EMCF 38

The graph of g(x) is shown below. Regions V, VI, VII and VIII have areas 4, $\frac{3}{2}$, $\frac{5}{2}$ and 5 respectively.

a)
$$f(x) = -42x^6 + 4x^3 - 3$$

b)
$$e_{f(x)} = (-6x^{2} + x^{4} - 3x)(x + 1)$$

c) $e_{f(x)} = (-42x^{6} + 4x^{3} - 3)(x + 1)$
d) $e_{f(x)} = -6x^{2} + x^{4} - 3x$
c) $e_{f(x)} = -\frac{3}{4}x^{8} + \frac{1}{5}x^{5} - \frac{3}{2}x^{2} - 3$
Question 5
Given that $x > -7$ and
 $F(x) = \int_{4}^{x} \sqrt{t + 7} dx$
find $F(4)$.
a) $e_{4}\sqrt{11}$
b) $e_{13\sqrt{11}}/11$
c) e_{0}
d) e_{4}
e) $e_{\sqrt{11}}$
Question 6
Find the derivative of the function F
 $F(x) = \int_{0}^{x\sin(x)} \sqrt{25 - t^{2}} dt$
a) $e_{(\sin(x) + x\cos(x))} \sqrt{25 - x^{2}}$
b) $e_{(\sin(x) + x\cos(x))} \sqrt{25 - (x\sin(x))^{2}}$
c) $e_{\sqrt{25 - x^{2}}}$
d) $e_{-\frac{(x\sin(x))}{\sqrt{25 - (x\sin(x))^{2}}}$
c) $e_{\sqrt{25 - (x\sin(x))^{2}}}$

Question 7 Evaluate the definite integral: $\int_{1}^{3} (6x + x^3) dx$ **a)** • 44 **b)** • 20 c) ● ⁹⁸/3 **d)** • ³⁶²/₅ e) • 38 **Question 8** Evaluate the definite integral: $\int_{1}^{9} 2\sqrt{x} dx$ **a)** • 8 **b)** • 4 **c)** ● ¹⁰⁴/₃ **d)** ● ⁴⁸⁴/₅ e) ● ⁹⁶⁸/5 Question 9 Find the area bounded by the curves

$$y=1-x^{2}$$

 $y=13-7x$

a) • ¹/₆

b)
$$e^{-\frac{1}{2}}$$

c) $e^{-\frac{1}{2}}$
d) $e^{-\frac{1}{2}}$
d) $e^{-\frac{1}{2}}$
Question 10
Calculate the indefinite integral:

$$\int \frac{5x^3 - 4}{x^2} dx$$
a) $e^{-\frac{5}{2}x^2 + \frac{4}{x}} + C$
b) $e^{-\frac{5x^3 + 8}{x^3}} + C$
c) $e^{-\frac{5}{2}x^2 - 4x} + C$
d) $e^{-\frac{5}{2}x^2 - 4x} + C$
c) $e^{-\frac{5}{2}x^2 - 4x} + C$
c) $e^{-\frac{5}{2}x^2 - 4x} + C$
function 11
Calculate the indefinite integral:

$$\int (2\sqrt{x} - \frac{7}{\sqrt{x}}) dx$$
a) $e^{-14\sqrt{x}} + \frac{4}{3}x^{3/2} + C$
b) $e^{-\frac{14}{3}x^{3/2}} + \frac{4}{5}x^{5/2} + C$
c) $e^{-\frac{14}{3}x^{3/2}} + \frac{4}{5}x^{5/2} + C$

d)
$$e^{-\frac{10}{2}x^{3/2} + C}$$

e) $e^{-\frac{10}{3}x^{3/2} + C}$
Question 12
Calculate:

