Info...

- We will cover portions of 4.2 and 4.3 today.
- Homework and EMCFs are posted.
- Online Quiz 5 is due tonight at 11:59pm.
- Practice Test 2 is due tonight at $11: 59 \mathrm{pm}$.
- Please complete Online Quizzes 6 and 7 asap.
- Today is the last day to take Test 2 .

Increasing and Decreasing Functions

Intuitively, where is f
increasing? Decreasing

Algebraic Definitions of Increasing and Decreasing on an Interval

f is increasing on I if and only i

f is decreasing on I if and only if $\frac{f(a)>f(b) \text { whenever }}{a, b \in I \text { and } a<b .}$

$$
a, b \in I \text { and } a<b
$$

Definition: f is increasing over an

for all a, b in I with $a<b$

What property does the derivative have on this interval?

mostly
 positive

Definition: f is decreasing over an

interval I if and only if $f(a)>f(b)$

for all a, b in I with $a<b$

What property does the
 derivative have on this interval?

$$
\begin{aligned}
& \text { mostly } \\
& \text { negative }
\end{aligned}
$$

Example: Determine the intervals of increase and decreasefor

$\frac{\text { Slope Chart }}{f^{\prime}(x)+}$ | $f^{\prime}(x)+++t++0$ | $-\cdots$ | 0 | $0+t+t$ | |
| :--- | :--- | :--- | :--- | :--- |
| | -4 | $\frac{-5}{2}$ | -2 | -1 |

$f^{\prime}(-4)=(-)(-) \quad f^{\prime}\left(-\frac{5}{2}\right)=(-)(t) \quad f^{\prime}(-1)=(+)(t)$

Example: The graph of $y=f^{\prime}(x)$ is shown below. Give the interval(s) on which f is increasing, and the interval(s) on which f is decreasing.

Question: In general, what does it mean to say that a function f has a local extreme value at $x=c$?

Question: Does every function have a largest value?

$$
\begin{aligned}
& \text { No Ex. } f(x)=x \text { for }-\infty<x<\infty \\
& \text { Ex. } g(x)=\left\{\begin{array}{cc}
1 / x, & -1 \leq x<0 \text { or } \\
7, & 0<x \leq 1 \\
7=0
\end{array}\right.
\end{aligned}
$$

Theorem: A continuous function f on a closed bounded interval $[a, b]$ has both an absolute maximum value and an absolute minimum value on the interval $[a, b]$.

This is the Extreme Value Theorem!!

Remark: If no interval is specified, then we have to assume
that all values of x are valid, so long as they can be put in that all values of x are valid, so long as they can be put in the function.

Note: These values of x are so important that we give them a special name... Critical Numbers.
Question: Can you identify the absolute extreme values of this function?

$$
\begin{aligned}
& \text { maximum or } \\
& \text { Minimum } \\
& (\underline{\text { Not local })}
\end{aligned}
$$

Question: In general, what does it mean to say that a function f has an absolute extreme value at $x=c$?

Question: What will be true about f^{\prime} at a value of x where f has a local extreme value?

$$
\begin{gathered}
f^{\prime}(x)=0 \\
\text { or } \\
f^{\prime}(x) \text { done }
\end{gathered}
$$

Critical Numbers

The value $x=a$ is a critical number for f if and only if a is in the domain of f and either $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.

We can classify critical numbers and critical points as either local maximums or local minimums by using the slope chart.

This is called the first derivative test.

Example: The graph of $y=f^{\prime}(x)$ is shown below. Classify the critical numbers of f.

Example: Find the criticalnumbers for the function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-6 x+2$.
Then classify each of the critical numbers as places where the function has a local minimum, local maximum or neither.

$$
f^{\prime}(x)=x^{2}+x-6 \text { polynomial forined for } x
$$

$$
\operatorname{set} f^{\prime}(x)=0
$$

$$
x^{2}+x-6=0 \Leftrightarrow(x+3)(x-2)=0
$$

