
Test 2 MaterialTest 2 Material
• Evaluating limits of basic • Derivative of trigonometric g

functions, rational functions, 
and piecewise defined 
functions.

g
functions.

• Chain rule.
• Tangent and normal lines

• Evaluating the variations on 
sin(u)/u type limits.

• Continuity

• Tangent and normal lines.
• Implicit differentiation.
• Related rates.• Continuity.

• Computing a derivative by 
using the definition of 
d i ti

Test 2 will NOT have material 
from section 2 2 the portionderivative.

• Basic derivatives using the 
sum, product and quotient 

from section 2.2, the portion 
of section 2.5 covering the 
pinching theorem, section 
2 6 or the falling objectp q

rules. 2.6, or the falling object 
problems from section 3.4.



Good sources of practice problems:Good sources of practice problems:

• Examples from classExamples from class.
• Popper questions from class.

H k bl• Homework problems.
• EMCF problems
• Online quiz problems.
• The list of problems in the following slidesThe list of problems in the following slides.
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Use the definition of derivative to find the 
d i ti f ( ) 2 3 1f 2derivative of ( ) 2 3 1.

Use the definition of derivative to find the
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Give a formula for  in terms of  and ,  given dy x y
dx
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A 5 foot tall girl is walking towards a 21 foot lamp post 
t th t f 3 f t d H f t i th ti fat the rate of 3 feet per second. How fast is the tip of

her shadow moving when she is 8 feet from the lamp 
post?



A 12 foot board is leaning against a vertical wall. If the 
b tt f th b d lid f th ll t thbottom of the board slides away from the wall at the 
rate of 2 feet per second, how fast is the area of the 
triangle formed by the board, the floor and the wall g y
changing at the instant when the bottom of the board 
is 6 feet from the wall?



A pile of trash in the shape of a cube is being 
compacted into a smaller cube Suppose thecompacted into a smaller cube. Suppose the 
volume is always a cube and the volume is 
decreasing at the rate of 2 cubic meters per minute. 
Find the rate of change of an edge of the cube at 
the instant that the volume is exactly 27 cubic 
meters.



A pile of trash in the shape of a cube is being 
compacted into a smaller cube Suppose thecompacted into a smaller cube. Suppose the 
volume is always a cube and the volume is 
decreasing at the rate of 2 cubic meters per minute. 
Find the rate of change of surface area of the cube 
at the instant that the volume is exactly 27 cubic 
meters.



A spherical snowball is melting in such a way that it 
always retains its spherical shape The surface areaalways retains its spherical shape. The surface area 
of the snowball is decreasing at the rate of 2 cubic 
centimeters per second. Find the rate of change of 

2the volume when the surface area is 24 cm2.


