EMCF 17

Log in to CourseWare at http://www.casa.uh.edu and access the answer sheet by clicking on the EMCF tab.

1. Use one iteration of Newton's method from a guess of $x=1$ to approximate a solution to $x^{4}+\frac{3}{4} x-2=0$. What is the result?
a. 1.05221
b. 1.05278
c. 1.05376
d. 1.05477
e. 1.05263
f. None of these.
2. Use one iteration of Newton's method from a guess of $x=1$ to approximate a solution to $x^{4}+x-\frac{9}{10}=0$. What is the result?
a. .75
b. . 76
c. . 77
d. . 78
e. . 79
f. None of these.
3. Use differentials to approximate $\sqrt{36.1}$ from a guess of 6 . What is the result?
a. 6.0855
b. 6.0833
c. 6.0844
d. 6.0811
e. 6.0822
f. None of these.
4. Give the differential of $f(x)=x^{2}+2 x-1$ at $x=1$ with increment .01 .
a. $1 / 20$
b. $1 / 10$
c. $1 / 100$
d. $1 / 25$
e. $1 / 15$
f. None of these.
5. Give a value of c that verifies the mean value theorem for $f(x)=-2 x^{2}+3 x-1$ on the interval [1,3].
a. $5 / 2$
b. 2
c. $3 / 2$
d. $9 / 4$
e. 7/4
f. None of these.
6. Give the number of values of c that verify the mean value theorem for $f(x)=\sin (x)$ on the interval [-1,5]. Hint: Look at the graph.
a. 1
b. 2
c. 3
d. 4
e. 5
f. None of these.
7. Give the number of values of c that verify the mean value theorem for $f(x)=3 \cos (2 x)+x$ on the interval [-1,5]. Hint: Look at the graph.
a. 1
b. 2
c. 3
d. 4
e. 5
f. None of these.
8. Give the smallest value of x where the derivative of $f(x)=x^{3}-3 x-1$ is zero.
a. -1
b. 0
c. 1
d. -2
e. 2
f. None of these.
9. Use differentials to approximate a value for $f(1.9)$ given that $f(2)=-1$ and $f^{\prime}(x)=\sqrt{x^{3}+1}$.
a. -1.1
b. -1.15
c. -1.2
d. -1.25
e. -1.3
f. None of these.
10. Use Newton's method to approximate $\sqrt{26}$. Hint: You know $\sqrt{26}$ is a solution to $x^{2}-26=0$, and 5 is a reasonable first guess.
a. 5.05
b. 5.1
c. 5.15
d. 5.2
e. 5.25
f. None of these.
