Solutions to 18 of the problems in sections 3.9, 4.1, 4.2 and 4.3.

3.9 \#7: Use differentials to estimate the value of the indicated expression. Then compare your estimate with the result given by a calculator.
$(33)^{3 / 5}$.
Note: We know $(32)^{3 / 5}=\left[(32)^{1 / 5}\right]^{3}=2^{3}=8$.
Set $f(x)=x^{3 / 5}$. From differential approximation (the same thing as tangent line approximation)

$$
\begin{aligned}
& f(33) \approx f(32)+f^{\prime}(32) \cdot(33-32) \\
& f^{\prime}(x)=\frac{3}{5} x^{-2 / 5} \\
& f^{\prime}(32)=\frac{3}{5}(32)^{-2 / 5} \\
&=\frac{3}{5} 2^{-2}=\frac{3}{20}=\frac{163}{20} \cdot(1)
\end{aligned} \begin{aligned}
& \text { Note: } \\
& f(32)=8 \\
& \text { from } \\
& \text { above }
\end{aligned}
$$

3.9 \#11: Use a differential to estimate the value of the expression. (Remember to convert to radian measure.) Compare your estimate with the result given by a calculator.
$\tan 28^{\circ}$.
28° is close to 30°; and we know $\tan \left(30^{\circ}\right)=\sqrt{3}$

Convent to radians: $30^{\circ}=\pi / 6$

$$
28^{\circ}=28 \cdot \frac{\pi}{180}=\frac{7 \pi}{45}
$$

Set $f(x)=\tan (x)$

$$
\begin{aligned}
& f^{\prime}(x)=\sec ^{2}(x) \\
& f^{\prime}(\pi / 6)=\left(\frac{2}{\sqrt{3}}\right)^{2} \\
&=\frac{4}{3}
\end{aligned}=\sqrt{3}\left(\frac{28 \pi-30 \pi}{180}\right)
$$

3.9 \#17: A box is to be constructed in the form of a cube to hold $1000<x=10 \mathrm{ft}$ cubic feet. Use a differential to estimate how accurately the inner edge must be made so that the volume will be correct to within 3 cubic feet. $\rightarrow|d V|$ no more than

$$
d v=3 x^{2} \cdot \underbrace{h}
$$ $3 \mathrm{ft}^{3}$

change in edge length

$$
\begin{gathered}
-3 \leq 3 \cdot 10^{2} \cdot h \leq 3 \\
-\frac{1}{100} \leq h \leq \frac{1}{100}
\end{gathered}
$$

\therefore inner edge needs to be within $\frac{1}{100} \mathrm{ft}$ of 10 ft .
3.9 \#31: In Exercises 27-32, use the Newton-Raphson method to estimate a root of the equation $f(x)=0$ starting at the indicated value of x :(a) Express x_{n+1} in terms of x_{n}. (b) Give x_{4} rounded off to five decimal places and evaluate f at that approximation.

$$
\begin{aligned}
& f(x)=\cos x-x ; \quad x_{1}=1 . \\
& x_{n+1}=x_{n}-f\left(x_{n}\right) \\
& f^{\prime}\left(x_{n}\right) \\
& =x_{n}-\frac{\cos \left(x_{n}\right)-x_{n}}{-\sin \left(x_{n}\right)-1} \\
& =x_{n}+\frac{\cos \left(x_{n}\right)-x_{n}}{\sin \left(x_{n}\right)+1} \\
& x_{2}=1+\frac{\cos (1)-1}{\sin (1)+1} \\
& x_{2}:=0.7503638679 \\
& x_{3}=x_{2}+\frac{\cos \left(x_{2}\right)-x_{2}}{\sin \left(x_{2}\right)+1} \\
& x_{3}:=0.7391128909 \\
& x_{4}=x_{3}+\frac{\cos \left(x_{3}\right)-x_{3}}{\sin \left(x_{3}\right)+1} \\
& x_{4}:=0.7390851334
\end{aligned}
$$

4.1 \#2: Show that f satisfies the conditions of Rolle's theorem on the indicated interval and find all numbers c on the interval for which $f^{\prime}(c)=0$.

$$
f(x)=x^{4}-2 x^{2}-8 ; \quad[-2,2] .
$$

f is a polynomial, so it is both continuous and differentiable on the given interval.

