Make Up	
Test 1	

The graph of the function

$$f(x) = \frac{x-3}{x^2 + 7x + 12}$$

has a horizontal asymptote. If the graph crosses this asymptote, then give the *x*-coordinate of the intersection. Otherwise, state that the graph does not cross the asymptote.

- a)
 x = 4

 b)
 x = 0

 c)
 x = 3

 d)
 x = 6
- e) The graph does not cross the asymptote.
- f) None of the above.

Question 2

Simplify

$$1 - \cos^2 x + (\sin^2 x) (\cot^2 x)$$

- a) $\csc(x)$
- **b**) $\cos x$
- **c**) -1

e)
$$\sin(x) \cos(x)$$

Question 3

Find the coordinates of the *x*-intercept(s) for

$$f(x) = \frac{x^2 + 3x - 18}{x^2 - 8x + 15}$$

a) (0,5) and (0,-6)

- c) (3,0)
- d) (-6,0)

e) (0,3) and (0,-6)

f) None of the above.

Question 4

Find the linear function f with both (-7, -6) and (-4, -2) on the graph of f^{-1} .

a)
$$f(x) = \frac{3}{2}x + 2$$

b) $f(x) = \frac{5}{4}x + \frac{1}{2}$

c)
$$f(x) = \frac{3}{4}x - \frac{5}{2}$$

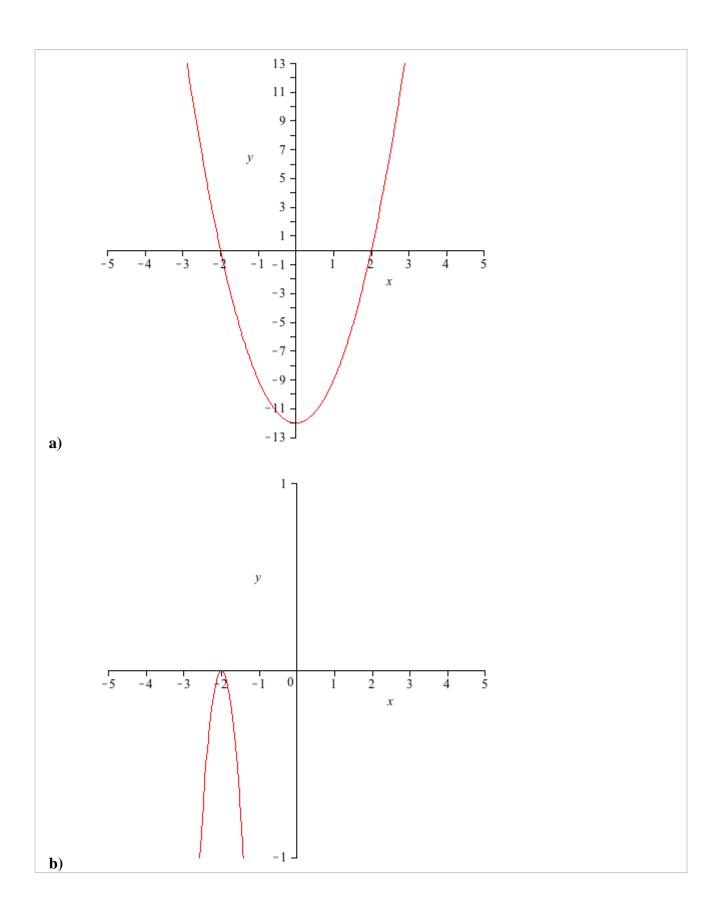
d) $f(x) = \frac{1}{2}x - 4$
e) $f(x) = x - 1$
f) None of the above.

