EMCF 39

Question 1

Compute the lower Riemann sum for the given function $f(x)=3-x^{2}$
over the interval $x \in[0,1]$ with respect to the partition $P=\left[0, \frac{1}{4}, \frac{3}{4}, 1\right]$
a) $\quad 165 / 64$
b) $\quad 181 / 64$
c) $\quad 169 / 64$
d) $\quad 157 / 64$
e) $173 / 64$

Question 2

Given that

$$
\left[\int_{0}^{2} f(x) \mathrm{d} x=2, \int_{0}^{3} f(x) \mathrm{d} x=2, \int_{3}^{6} f(x) \mathrm{d} x=1\right]
$$

find

$$
\int_{0}^{6} f(x) d x
$$

a) 3
b) 5
c) 1
d) -1
e) 2

Question 3

The graph of $\boldsymbol{g}(\boldsymbol{x})$ is shown below. Regions V, VI, VII and VIII have areas $4, \frac{3}{2}, 5 / 2$ and 6 respectively.

Compute the following integral (pay attention to the endpoints).

$$
\int_{0}^{6}(-2 g(x)) d x
$$

a) $\quad-28$
b) -6
c) $\quad-16$
d) $-\mathbf{- 2 0}$
e) 1

Question 4

Find a formula for $f(x)$ given that f is continuous and

$$
4 x^{4}+x^{2}-5 x=\int_{0}^{x} \frac{f(t)}{t+1} d t
$$

a) $f(x)=4 x^{4}+x^{2}-5 x$
b) $\quad f(x)=\frac{4}{5} x^{5}+\frac{1}{3} x^{3}-\frac{5}{2} x^{2}-5$
c) $f(x)=16 x^{3}+2 x-5$
d) $f(x)=\left(4 x^{4}+x^{2}-5 x\right)(x+1)$
e) $f(x)=\left(16 x^{3}+2 x-5\right)(x+1)$

Question 5

Given that $x>-2$ and

$$
F(x)=\int_{4}^{x} t \sqrt{t+2} d t
$$

find $F(4)$.
a) 4
b) 0
c) $4 \sqrt{6}$
d) $\sqrt{6}$
e) $\quad 4 \sqrt{6} / 3$

Question 6

Find the derivative of the function F

$$
F(x)=\int_{0}^{x \sin (x)} \sqrt{36-t^{2}} d t
$$

a) $\sqrt{36-x^{2}}$
b) $(\sin (x)+x \cos (x)) \sqrt{36-x^{2}}$
c) $-\frac{(x \sin (x))}{\sqrt{36-(x \sin (x))^{2}}}$
d) $\sqrt{36-(x \sin (x))^{2}}$
e) $(\sin (x)+x \cos (x)) \sqrt{36-(x \sin (x))^{2}}$

Question 7

Evaluate the definite integral:

$$
\int_{1}^{3}\left(7 x+x^{3}\right) d x
$$

a) $382 / 5$
b) 40
c) $\quad 48$
d) $110 / 3$
e) 20

Question 8

Evaluate the definite integral:

$$
\int_{1}^{9} 3 \sqrt{x} d x
$$

a) 12
b) 52
c) $484 / 5$
d) 6
e) $1452 / 5$

Question 9

Find the area bounded by the curves

$$
\begin{aligned}
& y=5-x^{2} \\
& y=8-4 x
\end{aligned}
$$

a) $2 / 3$
b) $\frac{4}{3}$
c) $-\frac{2}{3}$
d) $8 / 3$
e) $-\frac{4}{3}$

Question 10

Calculate the indefinite integral:

$$
\int \frac{6 x^{3}-5}{x^{2}} d x
$$

a) $3 x^{2}-5 x+C$
b) $2 x^{3}-5 x+C$
c) $3 x^{2}+\frac{5}{x}+C$
d) $\frac{2\left(3 x^{3}+5\right)}{x^{3}}+C$
e) $6 x+\frac{5}{x}+C$

Question 11

Calculate the indefinite integral:

$$
\int\left(3 \sqrt{x}-\frac{7}{\sqrt{x}}\right) \mathrm{dx}
$$

a) $\frac{14}{3} x^{3 / 2}+\frac{6}{5} x^{5 / 2}+C$
b) $-14 \sqrt{x}+2 x^{3 / 2}+C$
c) $14 \sqrt{x}+2 x^{3 / 2}+C$
d) $-\frac{8}{3} x^{3 / 2}+C$
e) $\frac{3}{2 \sqrt{x}}+\frac{7}{2 x^{3 / 2}}+C$

