## Notes

- Check the Course Calendar for Homework, EMCF and Quiz information.
- Practice Test 2 is available. Your score counts as a quiz grade.
- Test 2 is Oct $4-$ Oct 8. You should have already registered on CourseWare.

| 23 <br> Video help for section 3.7 | 24 <br> Blank Slides <br> EMCF1l due at 9am <br> Homework 4 Due in Lab/Workshop <br> Quiz 3 Closes <br> (2.6 and 3.1) | 25 | Blank Slides <br> EMCF12 due at 9 am <br> Homework 5 Posted | $27$ <br> Video help with section 3.8 | $28$ <br> EMCF13 due at 9 am <br> (a correction was made to problem 7 on 9/23) <br> Last day to apply for fall graduation with a $\$ 25$ fee. | Review Problems for Test 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30 | October 1 <br> EMCF14 due at 9 am <br> Homework 5 due In lab/workshop Quiz 4 Closes (3.2-3.4) | 2 Online Live Review for Test 2 from 8:15-10:15pm. A link will appear here prior to the session. | $3$ | $\stackrel{4}{\text { Test } 2 \text { Starts }}$ | 5 | 6 |
| 7 | 8 <br> Test 2 Ends Quiz 5 Closes <br> (3.5-3.6) | $9$ | $10$ | 11 | 12 | 13 |

[ Question: How does an object fall?
Assume the object falls at time $t=0$ rom a height $s_{0}$ and initial velocity $\leftarrow$ velocity at $t=0$

* Letting: low altitude - close to sea level Ignore air friction.
$s(t)$ height above ground level
a change in position wot time magnitude of velocity change in velocity wry time
Important Terms: Position velocity. speed. and acceleration.

$$
V(t)=s^{\prime}(t) \quad|v(t)| \quad a(t)=v^{\prime}(t)
$$

Assume: Gravitational force is constant.

| feet | meters |
| :---: | :---: |
| $a(t)=-32 f t / \sec ^{2}$ | $a(t)=-9.8 \mathrm{~m} / \mathrm{sec}^{2}$ |
| $v(t)=-32 t+C$ | $\vdots$ |
| use $=v_{0} v(t)=-32 t+v_{0}$ | $v(t)=-9.8 t+v_{0}$ |
| $s(t)=-16 t^{2}+\underline{V_{0}} t+\frac{s_{0}}{}$ | $s(t)=-4.9 t^{2}+v_{0} t+s_{0}$ |

Hold until the object strikes the ground.

$$
\mu_{\sim}^{V_{0}=0} s_{\sim}^{s_{0}=20 \mathrm{ft}}
$$

Example: An object is dropped from a height of 20 feet. If we neglect air friction, how long will it take for the object to hit the ground?

Solve $s(t)=0$ for $t>0$.

$$
\begin{gathered}
\frac{s(t)}{\text { solve }}=-16 t^{2}+0 t+20=\frac{-16 t^{2}+20}{t>0} \\
s(t)=0 \quad \text { for }
\end{gathered}
$$

$$
\begin{gathered}
s(t)=0 \quad \text { for } t>0 \\
-16 t^{2}+20=0 \quad \text { for } t>0 \\
t=\frac{\sqrt{5}}{2} \approx 1.118 \mathrm{sec}
\end{gathered}
$$

Q: What is speed on impact?
A: speed $=|r(t)|$

$$
\begin{aligned}
& V(t)=s^{\prime}(t)=-32 t \\
& \Rightarrow \text { speed }=\left|V\left(\frac{\sqrt{5}}{2}\right)\right|=\left|-32 \frac{\sqrt{5}}{2}\right|=16 \sqrt{5} \frac{\mathrm{ft}}{\mathrm{sec}} \\
& \approx 35.78 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

nearly 24.4 miles $/ \mathrm{hr}$.

$$
\begin{aligned}
& \text { Dropped } V_{0}=0 \\
& \left(V_{2}>0\right. \\
& \text { thrown or upwards downwards } \longleftrightarrow V_{0}^{2}
\end{aligned}
$$

Example: An object is launched from a height of 20 feet. Give the initial velocity required to cause the object to strike the ground 5 seconds later.
$G_{\text {Find }} v_{0}$ so that $s(5)=0$.

$$
\begin{aligned}
& S(t)=-16 t^{2}+v_{0} t+20 \\
& s(5)=0 \Longleftrightarrow-16.25+5 v_{0}+20=0
\end{aligned}
$$

Solve for $V_{0}$.

$$
v_{0}=76 \mathrm{ft} / \mathrm{sec}
$$

Q: What is the speed on impact?
A: Find $|V(5)|$.

$$
\begin{aligned}
V(t)=s^{\prime}(t) & =-32 t+76 \\
\Rightarrow|V(s)| & =|-32 \cdot 5+76| \\
& =|-84|=84 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

## Rates of Change

## You must know...

## Areas, circumferences, volumes and surface areas of basic shapes.

Pythagorean Theorem



| Shape | Volume | Surface Area |
| :--- | :--- | :--- |
| Cube |  |  |
| 6 side s. |  | $6 x^{2}$ |





Example: Give the rate of change of the surface area of a sphere with respect to its radius $r$.


Give the rate of change of the volume of a sphere with respect to its radius $r$.

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
\frac{d V}{d r} & =4 \pi r^{2}
\end{aligned}
$$

Example: A water tank in the shape of a right circular cone (with point down) is being filled with water. The height of the cone is 7 meters and the radius of the top of the tank is 3 meters. Suppose water is being added to the tank at the rate of $1 / 10 \mathrm{~m}^{3} / \mathrm{sec}$. How fast is the depth of the water in the tank increasing when the tank contains $50 \mathrm{~m}^{3}$ ?


Find $h^{\prime}(t)$ when volume is $50 \mathrm{~m}^{3}$.

$$
V(t)=\frac{1}{3} \pi r(t)^{2} h(t)
$$

Similar triangles $\Rightarrow$

$$
\begin{aligned}
& \frac{h}{7}=\frac{r}{3} \Rightarrow r=\frac{3}{7} h \\
& V(t)=\frac{1}{3} \pi\left(\frac{3}{7} h(t)\right)^{2} h(t)
\end{aligned}
$$

$\Rightarrow$ (drop the "of $t$ "part)

$$
\begin{aligned}
& \text { (drop the of } t \quad \frac{1}{3} \pi \cdot \frac{9}{49} h^{3}=\frac{\frac{3 \pi}{49} h^{3}}{\overline{2 d} h}
\end{aligned}
$$

Diff writ $t$.

$$
\frac{d V}{d t}=\frac{9 \pi}{49} \overline{\overline{h^{2}} \frac{d h}{d t}}
$$

$$
\begin{aligned}
V=50 & \Rightarrow \frac{3 \pi}{49} h^{3}=50 \\
& \Rightarrow h^{3}=\frac{50.49}{3 \pi} \\
& \Rightarrow h=\sqrt[3]{\frac{2450}{3 \pi}}=\left(\frac{2450}{3 \pi}\right)^{1 / 3} \\
\frac{1}{10} & =\frac{9 \pi}{49}\left(\frac{2450}{3 \pi}\right)^{2 / 3} \frac{d h}{d t}
\end{aligned}
$$

Solve for $\frac{d h}{d t}$.

