Math 3331 Differential Equations

5.2 Basic Properties of the Laplace Transform

Jiwen He

Department of Mathematics, University of Houston

 ${\tt jiwenhe@math.uh.edu} \\ {\tt math.uh.edu} / {\sim} {\tt jiwenhe/math3331} \\$

5.2 Basic Properties of the Laplace Transform

- Properties of the Laplace Transform
 - Linearity
 - Reality
 - Derivatives
 - Multiplication by e^{ct}
 - Multiplication by t^k
- Examples
 - L-Transforms of Functions Encountered in ODEs
 - Table of L-Transforms
- Worked out Examples from Exercises:
 - 3, 5, 19, 22

1. Linearity:

$$\mathcal{L}(af + bg)(s) = a\mathcal{L}(f)(s) + b\mathcal{L}(g)(s)$$

2. 'Reality':

$$f(t)$$
 real $\Rightarrow \mathcal{L}(f)(s)$ real

Consequence:
$$f(t)$$
 complex \Rightarrow

$$Re(\mathcal{L}(f)(s)) = \mathcal{L}(Re(f))(s)$$

$$\operatorname{Im}(\mathcal{L}(f)(s)) = \mathcal{L}(\operatorname{Im}(f))(s)$$

$$Y(s) = \mathcal{L}\{y(t)\}(s)$$

3. Derivatives:

$$\mathcal{L}(y')(s) = sY(s) - y(0)$$

$$\mathcal{L}(y'')(s) = s^2Y(s) - sy(0) - y'(0)$$

$$\mathcal{L}(y^{(k)})(s) = s^kY(s) - s^{k-1}y(0) - s^{k-2}y'(0) - \dots - y^{(k-1)}(0)$$

Proof 3. for k = 1: Use partial integration: $\int uv' dt = uv - \int u'v dt$

$$\int_0^T e^{-st} y'(t) dt = e^{-st} y(t) \Big|_0^T + s \int_0^T e^{-st} y(t) dt$$

$$= e^{-sT} y(T) - y(0)$$

$$+ s \int_0^T e^{-st} y(t) dt$$
For $T \to \infty$:

$$e^{-sT}y(T) \to 0, \quad \int_0^T e^{-st}y(t) dt \to Y(s)$$

 $\Rightarrow \mathcal{L}(y')(s) = sY(s) - y(0)$

$$F(s) = \mathcal{L}\{f(t)\}(s)$$

4. Multiplication by e^{ct} $(c \in \mathbb{C})$:

$$\mathcal{L}\{e^{ct}f(t)\}(s) = F(s-c)$$

Proof 4.:

$$\mathcal{L}\lbrace e^{ct}f(t)\rbrace(s) = \int_0^\infty e^{-st}e^{ct}f(t)\,dt$$
$$= \int_0^\infty e^{-(s-c)t}f(t)\,dt$$
$$= F(s-c)$$

$$F(s) = \mathcal{L}\{f(t)\}(s)$$

5. Multiplication by t^k :

$$(k = 0, 1, 2, ...)$$

 $\mathcal{L}\{t^k f(t)\}(s) = (-1)^k F^{(k)}(s)$

Proof 5. for
$$k = 1$$
:
$$F(s) = \int_0^\infty e^{-st} f(t) dt \Rightarrow$$

$$F'(s) = \int_0^\infty (-t) f(t) dt = -\mathcal{L}\{tf(t)\}(s)$$

ODEs with constant coefficients \rightarrow functions $t^k e^{ct}$, k = 0, 1, 2, ...



$\mathcal{L} ext{-}\mathsf{Transforms}$ of Functions Encountered in ODEs (cont.)

Property 5 \Rightarrow

$$\mathcal{L}\lbrace t^k e^{ct}\rbrace(s) = (-1)^k \frac{d^k}{ds^k} \mathcal{L}\lbrace e^{ct}\rbrace(s)$$

Property $4 \Rightarrow$

$$\mathcal{L}\{e^{ct}\}(s) = \mathcal{L}\{e^{ct}1\}(s) = \mathcal{L}\{1\}(s-c)$$

$$= \frac{1}{s-c}$$

$$\Rightarrow \mathcal{L}\{t^k e^{ct}\}(s) = (-1)^k \frac{d^k}{ds^k} \frac{1}{s-c}$$

$$= \frac{k!}{(s-c)^{k+1}}$$
 (1)

$\mathcal{L} ext{-}\mathsf{Transforms}$ of Functions Encountered in ODEs (cont.)

$(1) \Rightarrow Special Transforms:$

•
$$k = 0$$
, $c \in \mathbb{R} \Rightarrow \mathcal{L}\lbrace e^{ct}\rbrace(s) = \frac{1}{s-c}$

$$\begin{array}{l} \bullet \ \, k=0, \ c=i\omega \Rightarrow \\ \mathcal{L}\{e^{i\omega t}\}(s)=\frac{1}{s-i\omega}=\frac{s+i\omega}{s^2+\omega^2} \Rightarrow \\ \mathcal{L}\{\cos\omega t\}(s)=\operatorname{Re}\!\left(\frac{s+i\omega}{s^2+\omega^2}\right)=\frac{s}{s^2+\omega^2} \\ \mathcal{L}\{\sin\omega t\}(s)=\operatorname{Im}\!\left(\frac{s+i\omega}{s^2+\omega^2}\right)=\frac{\omega}{s^2+\omega^2} \end{array}$$

