Approximating Riemann Integrals with Riemann Sums

- We are in chapter 5.
- New EMCFs and Homework are posted.
- You have an online quiz due and a practice test due tonight.
- Test 3 ends today.

Step 2: Break the approximation up into pieces based upon the partition.

$$
\approx f\left(x_{1}^{*}\right)\left(x_{1}-x_{0}\right)+f\left(x_{2}^{*}\right)\left(x_{2}-x_{1}^{*}\right)
$$

$$
+\cdots+f\left(x_{n}^{*}\right)\left(x_{n}-x_{n-1}\right)
$$

Step 3: Approximation each piece based by selecting a representative function value in each sub-interval.

$$
R^{1} \operatorname{van}^{m^{n n}} \ln ^{n} \longrightarrow
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} f\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
\end{aligned}
$$

Riemann Sum Methods for approximating

$$
\begin{gathered}
\int_{a}^{b} f(x) d x \\
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
\end{gathered}
$$

$P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a partition for $[a, b]$

$$
\Delta x_{i}=x_{i}-x_{i-1}
$$

$$
x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]
$$

Typical Riemann Sums

1. Upper Sum
$U_{f}(P)$

$$
\begin{array}{lr}
\text { 2. Lower Sum } & \text { Choose } x_{i}^{*} \text { so that } \\
\boldsymbol{L}_{f}(\boldsymbol{P}) & f\left(x_{i}^{*}\right) \leq f(x) \text { for } x_{i-1} \leq x \leq x_{i} .
\end{array}
$$

3. Left Hand Endpoint Method

$$
x_{i}^{A}=x_{i-1}
$$

4. Right Hand Endpoint Method

$$
x_{i}^{*}=x_{i}
$$

5. Midpoint Method

$$
x_{i}^{*}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)
$$

Regardless of the Choice of Partition P
$L_{f}(P) \leq \int_{a}^{b} f(x) d x \leq U_{f}(P)$
(and all other Riemann Sums are trapped between these 2)

Theorem: If f is a continuous function on the interval $[a, b]$, then

$$
\begin{gathered}
\lim _{|P| \rightarrow 0} L_{P}(f)=\int_{a}^{b} f(x) d x \\
\text { and } \\
\lim _{|P| \rightarrow 0} U_{P}(f)=\int_{a}^{b} f(x) d x
\end{gathered}
$$

See the lecture video for more discussion on this point.

Example:

Compute $U_{f}(P)$ and $L_{f}(P)$
for the function $f(x)=x^{2}-x$ on the interval $[-1,2]$ with
the partition

$$
P=\left\{-1,-\frac{1}{2}, 0, \frac{1}{2}, 1, \frac{3}{2}, 2\right\} .
$$

See the lecture video.
Compute Riemann sums using left hand end points and right hand end points
for the function $f(x)=x^{2}-x$ on the interval $[-1,2]$ with
the partition

$$
P=\left\{-1,-\frac{1}{2}, 0, \frac{1}{2}, 1, \frac{3}{2}, 2\right\} .
$$

See the lecture video.

Example:

Compute the Riemann sum using midpoints for the function
$f(x)=x^{2}-x$ on the interval
$[-1,2]$ with respect to the
partition
$P=\left\{-1,-\frac{1}{2}, 0, \frac{1}{2}, 1, \frac{3}{2}, 2\right\}$

See the lecture video.

