$$
f^{\prime}(x)=r(x)
$$

Math 1431
Test 4 - Practice Problems
$g^{\prime}(x)=s(x)$

1. Suppose $f(x)$ is an anti-derivative of $r(x)$, and $g(x)$ is an anti-derivative of $s(x)$. We are given the data in the table about the functions f, g, r and s.

x	1	2	3	4
$f(x)$	3	2	1	4
$r(x)$	1	4	2	3
$g(x)$	2	1	4	3
$s(x)$	4	2	3	1

$$
\begin{aligned}
& f(3)=1 \\
& g(3)=4 \\
& f(1)=3 \\
& g(1)=2
\end{aligned}
$$

$$
\text { a) } \begin{aligned}
\int_{1}^{3}(3 r(x)-2 s(x)) d x & =\int_{1}^{3}\left(3 f^{\prime}(x)-2 g^{\prime}(x)\right) d x \\
& =\left.(3 f(x)-2 g(x))\right|_{1} ^{3} \\
& =(3 \cdot f(3)-2 \cdot g(3))-(3 f(1)-2 g(1)) \\
& =(3-8)-(9-4)=-10 .
\end{aligned}
$$

$$
g(4)=3
$$

$$
g(1)=2
$$

b) Give the average value of $s(x)$ on the interval $[1,4]$.

$$
\rightarrow=\frac{1}{4-1} \int_{1}^{4} s(x) d x=\left.\frac{1}{3} g(x)\right|_{1} ^{4}
$$

recall: $g^{\prime}(x)=s(x)$

$$
\begin{aligned}
=\frac{1}{3}(g(4)-g(1)) & =\frac{1}{3}(3-2) \\
& =\frac{1}{3} .
\end{aligned}
$$

Average value of $s(x)$ on $[1,4]$.
2. Suppose $F^{\prime}(x)=x^{2}-\frac{2}{\sqrt{x}}+1, F^{\prime}(1)=-3$ and $F(1)=2$. Find $F(x)$. $\frac{2}{\sqrt{x}}=2 x^{-\frac{1}{2}}$

$$
\begin{aligned}
& F^{\prime}(x)=\frac{1}{3} x^{3}-2 \cdot 2 x^{1 / 2}+x+c_{1} \Rightarrow-3=\frac{1}{3}-4+1+c_{1} \\
& \Rightarrow c_{1}=-\frac{1}{3} \Rightarrow F^{\prime}(x)=\frac{1}{3} x^{3}-4 x^{1 / 2}+x-\frac{1}{3} \\
& \Rightarrow F(x)=\frac{1}{12} x^{4}-4 \cdot \frac{2}{3} x^{3 / 2}+\frac{1}{2} x^{2}-\frac{1}{3} x+c_{2}, 2=\frac{1}{12}-\frac{8}{3}+\frac{1}{2}-\frac{1}{3}+c_{2}
\end{aligned}
$$

3. Evaluate: $\frac{d}{d x} \int_{-1}^{2 x^{3}} \sin \left(t^{2}\right) d t$ and $\frac{d}{d x} \int_{1-2 x}^{2 x^{3}} \sin \left(t^{2}\right) d t$.

Find C_{2}.
Rewrite $F(x)$.

$$
\begin{aligned}
& \left.G=\sin \left(\left(2 x^{3}\right)^{2}\right) \cdot 6 x^{2}=6 x^{2} \sin \left(4 x^{6}\right)\right) \\
& G=\frac{d}{d x} \int_{1-2 x}^{500} \sin \left(t^{2}\right) d t+\frac{d}{d x} \int_{500}^{2 x^{3}} \sin \left(t^{2}\right) d t \\
& =-\frac{d}{d x} \int_{500}^{1-2 x} \sin \left(t^{2}\right) d t+6 x^{2} \sin \left(4 x^{6}\right) \\
&
\end{aligned}
$$

The value 500 could be ANY number.

$$
\begin{aligned}
& =-\frac{d}{d x} \int_{500} \sin \left(-\sin \left((1-2 x)^{2}\right) \cdot(-2)+6 x^{2} \sin \left(4 x^{6}\right)=2 \sin \left((1-2 x)^{2}\right)+>\right. \\
& =-6 x^{2} \sin \left(4 x^{6}\right)
\end{aligned}
$$

4. Find a formula for $f(x)$: $\quad \underbrace{2 x^{3}-3 x^{2}+x-1=\int_{-1}^{x} f(t) d t}$

Differentiate.

$$
6 x^{2}-6 x+1=f(x)
$$

$$
\begin{aligned}
& \frac{d}{d x} \int_{a}^{u(x)} f(t) d t \\
& \quad=f(u(x)) u^{\prime}(x)
\end{aligned}
$$