Rolle's theorem is the mean value tharem in the special case when $f(a)=f(b)$. Consequently,

$$
\begin{gathered}
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=0 \\
f(2)=16-2 \cdot 4-8=0 \\
f(-2)=16-2 \cdot 4-8=0
\end{gathered}
$$

Find c between -2 and 2 So that $f^{\prime}(c)=0$.

$$
\begin{array}{r}
f^{\prime}(x)=4 x^{3}-4 x \\
\therefore \quad f^{\prime}(c)=0 \text { if } 4 c^{3}-4 c=0 \\
4 c\left(c^{2}-1\right)=0 \\
c=0,1,-1
\end{array}
$$

All of these values are between -2 and 2 , and they give all values where

$$
f^{\prime}(c)=0 \text {. }
$$

4.1 \#7: Verify that f satisfies the conditions of the mean-value theorem on the indicated interval and find all numbers c that satisfy the conclusion of the theorem.

$$
f(x)=x^{3} ; \quad[1,3] .
$$

f is a polynomial, so it is both continuous and differentiable on the given interval.

Find C between 1 and 3 so that

$$
f^{\prime}(x)=3 x^{2}
$$

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(3)-f(1)}{3-1} \\
& 3 c^{2}=\frac{27-1}{2}=13 \\
& c^{2}=\frac{13}{3} \Rightarrow c= \pm \sqrt{\frac{13}{3}} \\
& \text { we omit }-\sqrt{13 / 3} \text { since it } \\
& \text { lie. between }
\end{aligned}
$$ does not lie between 1 and 3.

$\therefore C=\sqrt{13 / 3}$
4.1 \#9: Verify that f satisfies the conditions of the mean-value theorem on the indicated interval and find all numbers c that satisfy the conclusion of the theorem.

$$
f(x)=\sqrt{1-x^{2}} ; \quad[0,1] .
$$

f is continuous on [0,1] and differentiable on (0,1). In fact, $x=0$ is the only place where f is not differentiable.
Find C between 0 and 1 so that

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(1)-f(0)}{1-0} \\
& f^{\prime}(x)=\frac{-x}{\sqrt{1-x^{2}}} \\
& \frac{-c}{\sqrt{1-c^{2}}}=\frac{0-1}{1}=-1 \\
& \sqrt{1-c^{2}}=c \\
& 1-c^{2}=c^{2} \\
& 2 c^{2}=1 \Rightarrow C= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

We omit $c=-\frac{1}{\sqrt{2}}$ since it does not lie btw 0 and 1 .

$$
\therefore \quad C=\frac{1}{\sqrt{2}} \text { or } \quad \frac{\sqrt{2}}{2}
$$

4.2 \#6: Find the intervals on which f increases and the intervals on which f decreases.

$$
f(x)=x(x+1)(x+2)
$$

$$
\begin{aligned}
& \text { polynomial. } \\
& \begin{array}{l}
\rightarrow=x^{3}+3 x^{2}+2 x \\
f^{\prime}(x)=3 x^{2}+6 x+2<\text { continuous } \text { for } x . \\
-6 \pm \sqrt{36-4-3 \cdot 2}
\end{array} \\
& \text { domain: All } x \text {-) } \\
& \text { wiywhere } f^{\prime}(x)=0 \\
& \Leftrightarrow x=\frac{-6 \pm \sqrt{36-4 \cdot 3 \cdot 2}}{6} \\
& =\frac{-6 \pm \sqrt{12}}{6} \\
& =-1 \pm \frac{\sqrt{3}}{3}
\end{aligned}
$$

