Thus @ =4 and b = 1 and our solution is

x(t) = 4cos2t + sin2t.
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4.1 Exercises
Exercise 4.1.2

Determine whether the equation

t2y" =4y’ —sint

is linear or nonlinear. If linear, state whether it is homogeneous or
inhomogeneous.

Divide both sides of t2y” = 4y’ — sint by 2, then
rearrange to obtain

4 sin ¢

2y =TT

<
|
|
|

Compare this with

Y +p®y +q@)y =g@),

and note that p(t) = —4/¢2, q(t) = 0, and g(¢) =
—(sint)/t%. Hence, the equation is linear and inho- [lll
mogeneous.
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4.1 Exercises
Exercise 4.1.4

Determine whether the equation
ty” + (sint)y’ = 4y — cos 5t

is linear or nonlinear. If linear, state whether it is homogeneous or
inhomogeneous.

Divide both sides of ty” + (sint)y’ = 4y — cos 5¢
by ¢, then rearrange to obtain

y , Sint 4 cos5t
RGP t
Compare this with
Y+ p®)y +q)y =g,
and note that p(¢f) = (sint)/t, q(t) = —4/¢t, and
g(t) = —(cos5t)/t. Hence, the equation is linear [lll

and inhomogeneous.
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4.1 Exercises

Exercise 4.1.22

Show that y1(t) = et and y»(t) = e~3* form a fundamental set of
solutions for
y'+2y =3y =0,

then find a solution satisfying y(0) =1 and y’(0) = —2.

Thus, the general solution of y” + 2y’ — 3y = 0is
— ot
If y1(z) = €', then Y(t) = Cret + Cre™,

Y42y —3y=¢+2 -3¢ =0, and its derivative is
and if y,(z) = e~¥, then Y(£) = Cé' —3Cre™ 1.

Y +2y —3y =9 —6e7 — 37 =0,
The initial conditions, y(0) = 1 and y'(0) = —2

Furthermore, lead to the equations
i & 4t 1=C+C
w) e e —2=C1-3C
which is nonconstant. Thus, y; is not a constant and the constants C; = 1/4 and C; = 3/4. Thus,

multiple of y; and the solutions y; ) = ¢ and the solution of the initial value problem is

y2(t) = ¢~ form a fundamental set of solutions. 1, 3 5
y(@t) = Ze + ¢
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Exercise 4.1.24

4.1 Exercises

Show that y;(t) = e fcos2t and y»(t) = e~ *sin2t form a fundamental

set of solutions for

Y +2y' +5y =0,

then find a solution satisfying y(0) = —1 and y’(0) = 0.

If y1(f) = e~ cos 2t, then

¥i(t) = —e ™" cos 2t — 2e ™" sin2¢,
y{(£) = =3¢~ cos 2t + 4e~ " sin 2t.

Thus,
W+ + 50
= —3¢~" cos 2t +4e™!

sin 2¢

and

—2¢™ cos2t — 4e™" sin 2t + Se " cos 2t

=0.
If y,(t) = e~" sin 2¢, then

y3(t) = —e ' sin 2t + 2e~ cos 2t,
Y5(8) = =3¢ " sin 2 — 4e cos 2t.

Thus,
¥ +2Y5+ 5y
= —3e™"sin2t — 4e~" cos 2t

and

—2¢7"sin2t +4e' cos2t + Se™' sin 2t

=0.
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Furthermore,
»nw® _ e~ cos2t
ya(t) T e'sin2t

=cot2t,

which is nonconstant. Thus, y; is not a constant mul-
tiple of y, and the solutions y; (1) = e~ cos 2t and
Y2(t) = e~'sin2t form a fundamental set of solu-
tions. Thus, the general solution of y"+4-2y'+5y = 0
is

y(t) = Cre™" cos 2t + Cae ™" sin2t,
and its derivative is

Y(t) = —Ce™" cos2t — 2Cye™ " sin 2t
— Cre™" sin2t +2Cze™ cos 2t.

The initial conditions, y(0) = —1 and y'(0) = 0
lead to the equations
—1=¢
0=-C+2C

and the constants C; = —1 and C; = —1/2. Thus,
the solution of the initial value problem is

1
Y(t) = —€ ™" cos2t — Ee” sin2t.
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