Info

- EMCFs are due every MWF morning
- There is a quiz in lab Friday
- There is no homework due on Monday.
- There will be an EMCF due on Monday.
- There is an online quiz due Monday.
- Practice Test 2 is posted.
- The slides and video are posted from last
night's review.
- You should be registered for Test 2

© Differentials and Newton's Method

Section 3.9
(tangent line approximation)
(a)

The ALD Honor Society will have a general meeting at 5:30 $<$ Today in CTC lab room 239

Example: Do one iteration of Newton's method from a guess of $x_{0}=2$ approximate a solution to $x^{4}+2 x-3=0$. Then compute further Newton iterates using a calculator or other computing device.

$f(2)=17$
$f^{\prime}(2)=34$

$$
f(x)=x^{4}+2 x-3
$$

$$
f^{\prime}(x)=4 x^{3}+2
$$

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

$$
=2-\frac{f(s)}{f^{\prime}(2)}=2-\frac{10}{34^{1}}=1.5
$$

	xi	$\mathrm{f}(\mathrm{xi})$
$x_{0}=$	2.00000000	17.00000000
$x_{1}=$	1.50000000	5.06250000
$x_{2}=$	1.17338710	1.24245509
$x_{3}=$	1.02656388	0.16369262
,	1.00069307	0.00416132
-	1.00000048	0.00000288
	1.00000000	0.00000000
	1.00000000	0.00000000
	1.00000000	0.00000000
	1.00000000	0.00000000
	1.00000000	0.00000000

Example: Newton's method can go horribly wrong IF the initial guess is not sufficiently close to the actual solution. We can see this by exploring the equation $\frac{10 x}{x^{2}+1}=0$

P11

1. Use one iteration of Newton's method from a guess of $x_{0}=\frac{3}{2}$ to approximate a solution to $x^{2}-3=0$.
$<^{a^{(0)}}$ The differential of f at a^{x} with increment h
is given by $d f=f^{\prime}(a) h$

Example: Use differentials to approximate $\sqrt{25.1}$.

$$
25.1 \text { is "close" to } 25 \text {, }
$$

$$
\begin{aligned}
& 25.1 \text { is close } \\
& \text { and we know } \sqrt{25}=5 \text {. }
\end{aligned}
$$

$$
f(x)=\sqrt{x} . \quad f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
$$

$$
\begin{aligned}
& \sqrt{25.1}=f(25.1) \approx f(25)+f^{\prime}(25) \cdot(-1) \\
& a+h \hat{a} a \\
& a+\frac{1}{a} \\
& \approx 5+\frac{1}{10} \cdot \frac{1}{10}=5.01
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{24.9}=f(24.9) \approx f(25)+f^{\prime}(25)(-.1) \\
& a \hat{a} \\
& a+h \\
& \approx 5+\frac{1}{10}\left(-\frac{1}{10}\right)=4.99
\end{aligned}
$$

Differentials Can Be Used To Approximate Function Values

The differential of f at a with increment h

$$
\text { is given by } d f=f^{\prime}(a) h
$$

Using the approximation $d f \approx f(a+h)-f(a)$,
the equation above becomes

$$
f(a+h) \approx f(a)+f^{\prime}(a) h
$$

(this is a tangent line approximation)

$$
\begin{gathered}
\text { typically, } f(x) \text { is known at a } \\
\text { Quick and dirty approx. }
\end{gathered}
$$

P11

2. Use differentials to approximate $\sqrt{36.1}$.

Example: A box is to be constructed in the form of a cube to hold 1000 cubic feet. Use a differential to estimate how accurately the edge must be made so that the volume will be correct to within 3 cubic feet