${ }^{2}$
sion

$$
\begin{aligned}
& f^{\prime}(-2)=12-12+2>0 \\
& f^{\prime}(-1)=3-6+2<0 \\
& f^{\prime}(0)=2>0
\end{aligned}
$$

Intervals of increase: $\left(-\infty,-1-\frac{\sqrt{3}}{3}\right]$ and

$$
\left[-1+\frac{\sqrt{3}}{3}, \infty\right)
$$

Intervals of decrease:

$$
\left[-1-\frac{\sqrt{3}}{3},-1+\frac{\sqrt{3}}{3}\right]
$$

4.2 \#10: Find the intervals on which f increases and the intervals on which f decreases.

Note: Denominator is always positive.

$f^{\prime}(-2)<0$
$f^{\prime}(0)>0$
$f^{\prime}(2)<0$

$$
\begin{array}{rr}
f^{\prime}(x)=0 & \text { iff } \quad 1-x^{2}=0 \\
x & = \pm 1 .
\end{array}
$$

Intervals of increase: $[-1,1]$
Intervals of decrease: $(-\infty,-1]$ and $[1, \infty)$.
4.2 \#16: Find the intervals on which f increases and the intervals on which f decreases.

$$
f(x)=x^{2}+\frac{16}{x^{2}}=x^{2}+16 x^{-2}
$$

Domain: All x except

$$
\begin{gathered}
x=0 \\
f^{\prime}(x)=2 x-32 x^{-3}
\end{gathered}
$$

(defined and continuous at all x except 0)

$$
\begin{gathered}
f^{\prime}(x)=0 \quad \Leftrightarrow \quad 2 x^{4}-32=0 \\
x= \pm 2 .
\end{gathered}
$$

$$
\begin{array}{ll}
f^{\prime}(-3)<0 & f^{\prime}(1)<0 \\
f^{\prime}(-1)>0 & f^{\prime}(3)>0
\end{array}
$$

Intervals of increase: $[-2,0)$ and

$$
[2, \infty)
$$

Intervals of decrease: $(-\infty,-2]$ and

$$
(0,2]
$$

4.2\#23: Find the intervals on which f increases and the intervals on which f decreases.

$$
f(x)=\sqrt{3} x-\cos 2 x, \quad 0 \leq x \leq \pi
$$

Continuous
We are only interested in Unis ciwerval.

$$
\begin{aligned}
& f^{\prime}(x)=\sqrt{3}+2 \sin (2 x) . \\
& \text { Note: } 0 \leq x \leq \pi \longmapsto 0 \leq 2 x \leq 2 \pi
\end{aligned}
$$

$$
\begin{array}{r}
f^{\prime}(x)=0 \Longleftrightarrow 2 x=\frac{\sqrt{3}}{2}=\sin (2 x) \\
\therefore \quad \text { or } \\
2 x=\frac{5 \pi}{3} \\
\text { ie } x=\frac{2 \pi}{3} \text { or } x=\frac{5 \pi}{6}
\end{array}
$$

slope hart'

$$
\begin{aligned}
& f^{\prime}(\pi / 2)=\sqrt{3}>0 \\
& f^{\prime}(3 \pi / 4)=\sqrt{3}-2<0 \\
& f^{\prime}(\pi)=3>0
\end{aligned}
$$

Intervals of increase: $\left[0, \frac{2 \pi}{3}\right]$ and

$$
\left[\frac{5 \pi}{6}, \pi\right]
$$

Intervals of decrease: $\left[\frac{2 \pi}{3}, \frac{5 \pi}{6}\right]$.
4.2 \#27: find f given the following information.

