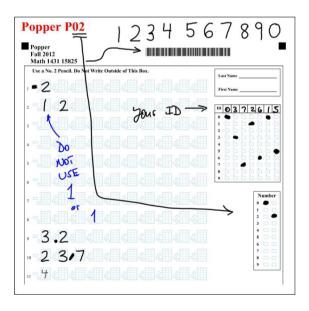
Math 1431

Jeff Morgan jmorgan@math.uh.edu 651 PGH Office Hours: 11-noon MWF

http://www.math.uh.edu/~jmorgan/Math1431 tinyurl.com/math1431 @morgancalculus

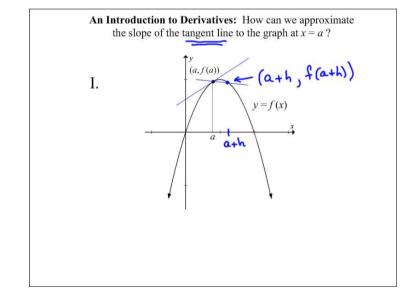


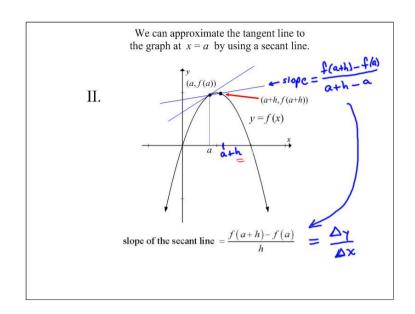
Online Quizzes are available.

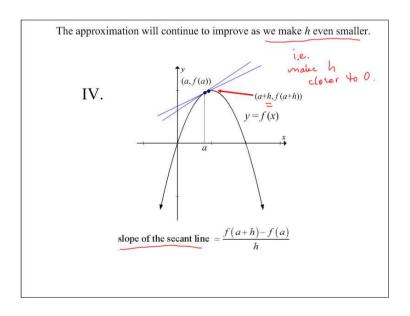
Homework 3 is due next Monday in lab/workshop.

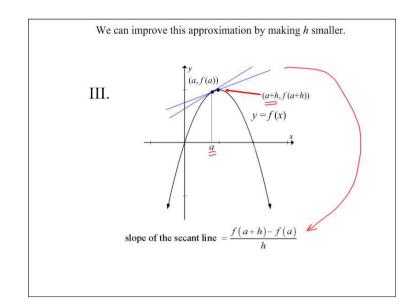
EMCF07 is due Friday morning at 9:00am.

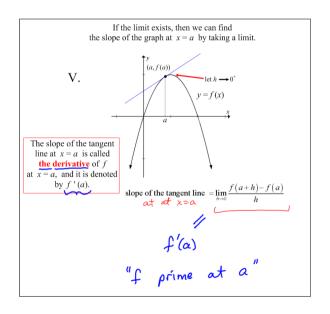
There is a Written Quiz in lab/workshop on Friday.











Example: Find the derivative of
$$f(x) = x^2$$
 at $x = 1$, and give the equation of the tangent line to the graph of f at the point where $x = 1$.

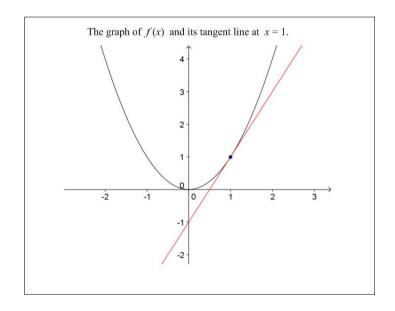
(Find $f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$

$$= \lim_{h \to 0} \frac{(1+h)^2 - 1}{h}$$

$$= \lim_{h \to 0} \frac{(1+h)^2 - 1}{h}$$

$$= \lim_{h \to 0} \frac{(2+h)^2 - 1}{h}$$

$$= \lim_{h \to 0} \frac{2x + h^2}{x} = \lim_{h \to 0} (2+h) = 2$$



i.e.
$$f'(1) = 2$$
i.e. the slope of the tangent

line at $x = 1$ is 2.

Slope = $f'(1) = 2$

Point = $(1, f(1)) = (1, 1)$

Equation: $y = 2x - 1$

Example: Find the derivative of
$$f(x) = x^2$$
.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h)^2 - x^2}{h} \stackrel{!}{\longrightarrow} 0$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2}{k} = \lim_{h \to 0} (2x+h) = 2x$$

The Derivative: Overview...

