Math 1431

Jeff Morgan jmorgan@math.uh.edu 651 PGH
Office Hours: 11:00-Noon MWF
http://www.math.uh.edu/~jmorgan/Math1431
tinyurl.com/math1431
@morgancalculus

Access Codes were due at 12:01am today. EMCF05 was due this morning at 9:00am.

Homework 2 is due Today in lab/workshop.
Poppers start today.
Quiz 1 expires tonight at $11: 59 \mathrm{pm}$.
Video Help was posted for Sections 2.5 and 2.6.
We will finish Chapter 2 today, and start Section 3.1. We will skip the Extreme Value Theorem in Section 2.6, and talk about it later when we need it.

Popper P01	
$1.1+2=3$	Don't write 1
3	1

2. The answer is -17 .
-17
3. The answer is -2.1356 .
-2.1356

Popper P01

4. The answer is $-23 / 421$
.23 .421
5. The answer is 0.5 .
0.5
or
.5
or if decimal is not reguested

Popper P01

6. $\lim _{u \rightarrow 0} \frac{\sin (u)}{u}=$
7. $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{3 x}=\frac{2}{3}$

The Intermediate Value Theorem

 (common sense for continuous functions)$$
\begin{array}{l|l|}
\hline \text { If } f(x) \text { is a continuous function on the interval }[a, b] \\
\text { and } K \text { is a value between } f(a) \text { and } f(b) \text {, then there is } \\
\text { value } c \text { between } a \text { and } b \text { so that } f(c)=K .
\end{array}
$$

> Show there is a value of x between 1 and 3 so that $-3 x^{3}+2 x^{4}=7$ (a good place to use the Intermediate Value Theorem) Set $f(x)=-3 x^{3}+2 x^{4}$. $f(x)$ is a polynomiat, so $f(x)$ is continuous on $[1,3]$. Can we solve $f(x)=7 \quad$ on $[1,3]$? Use I.v. Thm: $f(1)=-1$ $f(3)=-81+2 \cdot 81=81$ 7 is between $f(1)=-1$ and $f(3)=81$. Thane is a value c btwn I and 3 so that $f(c)=7$. i.e. $f(x)=7$ has a soln on $[1,3]$.

Corollary to the Intermediate Value Theorem: Suppose a function f is continuous on an interval I and $f(x)$ is not 0 at any value x in I.

If $f(c)>0$ at some point c in I, then $f(x)>0$ at every x in I.
If $f(c)<0$ at some point c in I, then $f(x)<0$ at every x in I.

An Introduction to Derivatives: How can we approximate the slope of the tangent line to the graph at $x=a$?
I.

We can approximate the tangent line to the graph at $x=a$ by using a secant line.
II.

We can improve this approximation by making h smaller
III.

The approximation will continue to improve as we make h even smalle $-=-$
IV.

Example: Give the slope of the tangent line to the graph of $f(x)=4 x-x^{2}$ at $x=1$.

