Notes

- Check the Course Calendar for Homework, EMCF and Quiz information.
- Practice Test 2 is available. Your score counts as a quiz grade.
- Test 2 is Oct $4-\widetilde{\text { ct } 8 \text { You should have already }}$ registered on CourseWare.

	24 Blank Slides EMCFII due at am Homework 4 Due in Lab Workshop Quiu 3 Closes (2.6 and 3.1$)$	25	$\begin{gathered} 26 \\ \text { Blank Slides } \\ \text { EMCFF2 due at } \\ \text { 9am } \\ \begin{array}{c} \text { Homework } 5 \\ \text { Posted } \end{array} \end{gathered}$			
30		$\xrightarrow[\substack{\text { Online Live } \\ \text { Reviev for Test } 2 \\ \text { from } \\ \text { s:15-10:15pm. } \\ \text { Alink will appear } \\ \text { here prior to the } \\ \text { session. }}]{2}$		${ }_{\text {Test } 2 \text { Starts }}$	5	6
7	$\begin{gathered} 8 \\ \text { Test } 2 \text { Ends } \\ \text { Quiz } 5 \text { Closes } \\ (3.5-3.6) \end{gathered}$	9	10	11	12	13

American Medical Students Association Second General Meeting

September 24, 2012
Farish Hall KIVA ROOM at 7:00 pm
Dr. Peak will be the main speaker and she will be giving information about a lot of pre-medical/medical school programs offered at our school for both under and upperclassmen! There is also free food and drinks!

$$
\mathrm{hm}^{?} \quad V_{0}=? \quad s_{0}=20 \mathrm{ft}
$$

Example: An object is launched from a height of 20 feet. Give the initial velocity required to cause the object to strike the ground 5 seconds later.

$$
\begin{gathered}
L \text { find } v_{0} \\
\qquad s(t)=-16 t^{2}+v_{0} t+20 \\
\text { Also, } s(5)=0 \\
\Rightarrow \quad-16 \cdot 25+v_{0} \cdot 5+20=0 \\
V_{0}=76 \mathrm{ft} / \mathrm{sec} .
\end{gathered}
$$

$V_{0}=0$
Example: An object is dropped from a height of 20 feet. If we neglect air friction, how long will it take for the object to hit the ground?

$$
==
$$

$$
L_{s}(t)=0
$$

$$
s(t)=-16 t^{2}+0 t+20
$$

Find (t) so that $s(t)=0$.

$$
t>0
$$

$$
\text { Solve } \begin{aligned}
-16 t^{2}+20 & =0 \\
t^{2} & =\frac{5}{4} \\
t & =\frac{\sqrt{5}}{2} \sec .
\end{aligned}
$$

Popper P07

1. What is the speed of the object in the previous example at the time that it is lauched?
2. What is the speed of the object in the previous example when it hits the ground?

Rates of Change

You must know...

Areas, circumferences, volumes and surface areas of basic shapes.

Pythagorean Theorem

Shape	Volume	Surface Area
right circular cylinder		
hr	$\pi r^{2} h$	$2 \pi r^{2}+2 \pi r h$

Popper P07

3. The volume of a sphere of radius 3 cm is \qquad cm^{3}.
4. The surface area of a sphere of radius 3 cm is \qquad cm^{2}.
5. The volume of a right circular cylinder of radius 3 cm and height 4 cm is cm^{3}.

Example: Give the rate of change of the surface area of a sphere with respect to its radius r.

Give the rate of change of the volume of a sphere with respect to its radius r

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& \frac{d V}{d r}=4 \pi r^{2}
\end{aligned}
$$

Example: A water tank in the shape of a right circular cone (with point down) is being filled with water. The height of the cone is 7 meters and the base of the radius of the top of the tank is 3 meters. Suppose water is being added to the tank at the rate of $1 / 10 \mathrm{~m}^{3} / \mathrm{sec}$. How fast is the depth of the water in the tank increasing when the tank contains $50 \mathrm{~m}^{3}$?

See the video.

