Math 3331 Differential Equations

9.7 Qualitative Analysis of Linear Systems

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math3331

9.7 Qualitative Analysis of Linear Systems

- Stability
 - Definitions
 - Examples
 - Theorems
- Stability of 2D Systems
- Worked out Examples from Exercises:
 - 1, 3, 5, 7

Stability: Definitions

$$\mathbf{x}' = A\mathbf{x}, \quad A: n \times n$$
 (1) $\mathbf{x}(t) = \mathbf{0}$ is equilibrium solution

Consider general system:

$$x' = f(x) \tag{2}$$

Assume equilibrium $x(t) = x_0$: $f(x_0) = 0$

Def.:

• \mathbf{x}_0 is stable if for any $\epsilon>0$ there is a $\delta>0$ s.t. $|\mathbf{x}(t)-\mathbf{x}_0|<\epsilon$ for all t>0 whenever $|\mathbf{x}(0)-\mathbf{x}_0|<\delta$. (Solutions that start close to \mathbf{x}_0 remain close.)

Def.:

- x₀ is unstable if it is not stable. (There are solutions starting arbitrarily close to x₀ that move 'far away' from x₀.)
- \mathbf{x}_0 is asymptotically stable if \mathbf{x}_0 is stable and there is $\eta>0$ s.t. $\mathbf{x}(t)\to\mathbf{x}_0$ for $t\to\infty$ whenever $|\mathbf{x}(0)-\mathbf{x}_0|<\eta.$

Def.:

- An asymptotically stable equilibrium x_0 of (2) is a sink.
- An equilibrium x_0 of (2) is a source if every solution x(t) with $|x(0) x_0|$ arbitrarily small eventually moves 'far away' from x_0 when t increases.

Stability: Examples

$$\mathbf{x}' = A\mathbf{x}, \quad A: n \times n$$
 (1) $\mathbf{x}(t) = \mathbf{0}$ is equilibrium solution

Examples:

Let A be 2×2 .

The equilibrium $x_0 = 0$ of (1) is

- a sink if the phase portrait is a nodal or spiral sink
- a source if the phase portrait is a nodal or spiral source
- unstable if the phase portrait is a saddle
- stable but not asymptotically stable if the phase portrait is a center or stable saddle-node.

Stability: Theorems

Thm.: Let A be $n \times n$

- 1. If $Re(\lambda) < 0$ for all eigenvalues of A (λ < 0 if λ is real), then $\mathbf{x}(t) \rightarrow \mathbf{0}$ for $t \rightarrow \infty$ for any solution x(t) of (1). (0 is a sink)
- 2. If there is an eigenvalue λ of A with Re(λ) > 0 (λ > 0 if λ is real), then there are solutions $\mathbf{x}(t)$ of (1) with $|\mathbf{x}(0)|$ arbitrarily small that get arbitrarily large when t increases

(0 is unstable)

3. If $Re(\lambda) > 0$ for all eigenvalues λ of A, then every solution $\mathbf{x}(t)$ of (1) with $x(0) \neq 0$ gets arbitrarily large when t increases. (0 is a source)

4. If $Re(\lambda) < 0$ for all eigenvalues λ of A, and for any eigenvalue with $Re(\lambda) = 0$ every generalized eigenvector is an eigenvector, then 0 is stable. (Ex.: stable saddle-nodes, centers)

Stability of 2D Systems

For n=2:

•
$$D > 0$$
. $T < 0 \Rightarrow sink$

- D > 0. $T > 0 \Rightarrow$ source
- $D < 0 \Rightarrow \text{saddle} \Rightarrow \text{unstable}$ but not source

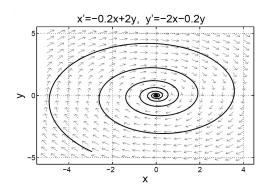
Ex.:
$$A = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \Rightarrow \mathbf{x}(t) = \begin{bmatrix} x_0 \\ e^{-t}y_0 \end{bmatrix}$$
 $\lambda = 0 \leftrightarrow \mathbf{v} = [1, 0]^T$: 0 is stable

Ex.:
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{Bmatrix} T &= 0 \\ D &= 0 \end{Bmatrix} \Rightarrow p(\lambda) = \lambda^2$$

 $\lambda = 0 \leftrightarrow \mathbf{v} = \begin{bmatrix} 1, 0 \end{bmatrix}^T$
 $A^2 = 0 \Rightarrow \begin{Bmatrix} \text{every vector is } \\ \text{generalized eigenvector} \end{Bmatrix}$
Solution:
 $\mathbf{x}(t) = (I + At)\mathbf{x}_0 = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 + tx_0 \end{bmatrix}$
 $\Rightarrow \mathbf{0}$ is unstable (but not a source)

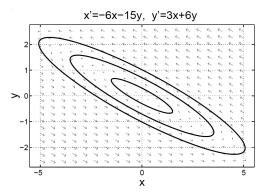
Ex. 1: Classify 0 as unstable equilibrium, stable equilibrium, sink or source of x' = Ax for the given A. Verify the classification through a phase portrait.

$$A = \begin{bmatrix} -0.2 & 2 \\ -2 & -0.2 \end{bmatrix} : D = 4.04 > 0, T = -0.4 < 0 \Rightarrow \text{sink (spiral sink)}$$



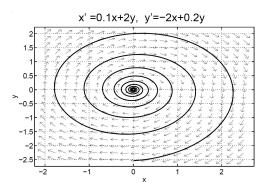
Ex. 3: Same as Ex. 1 for
$$A = \begin{bmatrix} -6 & -15 \\ 3 & 6 \end{bmatrix}$$

D = 9, $T = 0 \Rightarrow \text{center} \Rightarrow \text{stable (but not sink)}$



Ex. 5: Same as Ex. 1 for $A = \begin{bmatrix} 0.1 & 2 \\ -2 & 0.1 \end{bmatrix}$.

D = 4.04, $T = 0.2 \Rightarrow$ source (phase portrait: spiral source)



Ex. 7: Same as Ex. 1 for
$$A = \begin{bmatrix} 1 & -4 \\ 1 & -3 \end{bmatrix}$$
.

 $D = -2 \Rightarrow \text{saddle} \Rightarrow \text{unstable (but not source)}$