$$\int \frac{12x + 36}{\sqrt{x^2 + 6x - 2}} dx$$
a) $e^{-\frac{12}{\sqrt{x^2 + 6x - 2}} + C}$
b) $e^{-\frac{12}{\sqrt{x^2 + 6x - 2}} + C}$
c) $e^{-\frac{12}{\sqrt{x^2 + 6x - 2}} + C}$
d) $e^{-\frac{12}{\sqrt{x^2 + 6x - 2}} + C}$
e) $e^{-\frac{12}{\sqrt{x^2 + 6x - 2}} + C}$
e) $e^{-\frac{12}{\sqrt{x^2 + 6x - 2}} + C}$
Question 13
Calculate the integral:

$$\int \cos^6(2x) \sin(2x) dx$$
a) $e^{-\frac{1}{7}} \sin^7(2x) + C$
b) $e^{-\frac{2}{7}} \sin^7(2x) + C$
c) $e^{-\frac{1}{12}} \cos^2(2x) + C$
d) $e^{-\frac{1}{12}} \cos^2(2x) + C$
e) $e^{-\frac{1}{12}} \cos^2(2x) + C$

Question 16

Find the average value of the function f(x) on the interval [0, 6] and determine a number *c* in this interval for which f(c) is equal to the average value.

$$f(\mathbf{x}) = 12 \, \mathbf{x} - 6 \, \mathbf{x}^2$$

a) • Average value = -36, $c = \frac{1}{\sqrt{7}}$

b) • Average value = -216,
$$c = \frac{1}{2} - \frac{1}{2}\sqrt{7}$$

c) • Average value = 0,
$$c = 0$$

- **d)** Average value = -216, c = -72
- e) Average value = -36, $c = 1 + \sqrt{7}$

Question 17

Which of the following integrals represents the area of the region bounded by the curves, $y = -2x^{1/2}$, y = x - 3, and y = 0, in terms of x?

a)
$$\bigcirc \int_{0}^{3} (-2\sqrt{x}) dx + \int_{3}^{4} (x-3) dx$$

b) $\bigcirc \int_{0}^{1} 2\sqrt{x} dx + \int_{1}^{3} (-x+3) dx$
c) $\bigcirc \int_{0}^{3} 2\sqrt{x} dx$
d) $\bigcirc \int_{0}^{2} 2\sqrt{x} dx + \int_{2}^{3} (-x+3) dx$
 $\Rightarrow \bigcirc \int_{0}^{1} (-2\sqrt{x}) dx + \int_{2}^{3} (-x+3) dx$

e)
$$(-2\sqrt{x}) dx + \int_{1} (-x+3) dx$$

Question 18

Which of the following integrals represents the area of the region bounded by the curves, $y = -7x^{1/2}$, y = x - 8, and y = 0, in terms of y?

a)
$$\int_{-7}^{0} \left(\frac{1}{49} y^2 - y - 8 \right) dy$$

b) $\int_{-7}^{0} \left(y + 8 - \frac{1}{49} y^2 \right) dy$
c) $\int_{0}^{8} \frac{1}{49} y^2 dy$

d)
$$\bigoplus_{-7}^{0} (y+8) \, dy$$

e) $\bigoplus_{0}^{8} \left(y+8-\frac{1}{49} y^2 \right) \, dy$

Question 19

Sketch the region bounded by the following curves and find the volume of the solid generated by revolving this region about the *x*-axis.

$$y = 5\sqrt{x}$$
$$y = 5x^3$$

a) •
$$\frac{139}{14}\pi$$

b) • $\frac{181}{14}\pi$

c) •
$$\frac{167}{14}\pi$$

d) •
$$\frac{125}{14}\pi$$

e)
$$\frac{135}{14}\pi$$

Question 20

Sketch the region bounded by the following curves and find the volume of the solid generated by revolving this region about the *y*-axis.

$$\begin{array}{c} x = y^3 \\ x = 1 \\ y = 0 \end{array}$$

a)
$$\bigcirc \frac{13}{7}\pi$$

b) $\bigcirc \frac{27}{7}\pi$
c) $\bigcirc \frac{34}{7}\pi$

d) •
$$\frac{6}{7}\pi$$

e) • $\frac{20}{7}\pi$