EMCF 39

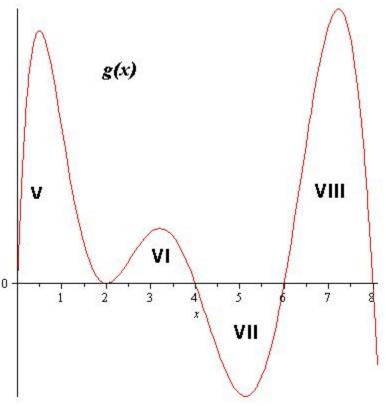
Question 1

Compute the lower Riemann sum for the given function $f(x) = 3 - x^2$ over the interval $x \in [0, 1]$ with respect to the partition $P = \left[0, \frac{1}{4}, \frac{3}{4}, 1\right]$

- **a**) 0.165/64
- **b**) $^{\circ}$ $^{181}/_{64}$
- **c**) 169/₆₄
- **d**) 157/₆₄
- **e**) 173/₆₄

Question 2

Given that


$$\left[\int_{0}^{2} f(x) dx = 2, \int_{0}^{3} f(x) dx = 2, \int_{3}^{6} f(x) dx = 1 \right]$$

find

$$\int_{0}^{6} f(x) \, dx$$

- **a**) 3
- **b**) 5
- **c**) 1
- **d**) -1
- **e**) 0 2

The graph of g(x) is shown below. Regions V, VI, VII and VIII have areas 4, $\frac{3}{2}$, $\frac{5}{2}$ and 6 respectively.

Compute the following integral (pay attention to the endpoints).

$$\int_0^6 (-2g(x)) dx$$

- **a**) -28
- **b**) -6
- **c**) -16
- **d**) -20
- **e**) 1

Question 4

Find a formula for f(x) given that f is continuous and

$$4x^4 + x^2 - 5x = \int_0^x \frac{f(t)}{t+1} dt$$

a)
$$f(x) = 4x^4 + x^2 - 5x$$

b)
$$f(x) = \frac{4}{5}x^5 + \frac{1}{3}x^3 - \frac{5}{2}x^2 - 5$$

c)
$$f(x) = 16x^3 + 2x - 5$$

d)
$$f(x) = (4x^4 + x^2 - 5x)(x+1)$$

e)
$$f(x) = (16x^3 + 2x - 5)(x + 1)$$

Given that x > -2 and

$$F(x) = \int_{4}^{x} t\sqrt{t+2} \, \mathrm{d}t$$

find F(4).

c)
$$0.4\sqrt{6}$$

d) •
$$\sqrt{6}$$

e)
0
 $^{4\sqrt{6}}/_{3}$

Question 6

Find the derivative of the function F

$$F(x) = \int_0^{x \sin(x)} \sqrt{36 - t^2} dt$$

a)
$$\sqrt{36-x^2}$$

b)
$$\circ$$
 $(\sin(x) + x \cos(x)) \sqrt{36 - x^2}$

c)
$$-\frac{(x \sin(x))}{\sqrt{36 - (x \sin(x))^2}}$$

d)
$$\sqrt{36 - (x \sin(x))^2}$$

e)
$$\circ (\sin(x) + x\cos(x)) \sqrt{36 - (x\sin(x))^2}$$

Evaluate the definite integral:

$$\int_{1}^{3} \left(7x + x^{3}\right) dx$$

a)
$$0.382/_{5}$$

d)
$$^{0} ^{110} /_{3}$$

Question 8

Evaluate the definite integral:

$$\int_{1}^{9} 3\sqrt{x} dx$$

c)
6
 $^{484}/_{5}$

e)
$$0.1452/_{5}$$

Question 9

Find the area bounded by the curves

$$y = 5 - x^2$$
$$y = 8 - 4x$$

a)
$$^{\circ}$$
 $^{2}/_{3}$

b)
$$^{\circ}$$
 $^{4}/_{3}$

Calculate the indefinite integral:

$$\int \frac{6x^3 - 5}{x^2} \, \mathrm{d}x$$

a)
$$3x^2 - 5x + C$$

b)
$$2x^3 - 5x + C$$

c)
$$3x^2 + \frac{5}{x} + C$$

d)
$$\circ \frac{2(3x^3+5)}{x^3}+C$$

e)
$$6x + \frac{5}{x} + C$$

Question 11

Calculate the indefinite integral:

$$\int \left(3\sqrt{x} - \frac{7}{\sqrt{x}}\right) dx$$

a)
$$\frac{14}{3}x^{3/2} + \frac{6}{5}x^{5/2} + C$$

b)
$$-14\sqrt{x} + 2x^{3/2} + C$$

c)
$$14\sqrt{x} + 2x^{3/2} + C$$

d)
$$-\frac{8}{3}x^{3/2} + C$$

e)
$$\frac{3}{2\sqrt{x}} + \frac{7}{2x^{3/2}} + C$$

Calculate:

