Notes

- Check the Course Calendar for Homework, EMCF and Quiz information.
- Practice Test 2 is available. Your score counts as a quiz grade.
- Test 2 is Oct 4 Oct 8 You should have already registered on CourseWare.

Video help for section 3.7	24 Blank Slides EMCF11 due at 9am Homework 4 Due in Lab/Workshop Quiz 3 Closes (2.6 and 3.1)	25	26 Blank Slides EMCF12 due at 9am Homework 5 Posted	Video help with section 3.8	28 EMCF13 due at 9am (a correction was made to problem 7 on 9/23) Last day to apply for fall graduation with a \$25 fee.	29 Review Problems for Test 2
30	October 1 EMCF14 due at 9am Homework 5 due in lab/workshop Quiz 4 Closes (3.2-3.4)	Online Live Review for Test 2 from 8:15-10:15pm. A link will appear here prior to the session.	3	4 Test 2 Starts	5	6
7	8 Test 2 Ends Quiz 5 Closes (3.5-3.6)	9	10	11	12	13

S(0)=50 Question: How does an object fall? Assume the object falls at time t = 0 from a height s_0 and initial velocity v_0 . \leftarrow low altitude - close to sea level Ignore air friction. height above ground level
change in position wit time
magnitude of velocity 541 Important Terms: Position velocity, speed, and acceleration. a(t) = Y'(t)1v(t) neters alt) = -9.8 m/sec2 a(t) = -32 ft/sec? V(t) = -9.8t + V. s/tl = -4.9t2+ Vot +5. SHI = -16 t2 + 16 + + 50 Hold until the object strikes the ground.

$$7^{V_0} = 0$$

$$\int_{\infty}^{\infty} s_0 = 20 \text{ ft}$$

Example: An object is dropped from a height of 20 feet. If we neglect air friction, how long will it take for the object to hit the ground?

$$S(t) = -16t^{2} + 0t + 20 = -16t^{2} + 20$$

$$S(t) = 0 \quad \text{for} \quad t > 0.$$

$$S(t) = 0 \quad \text{for} \quad t > 0.$$

$$-16t^{2} + 20 = 0 \quad \text{for} \quad t > 0$$

$$t = \sqrt{5} \approx 1.118 \text{ Sec}$$

A: speed =
$$|Y(t)|$$

 $|Y(t)| = |Y(t)|$
 $|Y(t)| = |Y(t)| = |Y(t)|$

$$V(t) = S'(t) = -32t$$

>> Speed = $|V(\frac{5}{2})| = |-32\frac{5}{2}| = 16\sqrt{5} \frac{ft}{sec}$

\$\times 35.78 \text{ ft/sec}\$

Nearly 24.4 miles/hr.

Example: An object is launched from a height of 20 feet. Give the initial velocity required to cause the object to strike the ground 5 seconds later.

$$S(t) = -16t^{2} + V_{0}t + 20$$

 $S(5) = 0 \implies -16.25 + 5V_{0} + 20 = 0$
Solve for V_{0} .

$$V(t) = s'(t) = -32t + 76$$

$$\Rightarrow |V(5)| = |-32.5 + 76|$$

= $|-84| = 84$ ft/sec.

Rates of Change

You must know...

Areas, circumferences, volumes and surface areas of basic shapes.

Pythagorean Theorem

Shape	Area	Circumference
	πι²	2πΓ
×	×7	2×+27
Triangle b	żhb	Not Needed
Trapezoid X	1 (x+y)h	Not Needed

Shape	Volume	Surface Area
Cube		
×	X	6ײ
6 sides		

Shape	Volume	Surface Area
Sphere	43 } = >	4 } < 0
Note:	$\frac{dV}{dr} = S$	special for spheres.

Shape	Volume	Surface Area
right circular cylinder	πr²h	2πr² + 2πrh

Shape	Volume	Surface Area
right circular cone		
h	3 Tr2h	Not Needed

Example: Give the rate of change of the surface area of a sphere with respect to its radius r.

Give the rate of change of the volume of a sphere with respect to its radius r.

$$V = \frac{4}{3}\pi r^3$$

$$\frac{dV}{dr} = 4\pi r^2$$

Example: A water tank in the shape of a right circular cone (with point down) is being filled with water. The height of the cone is 7 meters and the radius of the top of the tank is 3 meters. Suppose water is being added to the tank at the rate of 1/10 m³/sec. How fast is the depth of the water in the tank increasing when the tank contains 50 m³? V(t) = volume at ti V'(t) = to m /sec when volume Find h'(t) 50 m3 V(t) = = = Tr(t) h(t) Similar triangles => 与=ラコラト=ラト Y(t) = = = = (3 h(t)) h(t) ⇒ (drop the "of t" part) ∨ = \(\frac{1}{3}\tau \cdot \frac{9}{49} \rac{3}{3} = \frac{31}{49}

$$V = 50 \Rightarrow \frac{3\pi}{49} h^3 = 50$$

$$\Rightarrow h^3 = \frac{50.49}{3\pi}$$

$$\Rightarrow h = \sqrt[3]{\frac{2450}{3\pi}} = \left(\frac{2450}{3\pi}\right)^{3/3}$$

$$= \frac{9\pi}{49} \left(\frac{2450}{3\pi}\right)^{3/3} \frac{dh}{dt}$$
Solve for $\frac{dh}{dt}$.