Math 1431-15825

Jeff Morgan
jmorgan@math.uh.edu 651 PGH
Office Hours: 11:00-Noon MWF
Homepage URLs and Twitter
\rightarrow www.math.uh.edu/~jmorgan/Math1431
\rightarrow tinyurl.com/math1431
$>$ @morgancalculus
Twitter

Notes

- Poppers start next Monday! Access Codes must be purchased and entered at
www.casa.uh.edu by next Monday. $\leftarrow \overline{12: 01 ~ A m}$
- Purchase your Popper Forms and Access Code from the Bookstore in the

University Center

- Homework 1 is due today in recitation/workshop.
- EMCF03 was due at 9am yesterday, and EMCF04 is due on Friday at 9am.

Homework 2 will be posted today

- Online Quizzes are available, and Test 1 and Practice Test 1 are due tonight at $11: 59 \mathrm{pm}$.
- There is a Written Quiz in lab/workshop on Friday.

Note: We have learned that whenever $f(x)$ is a polynomial or rational function, and $c \overline{\text { is in the }}$

$$
\text { Huge } \rightarrow \frac{\overline{\text { domain of } f} \text {, then }}{\lim _{x \rightarrow c} f(x)=f(c)}
$$

i.e. we can evaluate the limit by evaluating the function.

What does this say about the graphs of polynomial and rational

$$
\begin{aligned}
& \text { functions } \\
& \text { "limit is function } \\
& \text { value." }
\end{aligned}
$$

This property is known as
continuity.
"the function is continuous
at $x=c$ "

$$
\text { at } x=c \text { " }
$$

Polynomials and Rational Functions are
Continuous Everywhere They are Defined

For Polly nomiads: Every where
For Rational functions: Everywhere the denom $\neq 0$.

Terminology

$f(x)$ is discontinuous at $x=c$ if and only if $f(x)$ is not continuous at $x=c$.

What are the Basic Types of Discontinuity?

1. Removable discontinuity.
2. Jump discontianity.
3. Infinite discontianity.

Removable Discontinuity at $x=c$.
Graph:

Def: $\lim _{x \rightarrow c} f(x)$ exists.
But $\lim _{x \rightarrow c} f(x) \neq f(c)$.

Jump Discontinuity at $x=c$.
Graph:

Def: $\lim _{x \rightarrow 0^{-}} f(x)$ exists
and $\lim _{x \rightarrow c^{+}} f(x)$ exists,

$$
\text { BUT } \quad \lim _{x \rightarrow c^{-}} f(x) \neq \lim _{x \rightarrow c^{+}} f(x)
$$

Infinite Discontinuity at $x=c$

(at least from one side)

$$
\begin{aligned}
& \text { Example: Discuss the continuity of the following functions. } \\
& =\stackrel{F}{=}(x)=\frac{3 x^{3}-2 x^{2}-7}{=} \\
& f(x)=\frac{x-1}{|x-1|} \\
& H(x)=\frac{\left|x^{2}-4\right|}{x+2}<\text { see video. } \\
& g(x)=\frac{x+2}{x^{2}+x-2}
\end{aligned}
$$

$$
G(x)=\underbrace{3 x^{3}-2 x^{2}-7}_{\text {poly nomial }}
$$

$\because G(x)$ is continuous
every where.

Give values for A and B so that line

$$
f(x)=\left\{\begin{array}{cc}
\frac{A x-3}{} & x<-2 \\
2 & x=-2 \\
x^{2}-B & x>-2
\end{array}\right.
$$

is continuous. parabola
$x=-2$ is the only possible problem. For continuity at $x=-2$, we need

$$
\begin{aligned}
& f(-2)=\lim _{x \rightarrow-2} f(x)>\text { One } \\
& \text { sided } \\
& 2^{\prime \prime} \text { limits. } \\
& \text { see the video. }
\end{aligned}
$$