Question 12

Calculate:

$$
\int \frac{10 x+20}{\sqrt{x^{2}+4 x-3}} d x
$$

a) $10 \sqrt{x^{2}+4 x-3}+C$
b) $-2 \sqrt{x^{2}+4 x-3}+C$
c) $\quad 2 \sqrt{x^{2}+4 x-3}+C$
d) $-10 \sqrt{x^{2}+4 x-3}+C$
e) $\quad 5 \sqrt{x^{2}+4 x-3}+C$

Question 13

Calculate the integral:

$$
\int \sin ^{7}(4 x) \cos (4 x) d x
$$

a) $-\frac{1}{28} \sin ^{8}(4 x)+C$
b) $-\frac{1}{8} \sin ^{8}(4 x)+C$
c) $\quad \frac{1}{32} \sin ^{8}(4 x)+C$
d) $-\frac{1}{8} \cos ^{8}(4 x)+C$
e) $\quad \frac{1}{2} \cos ^{8}(4 x)+C$

Question 14

Evaluate:

$$
\int_{0}^{a} 10 x \sqrt{a^{2}-x^{2}} d x
$$

a) $\frac{10}{3} a^{2}$
b) 0
c) $\frac{10}{3} a^{3}$
d) $10 a^{2}$
e) $10 a^{3}$

Question 15

Find f based on the following information:

$$
\begin{gathered}
f^{\prime \prime}(x)=\cos (x) \\
f^{\prime}(0)=3 \\
f(0)=1
\end{gathered}
$$

a) $f(x)=-\cos (x)+3 x$
b) $f(x)=\cos (x)-3 x$
c) $f(x)=-\cos (x)+3 x+2$
d) $f(x)=-\sin (x)-1$
e) $f(x)=\sin (x)+1$

Question 16

Find the average value of the function $f(x)$ on the interval $[0,2]$ and determine a number c in this interval for which $f(c)$ is equal to the average value.

$$
f(x)=10 x-5 x^{2}
$$

a) Average value $=0, c=0$
b) Average value $=10 / 3, c=\left\{1-\frac{1}{3} \sqrt{3}, 1+\frac{1}{3} \sqrt{3}\right\}$
c) Average value $=20 / 3, c=\frac{20}{3}$
d) Average value $=20 / 3, c=\frac{1}{2}-\frac{1}{6} \sqrt{3}$
e) Average value $=10 / 3, c=1-\frac{1}{3} \sqrt{3}$

Question 17

Which of the following integrals represents the area of the region bounded by the curves, $y=-3 x^{1 / 2}, y=x$ -4 , and $y=0$, in terms of \boldsymbol{x} ?
a) $\int_{0}^{4}(-3 \sqrt{x}) d x+\int_{4}^{5}(x-4) d x$
b) $\int_{0}^{4} 3 \sqrt{x} d x$
c) $\int_{0}^{1} 3 \sqrt{x} d x+\int_{1}^{4}(-x+4) d x$
d) $\int_{0}^{2} 3 \sqrt{x} d x+\int_{2}^{4}(-x+4) d x$
e) $\int_{0}^{1}(-3 \sqrt{x}) d x+\int_{1}^{4}(-x+4) d x$

Question 18

Which of the following integrals represents the area of the region bounded by the curves, $y=-9 x^{1 / 2}, y=x$
-10 , and $y=0$, in terms of \boldsymbol{y} ?
a) $\quad \int_{0}^{10}\left(y+10-\frac{1}{81} y^{2}\right) d y$
b) $\quad \int_{0}^{10} \frac{1}{81} y^{2} d y$
c) $\int_{-9}^{0}(y+10) d y$
d) $\int_{-9}^{0}\left(y+10-\frac{1}{81} y^{2}\right) d y$
e) $\quad \int_{-9}^{0}\left(\frac{1}{81} y^{2}-y-10\right) d y$

Question 19

Sketch the region bounded by the following curves and find the volume of the solid generated by revolving this region about the x-axis.

$$
\begin{gathered}
y=10 \sqrt{x} \\
y=10 x^{3}
\end{gathered}
$$

a) $\frac{264}{7} \pi$
b) $\frac{257}{7} \pi$
c) $\quad \frac{250}{7} \pi$
d) $\frac{271}{7} \pi$
e) $\frac{278}{7} \pi$

Question 20

Sketch the region bounded by the following curves and find the volume of the solid generated by revolving this region about the y-axis.

$$
\begin{aligned}
& x=y^{3} \\
& x=1 \\
& y=0
\end{aligned}
$$

a) $\frac{13}{7} \pi$
b) $\quad \frac{27}{7} \pi$
c) $\frac{34}{7} \pi$
d) $\frac{6}{7} \pi$
e) $\frac{20}{7} \pi$