$$\int \frac{10 x + 20}{\sqrt{x^2 + 4 x - 3}} dx$$

a)
$$0.0\sqrt{x^2+4x-3}+C$$

b)
$$-2\sqrt{x^2+4x-3}+C$$

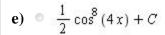
c)
$$2\sqrt{x^2+4x-3}+C$$

d)
$$-10\sqrt{x^2+4x-3}+C$$

e)
$$5\sqrt{x^2+4x-3}+C$$

Question 13

Calculate the integral:


$$\int \sin^7 (4x) \cos(4x) dx$$

a)
$$-\frac{1}{28}\sin^8(4x) + C$$

b)
$$-\frac{1}{8}\sin^8(4x) + C$$

c)
$$\frac{1}{32} \sin^8 (4x) + C$$

d)
$$-\frac{1}{8}\cos^8(4x) + C$$

Evaluate:

$$\int_{0}^{a} 10 \, x \sqrt{a^{2} - x^{2}} \, dx$$

- **a**) $\frac{10}{3}a^2$
- **b**) 0
- **c**) $\frac{10}{3}a^3$
- **d**) $^{\circ} 10a^{2}$
- e) $0.10a^3$

Question 15

Find f based on the following information:

$$f''(x) = \cos(x)$$

 $f'(0) = 3$
 $f(0) = 1$

a)
$$f(x) = -\cos(x) + 3x$$

b)
$$\circ$$
 $f(x) = \cos(x) - 3x$

c)
$$f(x) = -\cos(x) + 3x + 2$$

d)
$$f(x) = -\sin(x) - 1$$

e)
$$f(x) = \sin(x) + 1$$

Question 16

Find the average value of the function f(x) on the interval [0, 2] and determine a number c in this interval for which f(c) is equal to the average value.

$$f(x) = 10x - 5x^2$$

a) • Average value = 0, c = 0

b) • Average value =
$$10/3$$
, $c = \left\{1 - \frac{1}{3}\sqrt{3}, 1 + \frac{1}{3}\sqrt{3}\right\}$

c) • Average value = 20/3, $c = \frac{20}{3}$

d) • Average value =
$$20/3$$
, $c = \frac{1}{2} - \frac{1}{6}\sqrt{3}$

e) • Average value =
$$10/3$$
, $c = 1 - \frac{1}{3}\sqrt{3}$

Question 17

Which of the following integrals represents the area of the region bounded by the curves, $y = -3x^{1/2}$, y = x - 4, and y = 0, in terms of x?

a)
$$\int_{0}^{4} (-3\sqrt{x}) dx + \int_{4}^{5} (x-4) dx$$

$$\mathbf{b}) \quad \circ \quad \int_0^4 3\sqrt{x} \, dx$$

c)
$$\int_0^1 3\sqrt{x} dx + \int_1^4 (-x+4) dx$$

d)
$$\int_0^2 3\sqrt{x} \, dx + \int_2^4 (-x+4) \, dx$$

e)
$$\int_0^1 (-3\sqrt{x}) dx + \int_1^4 (-x+4) dx$$

Question 18

Which of the following integrals represents the area of the region bounded by the curves, $y = -9x^{1/2}$, y = x - 10, and y = 0, in terms of y?

a)
$$\int_0^{10} \left(y + 10 - \frac{1}{81} y^2 \right) dy$$

b)
$$\int_0^{10} \frac{1}{81} y^2 dy$$

c)
$$\int_{-9}^{0} (y+10) \, dy$$

e)
$$\int_{-9}^{0} \left(\frac{1}{81} y^2 - y - 10 \right) dy$$

Sketch the region bounded by the following curves and find the volume of the solid generated by revolving this region about the *x*-axis.

$$y = 10\sqrt{x}$$
$$y = 10x^3$$

a)
$$\frac{264}{7}\pi$$

b)
$$\circ$$
 $\frac{257}{7}\pi$

c)
$$\frac{250}{7}\pi$$

d)
$$\frac{271}{7}\pi$$

e)
$$\frac{278}{7}\pi$$

Question 20

Sketch the region bounded by the following curves and find the volume of the solid generated by revolving this region about the *y*-axis.

$$\begin{array}{c}
x = y^3 \\
x = 1 \\
y = 0
\end{array}$$

a)
$$\frac{13}{7}\pi$$

- b) $\frac{27}{7}\pi$ c) $\frac{34}{7}\pi$ d) $\frac{6}{7}\pi$ e) $\frac{20}{7}\pi$