Note:

$$
\int_{a}^{b} f(t) d t+\int_{b}^{c} f(t) d t=\int_{a}^{c} f(t) d t
$$

$$
\begin{aligned}
& \text { 5. } \int_{2}^{7} x \sqrt{x^{2}+2} d x=\frac{1}{2} \int_{2}^{7}(\underbrace{x^{2}+2}_{u})^{1 / 2} \underbrace{2 x d x}_{d u} \\
& u=x^{2}+2 \\
& d u=2 x d x \quad=\frac{1}{2} \int_{6}^{51} u^{1 / 2} d u=\left.\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}\right|_{6} ^{51} \\
& x=7 \Rightarrow u=51 \\
& x=2 \Rightarrow u=6 \\
& \begin{aligned}
=\frac{1}{2} \int_{61}^{51} u^{1 / 2} d u & =\left.\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}\right|_{6} ^{51} \\
& =\frac{1}{3}\left(51^{3 / 2}-6^{3 / 2}\right) .
\end{aligned} \\
& \text { 6. } \int\left(3 \sec ^{2}(2 x)-2 \sqrt{x-1}\right) d x=\int 3 \sec ^{2}(2 x) d x-\int 2 \sqrt{x-1} d x \\
& \text { you can } \\
& \text { use } \\
& u-s u b \\
& \begin{array}{l}
\begin{array}{l}
\text { use } \\
\text { u-sub } \\
\text { if you } \\
\text { aren't this }
\end{array}
\end{array}=\frac{3}{2} \tan (2 x)-\frac{4}{3}(x-1)^{3 / 2}+C \\
& \text { aren't this } \\
& \text { counfor table. } \\
& =\frac{3}{2} \tan (2 x)-2 \cdot \frac{2}{3}(x-1)^{3 / 2}+C
\end{aligned}
$$

7. Give the average value of $f(x)=x^{2}-2 x+4$ on the interval [-1,2], and verify the conclusion of

$$
\begin{array}{r}
\quad=\frac{1}{2--1} \int_{-1}^{2}\left(x^{2}-2 x+4\right) d x=\left.\frac{1}{3}\left(\frac{1}{3} x^{3}-x^{2}+4 x\right)\right|_{-1} ^{2} \\
= \\
=\frac{1}{3}\left[\left(\frac{8}{3}-4+\underline{8}\right)-\left(-\frac{1}{3}-1-\underline{4}\right)\right] \\
\\
=\frac{1}{3}[3+9]=4 \leftarrow \begin{array}{l}
\text { Average value } \\
\text { of } f(x) \text { on }
\end{array} \\
{[-1,2]}
\end{array}
$$

Now, find a value C so that $-1<c<2$ and $f(c)=4$.
$\begin{aligned} & \text { and } \\ & \text { Solve } \quad c^{2}-2 c+4=4 \Rightarrow c^{2}-2 c=0 \\ & c(c-2)=0\end{aligned}$

$$
f(c)=4
$$ $c(c-2)=0$ $c=0$ or

Note: $-1<0<2$.
8. The graph of $f(x)$ is shown below. The area of region A is $7 / 3$, the area of region B is $34 / 3$, and the area of region C is $7 / 3$.

a. Give the area of the region bounded between the graph of $f(x)$ and the x-axis on the interval $[-2,4]$.
$\operatorname{Area}(A)+\operatorname{Area}(B)+\operatorname{Area}(C)$

$$
=\frac{1}{3}+\frac{34}{3}+\frac{7}{3}=\frac{48}{3}
$$

b. $\int_{-1}^{4} f(x) d x=-\operatorname{Area}(B)+\operatorname{Area}(C)$

$$
=-\frac{34}{3}+\frac{7}{3}=-9
$$

9. Find the area bounded between the graphs of $f(x)=x^{3}-x^{2}$ and $g(x)=2 x$ on the interval [0,2]. The graph is shown below.

$$
\begin{aligned}
& x^{3}-x^{2}=2 x \\
& x^{3}-x^{2}-2 x=0 \\
& x\left(x^{2}-x-2\right)=0 \\
& x(x-2)(x+1)=0
\end{aligned}
$$

$$
=\int_{0}^{2}\left(2 x-x^{3}+x^{2}\right) d x=\left.\left(x^{2}-\frac{1}{4} x^{4}+\frac{1}{3} x^{3}\right)\right|_{0} ^{2}
$$

$$
=4-4+\frac{8}{3}-0
$$

$$
=\frac{8}{3}
$$

$$
y=x^{3}-x^{2} \quad y=2 x
$$

10. The region bounded between the graphs of $f(x)=x^{3}-x^{2}$ and $g(x)=2 x$ on the interval [0,2] (see the previous problem) is rotated around the y-axis to generate a solid. Find the volume.

