Math 1431

Jeff Morgan jmorgan@math.uh.edu

651 PGH
Office Hours: 11-noon MWF
http://www.math.uh.edu/-jmorgan/Math1431
tinyurl.com/math1431
@morgancalculus

Online Quizzes are available.

$$
\hookrightarrow \# 2
$$

Homework 3 is due next Monday in lab/workshop.
EMCF07 is due Friday morning at 9:00am.
There is a Written Quiz in lab/workshop on Friday.
Alpha Lambda Delta Honor Society Movie Night - Free to everyone!!
6 pm in Cougar Village Rm. N111. Snacks will be provided!
Tomorcow

We can improve this approximation by making h smaller.

The approximation will continue to improve as we make h even smaller
IV.

slope of the secant line $=\frac{f(a+h)-f(a)}{h}$

Example: Find the derivative of $f(x)=x^{2}$ at $x=1$, and give the equation of the tangent line to the graph of f at the point where $x=1$.

$$
\text { (1) } \begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(1+h)^{2}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{x+2 h+h^{2}-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h+h^{x}}{h} \\
& =\lim _{h \rightarrow 0}(2+h)=2
\end{aligned}
$$

$$
\therefore f^{\prime}(1)=2 .
$$

Example: Find the derivative of $f(x)=x^{2}$.

$$
\begin{aligned}
& \rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \uparrow \\
& \begin{array}{l}
\text { function } \\
\text { of } x
\end{array} \quad=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \quad \text { "O" } \\
& \text { "Slope function" }=\lim _{h \rightarrow 0} \frac{x^{2}+2 \times h+h^{2}-x^{2}}{h} \\
& \begin{aligned}
\therefore f(x) & =x^{2} \\
\Rightarrow & =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
f^{\prime}(x)=2 x & =\lim _{h \rightarrow 0}(2 x+h)=2 x
\end{aligned}
\end{aligned}
$$

(2) To get the T.L. at $x=1$:

slope: $f^{\prime}(1)=2$ Point: $(1, f(1))=(1,1)$
Equation: $\quad y-1=2(x-1)$
or
$y=2 x-1$

Popper P02

1. $f(x)=x^{2}$. Give $f^{\prime}(2)$.
2. $f(x)=x^{2}$. Give the slope of the tangent line to the graph of $f(x)$ at $x=-1$.

The Derivative: Overview...

Note: $f^{\prime}(a)$ is the slope of the tangent line at $\boldsymbol{x}=a$.

Example: Give a formula for the derivative of $f(x)=\frac{1}{x+1}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h+1}-\frac{1}{x+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+1-(x+h+1)}{\longrightarrow(x+h+1)(x+1)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(x+h+1)(x+1)} \\
& =\frac{-1}{(x+1)^{2}} \\
\therefore f(x) & =\frac{1}{x+1} \Rightarrow f^{\prime}(x)=\frac{-1}{(x+1)^{2}}
\end{aligned}
$$

Interpretations of the Derivative			
Function	Description	Derivative	Interpretation
$F(x)$	Standard function.	$F^{\prime}(x)$	Slope function.
$F(x)$	Standard function.	$F^{\prime}(x)$	Instantaneous rate of change of $F(x)$ with respect to x.
$s(t)$	Position at time t.	$s^{\prime}(t)$	Velocity, sometimes named $v(t)$.
$v(t)$	Velocity at time t.	$v^{\prime}(t)$	Acceleration, sometimes named $a(t)$.

Notation: $f(x)$ is differentiable at $x=a$ if and only if $f^{\prime}(a)$ exists. (i.e. if and only if f has a derivative at $x=a$)

Popper P02 $f(x)=\frac{1}{x+1}, f^{\prime}(x)=\frac{-1}{(x+1)^{2}}$
3. $f(x)$ is the function in the previous example. Give $f^{\prime}(1)$.
4. $f(x)$ is the function in the previous example. Give the slope of the tangent line to the graph of $f(x)$ at $x=-2$.

Example: Give an equation for the tangent line to

the graph of $f(x)=\frac{1}{x+1}$ at $x=2$.
$f^{\prime}(x)=\frac{-1}{(x+1)^{2}} \downarrow$
slop $2=f^{\prime}(2)=-\frac{1}{9}$
Point $=(2, f(2))=\left(2, \frac{1}{3}\right)$
Eg. for T.L. at $x=2$:

$$
y-\frac{1}{3}=-\frac{1}{9}(x-2)
$$

How can we use the derivative to find the slope of the normal line to the graph of $f(x)$ at $x=a$?

Normal line is 1 to the
tangent line, and it
passer through $(a, f(a))$.
Slope of N.L. $=\frac{-1}{f^{\prime}(a)}$
provided $f^{\prime}(a) \neq 0$.

Popper P02

5. $f(x)$ is the function in the previous example. Give the slope of the normal line to the graph of $f(x)$ at $x=-2$.

How can the graph of a function be used to determine where a function is not differentiable?

The function $f(x)$ is graphed below. Determine the values of x where f is differentiable.

See the video!!

