Make Up

Test 1

Question 1

The graph of the function

$$
f(x)=\frac{x-3}{x^{2}+7 x+12}
$$

has a horizontal asymptote. If the graph crosses this asymptote, then give the x-coordinate of the intersection. Otherwise, state that the graph does not cross the asymptote.
a) $x=4$
b) $x=0$
c) $\quad x=3$
d) $x=6$
e) The graph does not cross the asymptote.
f) None of the above.

Question 2

Simplify

$$
1-\cos ^{2} x+\left(\sin ^{2} x\right)\left(\cot ^{2} x\right)
$$

a) $\quad \csc (x)$
b) $\cos x$
c) -1
d) 1
e) $\quad \sin (x) \cos (x)$
f) None of the above.

Question 3

Find the coordinates of the x-intercept(s) for

$$
f(x)=\frac{x^{2}+3 x-18}{x^{2}-8 x+15}
$$

a) $(0,5)$ and $(0,-6)$
b) $(-3,0)$ and $(-6,0)$
c) $(\mathbf{3 , 0})$
d) $(-6,0)$
e) $(0,3)$ and $(0,-6)$
f) None of the above.

Question 4

Find the linear function f with both ($-7,-6$) and ($-4,-2$) on the graph of f^{-1}.
a) $\quad f(x)=\frac{3}{2} x+2$
b) $\quad f(x)=\frac{5}{4} x+\frac{1}{2}$
c) $\quad f(x)=\frac{3}{4} x-\frac{5}{2}$
d) $\quad f(x)=\frac{1}{2} x-4$
e) $\quad f(x)=x-1$
f) None of the above.

Question 5

Given

$$
\left[h(x)=x^{4}-2, g(x)=x^{3}-1, f(x)=x^{2}-4\right]
$$

Find

$$
f(g(1)+h(1))
$$

a) -2
b) $\quad-65$
c) $\quad-3$
d) -4
e) 5
f) None of the above.

Question 6

Find all roots of the polynomial:

$$
p(x)=-4 x^{3}-28 x^{2}+36 x+252
$$

a) $\quad\{x=-7, x=-3\}$
b) $\quad\{x=-7, x=-4, x=-3\}$
c) $\quad\{x=0, x=3, x=7\}$
d) $\quad\{x=-7, x=3\}$
e) $\quad\{x=-7, x=-3, x=3\}$
f) None of the above.

Question 7

Which of the following graphs represents the given function?

$$
f(x)=-3 x^{2}+12
$$

Question 8

Perform the indicated operation and reduce completely.

$$
\frac{x}{x^{2}-4}-\frac{x}{x^{2}+2 x-8}-\frac{5}{x^{2}+6 x+8}
$$

In reduced form, the numerator is:
a) $5 x+2$
b) $11 x-10$
c) $\quad-3 x^{4}-2 x^{3}+52 x^{2}+8 x-160$
d) $-3 x+10$
e) $x^{2}+5 x+x^{3}-10$
f) None of the above.

Question 9

Simplify the following.

$$
\frac{\left(\frac{x^{2}-4 x+4}{x^{11} y^{13}}\right)}{\left(\frac{x-2}{x y^{7}}\right)}
$$

a) $\frac{x^{10} y^{20}}{x+2}$
b) $\frac{y^{6} x^{10}}{x-2}$
c) $\frac{x-2}{y^{6} x^{10}}$
d) $\frac{x-2}{x^{12} y^{6}}$
e) $\frac{x+2}{x^{10} y^{20}}$
f) None of the above.

Question 10

Given

$$
f(x)=(x+4)^{2}-1
$$

Simplify

$$
\frac{f(x+h)-f(x)}{h}, h \neq 0
$$

when $x=2$.
a) $-12+h$
b) $35+h$
c) $\quad \frac{h^{2}+8 h-20}{h}$
d) $12+h$
e) $\quad(h+4)^{2}-1$
f) None of the above.

Question 11

Given

$$
\begin{gathered}
f(x)=6 x^{2}-4 x \\
g(x)=x^{2}+x-30
\end{gathered}
$$

Find the domain of $\frac{f}{g}$.
a) $(-\infty,-6) \cup(5, \infty)$
b) $(-\infty,-5) \cup(-5,6) \cup(6, \infty)$
c) $(-\infty,-6) \cup(-6,5) \cup(5, \infty)$
d) $(-\infty, 2 / 3) \cup(2 / 3, \infty)$
e) $(-\infty,-6] \cup[5, \infty)$
f) None of the above.

Question 12

The line perpendicular to the line which contains the points $(5,-4)$ and $(3,2)$ has slope
a) -3
b) 3
c) $-1 / 4$
d) $1 / 3$
e) $\quad-1 / 3$
f) None of the above.

Question 13

Find the \boldsymbol{x}-coordinates of the points of intersection for the following functions below:

$$
\begin{aligned}
& f(x)=x^{2}+8 x+14 \\
& g(x)=-x^{2}-8 x-8
\end{aligned}
$$

a) $\quad\left\{4+\sqrt{5}, \frac{1}{2} \sqrt{5}-2\right\}$
b) $\quad\{-4-\sqrt{5}, \sqrt{5}-4\}$
c) $\quad\{-8-2 \sqrt{5},-8+2 \sqrt{5}\}$
d) $\{-10-\sqrt{5}, \sqrt{5}-10\}$
e) $\{4+\sqrt{5},-\sqrt{5}+4\}$
f) None of the above.