$$
f^{\prime}(x)=5 x^{4}+4 x^{3}+3 x^{2}+2 x+1 \text { for all } x, f(0)=5
$$

Note: $\frac{d}{d x} x^{5}=5 x^{4}, \frac{d}{d x} x^{4}=4 x^{3}, \frac{d}{d x} x^{3}=3 x^{2}$

$$
\frac{d}{d x} x^{2}=2 x, \frac{d}{d x} x=1
$$

$$
\therefore \quad f(x)=x^{5}+x^{4}+x^{3}+x^{2}+x+c
$$

Since $f(0)=5$

$$
\begin{aligned}
& 5=0^{5}+0^{4}+0^{3}+0^{2}+0+c \\
& \Rightarrow c=5 \\
& f(x)=x^{5}+x^{4}+x^{3}+x^{2}+x+5
\end{aligned}
$$

$$
f(x)=x^{2}-\frac{3}{x^{2}}=x^{2}-3 x^{-2}
$$

Critical values are values in
the domain where

$$
f^{\prime}(x)=0 \text { or } f^{\prime}(x) \text { d.n.e. }
$$

Domain: $6411 x$ except $x=0$.

$$
f^{\prime}(x)=2 x+6 x^{-3}=2 x+\frac{6}{x^{3}}
$$

$f^{\prime}(x)$ exists at all x except $x=0$, and $x=0$ is not in the domain of f.
\therefore Critical values will only occur where $f^{\prime}(x)=0$

$$
\begin{gathered}
f^{\prime}(x)=0 \text { iff } 2 x+\frac{6}{x^{3}}=0 \\
2 x^{4}+6=0 \\
\text { No solutions: }
\end{gathered}
$$

\therefore no critical values.
\therefore no local extreme values
4.3 \#5: Find the critical numbers of f and the local extreme values.

$$
f(x)=x^{2}(1-x)=\boldsymbol{x}^{2}-\mathbf{x}^{3}
$$

polynomial.

$$
f^{\prime}(x)=2 x-3 x^{2}
$$

exists everywhere.
\therefore critical values occur where $f^{\prime}(x)=0$

$$
\begin{gathered}
2 x-3 x^{2}=0 \\
x(2-3 x)=0 \\
x=0, \quad x=\frac{2}{3} \\
f^{\prime \prime}(x)=2-6 x
\end{gathered}
$$

Using the $2^{\text {nd }}$ deriv. test:
$f^{\prime \prime}(0)=2>0 \Rightarrow x=0$ is place where f has a local
$f^{\prime \prime}\left(\frac{2}{3}\right)=2-4<0 \Rightarrow x=\frac{2}{3}$ is a place where f has a local max.

$$
\begin{aligned}
& f(0)=0 \\
& f(2 / 3)=\frac{4}{9}-\frac{8}{27}=\frac{4}{27}
\end{aligned}
$$

4.3 \#9: Find the critical numbers of f and the local extreme values.

$$
f(x)=\frac{2}{x(x+1)} \leftarrow \text { rational }
$$

function.
Domain: All x except

$$
\begin{aligned}
& x=0, x=-1 \\
& f^{\prime}(x)=\frac{\left(x^{2}+1\right) \cdot 0-2(2 x+1)}{\left(x^{2}+x\right)^{2}} \\
&=\frac{-4 x-2}{\left(x^{2}+x\right)^{2}}
\end{aligned}
$$

$f^{\prime}(x)$ exists at all x except $x=0$ and $x=-1$, and these are not in the domain.
\therefore C.V.A only where $f^{\prime}(x)=0$.

$$
-4 x-2=0 \Leftrightarrow x=-\frac{1}{2}
$$

$$
f^{\prime}\left(-\frac{1}{4}\right)<0
$$

$f^{\prime}\left(-\frac{3}{4}\right)>0$ has a local max at $x=-\frac{1}{2}$.

$$
f\left(-\frac{1}{2}\right)=\frac{2}{-\frac{1}{2}\left(-\frac{1}{2}+1\right)}=-8
$$

$$
f(x)=(1-2 x)(x-1)^{3} .
$$

polynomial

$$
\begin{aligned}
f^{\prime}(x) & =(1-2 x) \cdot 3(x-1)^{2}+(x-1)^{3} \cdot(-2) \\
& =[3(1-2 x)-2(x-1)](x-1)^{2} \\
& =(5-8 x)(x-1)^{2}
\end{aligned}
$$

$f^{\prime}(x)$ exists for all x so critical values only occur at glaces where $f^{\prime}(x)=0$.