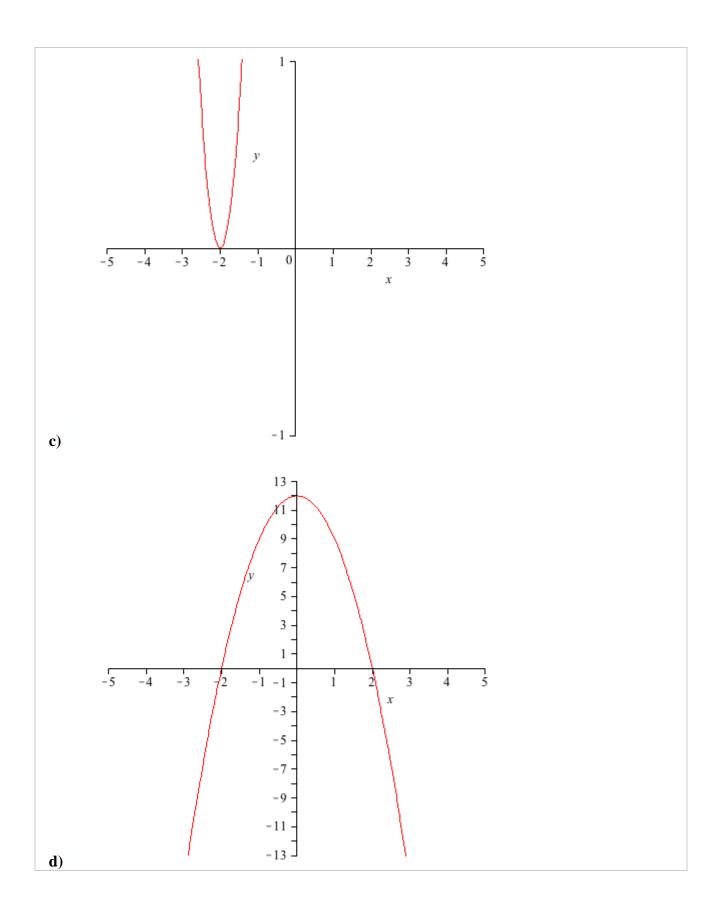
Que	stion 5
Give	'n
	$[h(x) = x^4 - 2, g(x) = x^3 - 1, f(x) = x^2 - 4]$
Find	
	f(g(1) + h(1))
a)	-2
b)	-65
c)	-3
d)	-4
	5
e)	5
f)	None of the above.

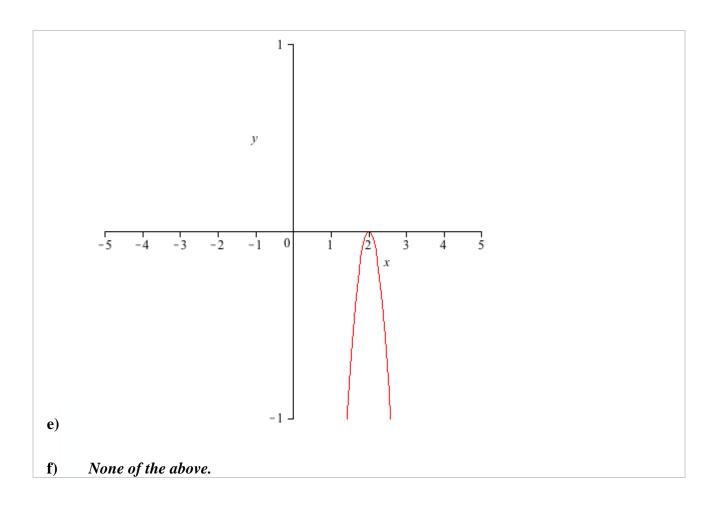
Find all roots of the polynomial:

 $p(x) = -4 x^3 - 28 x^2 + 36 x + 252$

a) $\{x = -7, x = -3\}$


b)
$$\{x = -7, x = -4, x = -3\}$$


- c) $\{x=0, x=3, x=7\}$
- **d**) $\{x = -7, x = 3\}$
- e) $\{x = -7, x = -3, x = 3\}$
- f) None of the above.


Question 7

Which of the following graphs represents the given function?

$$f(x) = -3x^2 + 12$$

Perform the indicated operation and reduce completely.

$$\frac{x}{x^2 - 4} - \frac{x}{x^2 + 2x - 8} - \frac{5}{x^2 + 6x + 8}$$

In reduced form, the numerator is:

a)
$$5x+2$$

b) 11 *x* - 10

c)
$$-3x^4 - 2x^3 + 52x^2 + 8x - 160$$

d)
$$-3x + 10$$

e)
$$x^2 + 5x + x^3 - 10$$

Question 9

Simplify the following.

$$\frac{\left(\frac{x^2-4x+4}{x^{11}y^{13}}\right)}{\left(\frac{x-2}{xy^7}\right)}$$

a)	$\frac{x^{10}y^{20}}{x+2}$
b)	$\frac{y^6 x^{10}}{x-2}$
c)	$\frac{x-2}{\frac{6}{y}x^{10}}$
d)	$\frac{x-2}{x^{12}y^6}$
e)	$\frac{x+2}{x^{10}y^{20}}$
f)	None of the above.