Question 14

Suppose that triangle $A B C$ has $m \angle C=90^{\circ}, A C=4$ and $A B=12$. Find $\cot (A)$ and $\csc (B)$.
a) $\quad\left[\cot (A)=4 \sqrt{10}, \csc (B)=\frac{1}{16} \sqrt{2}\right]$
b) $\quad\left[\cot (A)=\frac{3}{4} \sqrt{2}, \csc (B)=\frac{1}{3}\right]$
c) $\quad[\cot (A)=3, \csc (B)=2 \sqrt{2}]$
d) $\left[\cot (A)=\frac{1}{4} \sqrt{2}, \csc (B)=3\right]$
e) $\quad[\cot (A)=8 \sqrt{2}, \csc (B)=48 \sqrt{10}]$
f) None of the above.

Question 15

Given $\cot (\theta)=-1 / 3$ and $\pi / 2<\theta<\pi$, find $\sin (\theta)$.
a) $-\frac{3}{13} \sqrt{13}$
b) $\frac{3}{10} \sqrt{10}$
c) $\quad \frac{3}{13} \sqrt{13}$
d) $-\frac{3}{10} \sqrt{10}$
e) $\frac{1}{3} \sqrt{10}$
f) None of the above.

Question 16

Determine the angle x in the triangle given below with $\mathrm{AB}=11$ and $\mathrm{AC}=5$.

A B

a) $\quad x=\arccos \left(\frac{5}{146} \sqrt{146}\right)$
b) $\quad x=\arcsin \left(\frac{11}{146} \sqrt{146}\right)$
c) $\quad x=\arctan \left(\frac{11}{146} \sqrt{146}\right)$
d) $x=\arctan \left(\frac{5}{11}\right)$
e) $\quad x=\arcsin \left(\frac{11}{5}\right)$
f) None of the above.

Question 17

Put the equation in standard form for an ellipse.

$$
4 x^{2}-16 x+16 y^{2}+32 y=32
$$

a) $\quad \frac{1}{4}(x-2)^{2}+\frac{1}{16}(y+1)^{2}=1$
b) $\quad \frac{1}{16} x^{2}+\frac{1}{4} y^{2}=1$
c) $\quad \frac{1}{16}(x+1)^{2}+\frac{1}{4}(y-2)^{2}=1$
d) $\quad \frac{1}{16}(x-2)^{2}+\frac{1}{4}(y+1)^{2}=1$
e) $\quad \frac{1}{4} x^{2}+\frac{1}{16} y^{2}=1$
f) None of the above.

Question 18

Find the coordinates of the vertex for the following parabola.

$$
3 x^{2}-3 x+4-y=0
$$

a) $\left(\frac{1}{2}, 0\right)$
b) $\left(\frac{1}{2}, \frac{13}{4}\right)$
c) $\left(\frac{1}{2}, 4\right)$
d) $(0,4)$
e) $(-3,40)$
f) None of the above.

Question 19

Solve for $\boldsymbol{\theta}$ given

$$
2 \cos \theta+1=0
$$

and

$$
0 \leq \theta \leq \pi
$$

a) $\frac{2}{3} \pi$
b) no solution on the given interval
c) $\frac{1}{3} \pi$
d) $\frac{5}{6} \pi$
e) $\frac{4}{3} \pi$
f) None of the above.

Question 20

Find $f(1)$ given

$$
f(x)=\left\{\begin{array}{cc}
-2 x-4 & x \leq-3 \\
1 & -3<x \text { and } x<0 \\
-3 x^{2}-2 & 0 \leq x
\end{array}\right.
$$

a) 6
b) $\quad \mathbf{- 1 0}$
c) 1
d) -6
e) -5
f) None of the above.

Question 21

Simplify

$$
\left(\frac{1}{x}-1\right)\left(-4-\frac{4}{x^{2}}\right)
$$

a) $\quad-\frac{4}{x}+\frac{4}{x^{3}}-4+\frac{4}{x^{2}}$
b) $\quad-\frac{4}{x}+\frac{4}{x^{3}}+4-\frac{4}{x^{2}}$
c) $-4 x+\frac{4}{x}+4-\frac{4}{x^{2}}$
d) $-4 x-\frac{4}{x}+4+\frac{4}{x^{2}}$
e) $-\frac{4}{x^{2}}+8-4 x^{2}$
f) None of the above.

Question 22

A circle contains the four vertices of a square with side of length 13 . The area of the region outside the square and inside the circle is
a) $\quad 169 \sqrt{2} \pi-169$
b) $\frac{169}{2} \pi-169$
c) $\frac{169}{2}-\frac{169}{4} \pi$
d) $169 \pi-\frac{169}{2}$
e) $\frac{169}{4} \pi-\frac{169}{2}$
f) None of the above.

Question 23

If $x=3$, find the smallest value of y which satisfies

$$
y^{2} x+3 y x^{2}+24=0
$$

a) 1
b) -8
c) $\quad 2$
d) -1
e) 8
f) None of the above.

Question 24

The inequality $(x+3)(x+2)>\mathbf{0}$ is equivalent to
a) $\quad\{3<x$ or $x<2\}$
b) $\quad\{x<-3$ or $-2<x\}$
c) $\quad-3<x$
d) $x<-2$
e) $\quad\{-3<x$ and $x<-2\}$
f) None of the above.

Question 25

Solve the system of equations for \boldsymbol{x} and \boldsymbol{y}.

$$
\left[\begin{array}{c}
-3 x-2 y=3 \\
2 x-3 y=5
\end{array}\right]
$$

a) $\left\{x=-\frac{1}{13}, y=-\frac{21}{13}\right\}$
b) $\left\{x=\frac{1}{13}, y=-\frac{21}{13}\right\}$
c) $\left\{x=-\frac{1}{13}, y=\frac{21}{13}\right\}$
d) $\left\{x=-\frac{21}{13}, y=\frac{1}{13}\right\}$
e) The system does not have a solution.
f) None of the above.