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& f^{\prime}(x)=0 \quad \text { iff } \quad x=\frac{5}{8} \text { or } x=1 .
\end{aligned}
$$

$\operatorname{sop}_{102}^{2} x$

$$
f^{\prime}(0)=5>0
$$

Shape:
$f^{\prime}(3 / 4)<0$
$f^{\prime}(2)<0$ has a local max at $x=5 / 8$
$x=1$ gives neither a local max nor local min.

$$
f(5 / 8)=-\frac{1}{4}\left(-\frac{3}{8}\right)^{3}=\frac{27}{2048}
$$

4.3 \#17: Find the critical numbers of f and the local extreme values.

$$
f(x)=x^{2} \sqrt[3]{2+x}=x^{2}(2+x)^{1 / 3}
$$

Domain: all x.

$$
f^{\prime}(x)=2 x(2+x)^{\text {Domain: all } x}+x^{2} \cdot \frac{1}{3}(2+x)^{-2 / 3}
$$

exists at all x except

$$
x=-2
$$

\therefore C.V. at $x=-2$.

$$
f^{\prime}(x)=0 \quad \frac{6 x(2+x)+x^{2}}{\left.(2+x)^{2 / 3}\right)}=0
$$

$$
\begin{aligned}
& 12 x+7 x^{2}=0 \\
& x(12+7 x)=0 \\
& x=0, x=-\frac{12}{7}
\end{aligned}
$$

excel at

$$
\therefore \quad \text { c.v. } \quad x=-2, x=0, x=-\frac{12}{7} \text {. }
$$

$$
\begin{gathered}
x \\
f^{\prime}(-3)>0 \\
f^{\prime}\left(-\frac{13}{7}\right)>0 \\
f^{\prime}\left(-\frac{2}{2}\right)<0
\end{gathered}
$$

$$
f^{\prime}(1)>0
$$

$\therefore x=-2$ is neither a local max nor local min.
$x=\frac{-12}{7}$ is a place where f has a local max
$x=0$ is a ploce a local min.

$$
f\left(-\frac{12}{7}\right)=\underset{\substack{x \\ \text { dou } \\ i x}}{ } \quad f(0)=\operatorname{sit}_{\text {dou }}^{x}
$$

f diff except at $\left[\therefore \quad \begin{array}{c}c . v \\ \text { at }\end{array}\right.$

$$
\left.\begin{array}{rl}
& f(x)
\end{array}\right)=\left\{\begin{array}{cc}
-(x-3)-(2 x+1), & x<-\frac{1}{2} \\
-(x-3)+(2 x+1), & -\frac{1}{2}<x<3 \\
x-3+2 x+1, & x>3
\end{array}\right\} \begin{aligned}
& x=3,-\frac{1}{2} . \\
&=\left\{\begin{array}{cc}
2-3 x, & x<-\frac{1}{2} \\
4+x, & -\frac{1}{2}<x<3 \\
-2+3 x, & x>3
\end{array}\right. \\
& \therefore f^{\prime}(x)=\left\{\begin{array}{cc}
-3, & x<-\frac{1}{2} \\
1, & -\frac{1}{2}<x<3 \\
3, & x>3
\end{array}\right. \\
&
\end{aligned}
$$

\therefore only Civ. are at $x=-\frac{1}{2}$
and $x=3$

Sha ie:
f has a local min at $x=-\frac{1}{2}$

$$
f\left(-\frac{1}{2}\right)=\frac{1}{2}
$$