$$
=2 \pi x\left(2 x-\left(x^{3}-x^{2}\right)\right)
$$

$$
\text { Full Volume }=\int_{0}^{2} 2 \pi x\left(2 x-x^{3}+x^{2}\right) d x
$$

$$
=\left.2 \pi\left(\frac{2}{3} x^{3}-\frac{1}{5} x^{5}+\frac{1}{4} x^{4}\right)\right|_{0} ^{2}
$$

$$
\begin{aligned}
& =2 \pi\left(\frac{2}{3} x-5 i\right. \\
& =2 \pi\left[\left(\frac{16}{3}-\frac{32}{5}+4\right)-0\right]=\text { yon do it }
\end{aligned}
$$

11. Sketch the region in the first quadrant bounded between the graphs of $f(x)=x+3$ and
$g(x)=(x+1)^{2}$. Then rotate this region around the y-axis to generate a solid.

$$
x=y-3
$$

a. Give a formula involving integrals) in y for the volume generated. Do not compute the

b. Give a formula involving integrals) in x for the volume generated. Do not compute the
$\longrightarrow d x$ integration use vertical line segs.

washer $\quad(3 \leqslant y \leqslant 4)$

Thickness $=d y$

$$
\begin{aligned}
\text { Area } & =\pi(R)^{2}-\pi(r)^{2} \\
& =\pi(-1+\sqrt{y})^{2}-\pi(y-3)^{2}
\end{aligned}
$$

$$
r=y-3
$$

Inf. Volume $=\left(\pi(-1+\sqrt{y})^{2}-\pi(y-3)^{2}\right) d y$

$$
R=-1+\sqrt{y}
$$

$$
\text { Full volume }=\int_{1 \leqslant y \leqslant 3}^{\int_{1}^{3} \pi(-1+\sqrt{y})^{2} d y+\int_{3}^{4} \int_{3 \leqslant y \leqslant y}^{4}\left(\pi(-1+\sqrt{y})^{2}-\pi(y-3)^{2}\right) d y}
$$

12. Repeat the previous problem, assuming that the region is rotated around the x-axis to generate a volume.

a) dy integral (s)
\Rightarrow horiz line sega.

$$
r 1 \leq y \leq 3
$$

shell.

$$
3 \leq y \leq 4 \quad \text { shell }
$$

$$
\text { Thickness }=d y
$$

Surface Area $=2 \pi r h$

$$
=2 \pi y((-1+\sqrt{y})-(y-3))
$$

Inf. Volume $=2 \pi y(2+\sqrt{y}-y) d y$

$$
\text { Full Volume }=\int_{1 \leq y \leq 3}^{\int_{1}^{3} 2 \pi y(-1+\sqrt{y}) d y}+\underbrace{\int_{3}^{4} 2 \pi y(2+\sqrt{y}-y) d y}_{3 \leqslant y * 4}
$$

b) $d x$ integration \Rightarrow vertical line segments

Thickness $=d x$

$$
\begin{aligned}
& \text { Area }=\pi R^{2}-\pi r^{2} \\
&=\pi(x+3)^{2}-\pi\left((x+1)^{2}\right)^{2} \\
& \text { Inf. Volume }=\left(\pi(x+3)^{2}-\pi(x+1)^{4}\right) d x \\
& \text { (washer) }
\end{aligned}
$$

$$
\text { Full Volume }=\int_{0}^{1}\left(\pi(x+3)^{2}-\pi(x+1)^{4}\right) d x
$$

13. a. Give the Upper Riemann sum for the function $f(x)=\left\{\begin{array}{ll}1-x, & -1 \leq x<0 \\ x+1, & 0 \leq x<1 \\ 3-x, & 1 \leq x \leq 2\end{array}\right.$ on the interval $[-1,2]$ with respect to the partition $\mathrm{P}=\{-1,-1 / 4,1 / 4,1,3 / 2,2\}$.

b. Give the Lower Riemann sum for the function $f(x)=\left\{\begin{array}{ll}1-x, & -1 \leq x<0 \\ x+1, & 0 \leq x<1 \\ 3-x, & 1 \leq x \leq 2\end{array}\right.$ on the interval $[-1,2]$ with respect to the partition $\mathrm{P}=\{-1,-1 / 4,1 / 4,1,3 / 2,2\}$.
 Get the values
14. Sketch the region bounded between the graphs of $x+y=2$ and $x=y^{2}$. Then give a formula for the area of the region involving integrals) in x. Repeat the process with integrals) in y.

$$
\begin{aligned}
& 2-y=y^{2} \\
& 0=y^{2}+y-2 \\
& 0=(y+2)(y-1) \\
& 4 y=-2, y=1
\end{aligned}
$$

$$
y=1 \Rightarrow x=1
$$

$$
y=-2 \Rightarrow x=4
$$

$$
\begin{aligned}
& =\int_{0}^{1} 2 \sqrt{x} d x+\int_{1}^{4}(2-x+\sqrt{x}) d x . \\
& \text { Area }=\int_{-2}^{1}\left((2-y)-y^{2}\right) d y
\end{aligned}
$$