$\mathcal{L} ext{-Transforms of Functions Encountered in ODEs (cont.)}$

•
$$k = 0$$
, $c = \alpha + i\beta \Rightarrow$

$$\mathcal{L}\{e^{\alpha t}e^{i\beta t}\}(s) = \frac{1}{s-\alpha-i\beta} = \frac{s-\alpha+i\beta}{(s-\alpha)^2+\beta^2}$$

$$\Rightarrow \mathcal{L}\{e^{\alpha t}\cos\beta t\}(s) = \frac{s-\alpha}{(s-\alpha)^2+\beta^2}$$

$$\mathcal{L}\{e^{\alpha t}\sin\beta t\}(s) = \frac{\beta}{(s-\alpha)^2+\beta^2}$$

Table of \mathcal{L} -Transforms

Table of \mathcal{L} -Transforms:

f(t)	$\mathcal{L}{f(t)}(s)$
1	$\frac{1}{s}$
t^k	$\frac{k!}{s^{k+1}}$
e^{ct}	$\frac{1}{s-c}$
$t^k e^{ct}$	$\frac{k!}{(s-c)^{k+1}}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
$e^{\alpha t}\cos\beta t$	$\frac{s-\alpha}{(s-\alpha)^2+\beta^2}$
$e^{\alpha t}\sin\beta t$	$\frac{\beta}{(s-\alpha)^2+\beta^2}$

3. Using linearity and Table 1,

$$\mathcal{L}\{t^2 + 4t + 5\}(s)$$

$$= \mathcal{L}\{t^2\}(s) + 4\mathcal{L}\{t\}(s) + 5\mathcal{L}\{1\}(s)$$

$$= \frac{2!}{s^3} + 4\left(\frac{1}{s^2}\right) + 5\left(\frac{1}{s}\right)$$

$$= \frac{2}{s^3} + \frac{4}{s^2} + \frac{5}{s}$$

$$= \frac{2 + 4s + 5s^2}{s^3},$$

provided s > 0.

5. Using linearity and Table 1,

$$\mathcal{L}\{-2\cos t + 4\sin 3t\}(s)$$

$$= -2\mathcal{L}\{\cos t\}(s) + 4\mathcal{L}\{\sin 3t\}(s)$$

$$= -2\left(\frac{s}{s^2 + 1}\right) + 4\left(\frac{3}{s^2 + 9}\right)$$

$$= \frac{-2s(s^2 + 9) + 12(s^2 + 1)}{(s^2 + 1)(s^2 + 9)}$$

$$= \frac{-2s^3 + 12s^2 - 18s + 12}{(s^2 + 1)(s^2 + 9)},$$

provided s > 0.

19. If
$$y' - 5y = e^{-2t}$$
, with $y(0) = 1$, then
$$\mathcal{L}\{y' - 5y\}(s) = \mathcal{L}\{e^{-2t}\}(s)$$

$$\mathcal{L}\{y'\}(s) - 5\mathcal{L}\{y\}(s) = \frac{1}{s+2}$$

$$s \mathcal{L}\{y\}(s) - y(0) - 5\mathcal{L}\{y\}(s) = \frac{1}{s+2}.$$

If we let $Y(s) = \mathcal{L}{y}(s)$, then

$$sY(s) - 1 - 5Y(s) = \frac{1}{s+2}$$

$$(s-5)Y(s) = 1 + \frac{1}{s+2}$$

$$Y(s) = \frac{1}{s-5} + \frac{1}{(s-5)(s+2)}$$

$$Y(s) = \frac{(s+2)+1}{(s-5)(s+2)}$$

$$Y(s) = \frac{s+3}{(s-5)(s+2)}$$

22. If

$$y'' + y = \sin 4t$$
, $y(0) = 0$, $y'(0) = 1$,

then, letting $Y(s) = \mathcal{L}(y)(s)$,

$$s^{2} \mathcal{L}(y)(s) - sy(0) - y'(0) + \mathcal{L}(y)(s) = \frac{4}{s^{2} + 4^{2}}$$
$$s^{2} Y(s) - 1 + Y(s) = \frac{4}{s^{2} + 16}.$$

Solving for Y(s),

$$(s^{2} + 1)Y(s) = 1 + \frac{4}{s^{2} + 16}$$
$$(s^{2} + 1)Y(s) = \frac{s^{2} + 20}{s^{2} + 16}$$
$$Y(s) = \frac{s^{2} + 20}{(s^{2} + 1)(s^{2} + 16)}.$$

39. If $y'' + y' + 2y = e^{-t} \cos 2t$, with y(0) = 1 and y'(0) = -1, then with $Y(s) = \mathcal{L}\{y\}(s)$,

$$\mathcal{L}\{y'' + y' + 2y\}(s)$$
= $s^2 \mathcal{L}\{y\}(s) - sy(0) - y'(0)$
+ $s \mathcal{L}\{y\}(s) - y(0) + 2 \mathcal{L}\{y\}(s)$
= $s^2 Y(s) - s + 1 + sY(s) - 1 + 2Y(s)$
= $(s^2 + s + 2)Y(s) - s$.

Because the transform of $f(t) = \cos 2t$ is F(s) = $s/(s^2+4)$, the transform of $e^{-t}\cos 2t$ is

$$F(s+1) = \frac{s+1}{(s+1)^2 + 4} = \frac{s+1}{s^2 + 2s + 5}.$$

Equating,

$$(s^2 + s + 2)Y(s) - s = \frac{s+1}{s^2 + 2s + 5}.$$

Solving for Y

$$Y(s) = \frac{s}{s^2 + s + 2} + \frac{s + 1}{(s^2 + s + 2)(s^2 + 2s + 5)}$$
$$= \frac{s(s^2 + 2s + 5) + s + 1}{(s^2 + s + 2)(s^2 + 2s + 5)}$$
$$= \frac{s^3 + 2s^2 + 6s + 1}{(s^2 + s + 2)(s^2 + 2s + 5)}.$$