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
definition of derivative
Other notation: $\frac{d}{dx} f(x) = f'(x)$

Note: f'(a) is the slope of the tangent line at x = a.

Example: Give a formula for the derivative of $f(x) = \frac{1}{x+1}$.				
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$				
$= \lim_{h \to 0} \frac{\frac{1}{x+h+1} - \frac{1}{x+1}}{h}$				
C ind				
$\frac{a}{b} = \frac{a}{bc} = \lim_{h \to 0} \frac{x_{+}y_{-} - y_{-} - y_{-}}{h(x_{+}h_{+}h_{-})(x_{+}h_{-})}$				
$= \lim_{h \to 0} \frac{-k}{k(x+h+1)(x+1)}$				
$= \lim_{h \to 0} \frac{-1}{(x+h+1)(x+1)} = \frac{-1}{(x+1)^2}$				
for $f(x) = \frac{1}{x+1}$, we have $f'(x) = \frac{-1}{(x+1)^2}$				
have $f'(x) = \frac{-1}{(x+1)^2}$				

Interpretations of the Derivative

Function	Description	Derivative	Interpretation
F(x)	Standard function.	F '(x)	Slope function.
F(x)	Standard function.	F *(x)	Instantaneous rate of change of $F(x)$ with respect to x .
s (t)	Position at time t.	s *(t)	Velocity, sometimes named $v(t)$.
v (t)	Velocity at time t.	v '(t)	Acceleration, sometimes named $a(t)$.

Notation: f(x) is differentiable at x = a if and only if f'(a) exists.

(i.e. if and only if f has a derivative at x = a)

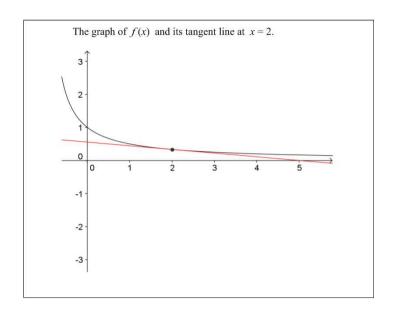
Example: Give an equation for the tangent line to the graph of
$$f(x) = \frac{1}{x+1}$$
 at $x=2$.

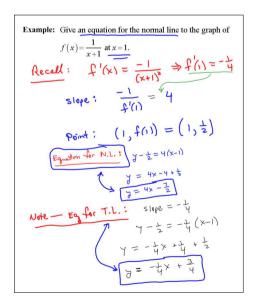
Accall: $f'(x) = \frac{-1}{(x+1)^2}$

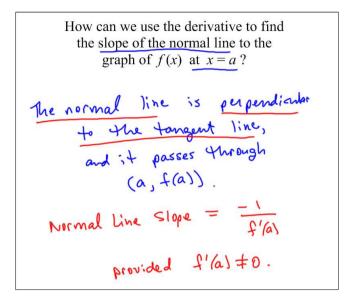
Slope = $f'(z) = -\frac{1}{q}$

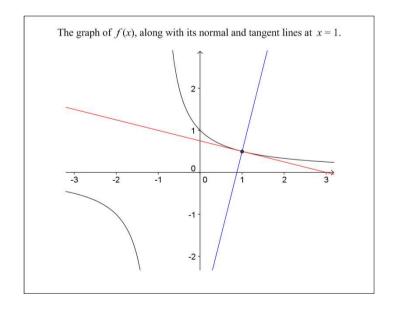
Point = $(2, f(z)) = (2, \frac{1}{3})$

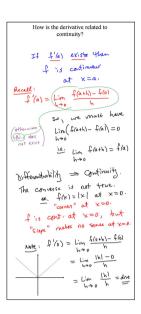
Equation of T.L.: $y - \frac{1}{3} = -\frac{1}{q}(x-2)$
 $y - \frac{1}{3} = -\frac{1}{q}x + \frac{2}{q}$
 $y = -\frac{1}{q}x + \frac{5}{q}$

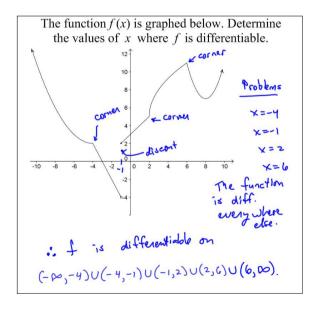












How can the graph of a function be used to determine where a function is not differentiable?

A function is not differentiable at:

- # 1. Points of discontinuity.
- * 3. Points where the graph has a cusp.
- 4. Points where the graph has a vertical tangent.

$$y = x^{1/3}$$
 at $x=0$