Question 10		
Given		
	$f(x) = \left(x+4\right)^2 - 1$	
Simplify		

	$\frac{f(x+h) - f(x)}{h}, h \neq 0$
whe	$\mathbf{n} x = 2.$
a)	-12 + h
	35 + h
c)	$\frac{h^2 + 8h - 20}{h}$
d)	12 + h
e)	$(h+4)^2 - 1$
f)	None of the above.

Que	ion 11
Give	
	$f(x) = 6x^2 - 4x$
	$g(x) = x^2 + x - 30$
Find	the domain of $\frac{f}{g}$.
a)	(-∞, -6)U(5, ∞)
	(-∞, -6)U(5, ∞) (-∞, -5)U(-5, 6)U(6, ∞)
b)	

e) ((-∞, -6]	∪[5, ∞)
/	· /]	• / /

Question 12

The line perpendicular to the line which contains the points (5, -4) and (3, 2) has slopea)-3b)3c) $-\frac{1}{4}$ d) $\frac{1}{3}$ e) $-\frac{1}{3}$ f)None of the above.

Question 13

Find the *x*-coordinates of the points of intersection for the following functions below:

$$f(x) = x^{2} + 8x + 14$$
$$g(x) = -x^{2} - 8x - 8$$

a)
$$\left\{4 + \sqrt{5}, \frac{1}{2}\sqrt{5} - 2\right\}$$

b)
$$\{-4-\sqrt{5},\sqrt{5}-4\}$$

c)
$$\{-8-2\sqrt{5}, -8+2\sqrt{5}\}$$

d)
$$\{-10 - \sqrt{5}, \sqrt{5} - 10\}$$

e) $\{4 + \sqrt{5}, -\sqrt{5} + 4\}$

Question 14

Suppose that triangle ABC has $m \angle C = 90^{\circ}$, AC = 4 and AB = 12. Find cot(A) and csc(B).

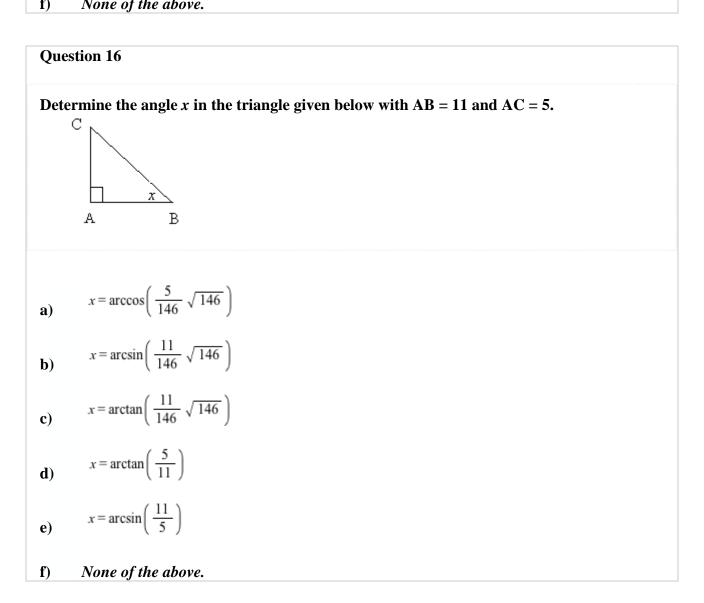
a)
$$\left[\cot(A) = 4\sqrt{10}, \csc(B) = \frac{1}{16}\sqrt{2}\right]$$

b)
$$\left[\cot(A) = \frac{3}{4}\sqrt{2}, \csc(B) = \frac{1}{3}\right]$$

c)
$$[\cot(A) = 3, \csc(B) = 2\sqrt{2}]$$

d)
$$\left[\cot(A) = \frac{1}{4}\sqrt{2}, \csc(B) = 3\right]$$

e)
$$[\cot(A) = 8\sqrt{2}, \csc(B) = 48\sqrt{10}]$$


f) None of the above.

Question 15

Given
$$\cot(\theta) = -\frac{1}{3}$$
 and $\frac{\pi}{2} < \theta < \pi$, find $\sin(\theta)$.

a)
$$-\frac{3}{13}\sqrt{13}$$

b) $\frac{3}{10}\sqrt{10}$
c) $\frac{3}{13}\sqrt{13}$

d)
$$-\frac{3}{10}\sqrt{10}$$

e) $\frac{1}{3}\sqrt{10}$

Put the equation in standard form for an ellipse.

$$4x^2 - 16x + 16y^2 + 32y = 32$$

a)
$$\frac{1}{4}(x-2)^2 + \frac{1}{16}(y+1)^2 = 1$$

b) $\frac{1}{16}x^2 + \frac{1}{4}y^2 = 1$
c) $\frac{1}{16}(x+1)^2 + \frac{1}{4}(y-2)^2 = 1$
d) $\frac{1}{16}(x-2)^2 + \frac{1}{4}(y+1)^2 = 1$
e) $\frac{1}{4}x^2 + \frac{1}{16}y^2 = 1$
f) None of the above.

Find the coordinates of the vertex for the following parabola.

$$3x^2 - 3x + 4 - y = 0$$

- a) $\left(\frac{1}{2}, 0\right)$ b) $\left(\frac{1}{2}, \frac{13}{4}\right)$
- c) $\left(\frac{1}{2},4\right)$
- **d**) (0, 4)

e) (-3, 40)

Ques	tion 19		
Solve	e for θ given		
		$2\cos\theta + 1 = 0$	
and			
		$0 \leq \theta \leq \pi$	
	2		
a)	$\frac{2}{3}\pi$		
b)	no solution on the given interval		
c)	$\frac{1}{3}\pi$		
d)	$\frac{5}{6}\pi$		
e)	$\frac{5}{6}\pi$ $\frac{4}{3}\pi$		
f)	None of the above.		

Question 20

Find *f*(1) given

$$f(x) = \begin{cases} -2x - 4 & x \le -3 \\ 1 & -3 < x \text{ and } x < 0 \\ -3x^2 - 2 & 0 \le x \end{cases}$$

a)	6	
b)	-10	
c)	1	
d)	-6	
e)	-5	
f)	None of the above.	

Simplify

$$\left(\frac{1}{x}-1\right)\left(-4-\frac{4}{x^2}\right)$$

a)
$$-\frac{4}{x} + \frac{4}{x^3} - 4 + \frac{4}{x^2}$$

b) $-\frac{4}{x} + \frac{4}{x^3} + 4 - \frac{4}{x^2}$

c)
$$-4x + \frac{4}{x} + 4 - \frac{4}{x^2}$$

d)
$$-4x - \frac{4}{x} + 4 + \frac{4}{x^2}$$

e)
$$-\frac{4}{x^2} + 8 - 4x^2$$

f) None of the above.

Question 22

A circle contains the four vertices of a square with side of length 13. The area of the region outside the square and inside the circle is

a)
$$169\sqrt{2} \pi - 169$$

b) $\frac{169}{2}\pi - 169$
c) $\frac{169}{2}\pi - 169$
d) $169\pi - \frac{169}{2}$
e) $\frac{169}{4}\pi - \frac{169}{2}$
f) None of the above.

Question 23

If x	= 3, find the smallest value of y which satisfies
	$y^2 x + 3 y x^2 + 24 = 0$
a)	1
b)	- 8
c)	2
d)	-1
e)	8
f)	None of the above.

The inequality (x+3) (x+2) > 0 is equivalent to

a)
$$\{3 < x \text{ or } x < 2\}$$

- **b**) $\{x < -3 \text{ or } -2 < x\}$
- **c**) -3 < x
- **d**) x < -2
- e) $\{-3 < x \text{ and } x < -2\}$
- f) None of the above.

Question 25

Solve the system of equations for *x* and *y*.

$$\begin{bmatrix} -3 x - 2 y = 3 \\ 2 x - 3 y = 5 \end{bmatrix}$$

a)
$$\left\{x = -\frac{1}{13}, y = -\frac{21}{13}\right\}$$

b) $\left\{x = \frac{1}{13}, y = -\frac{21}{13}\right\}$
c) $\left\{x = -\frac{1}{13}, y = \frac{21}{13}\right\}$
d) $\left\{x = -\frac{21}{13}, y = \frac{1}{13}\right\}$
e) The system does not have a solution.