1. Use differentials to estimate $\sqrt{102}$.

Note: $\sqrt{100}=10$

$$
a=100
$$

$$
\begin{aligned}
f(x) & =\sqrt{x} \quad h=102-100=2 \\
\frac{d f}{\imath} & =f^{\prime}(a) h \quad f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \\
f(102)-f(100) & \approx f^{\prime}(a) h \\
\sqrt{102}-10 & \approx \frac{1}{20} \cdot 2 \\
\sqrt{102} & \approx 10+\frac{1}{10}=10.1 \nRightarrow
\end{aligned}
$$

2. Use differentials to estimate the maximum amount the radius of a circle can change in order to keep the area of the circle within .01 of 4π.

$$
\begin{gathered}
A(r)=\pi r^{2} \quad A^{\prime}(r)=2 \pi r \\
\text { Note: Area }=4 \pi \\
\left.\begin{array}{c}
11 \\
\pi r^{2}
\end{array}\right\} r=2 . \\
\begin{array}{c}
d A=A^{\prime}(2) h \\
\uparrow \\
.01
\end{array}=4 \pi h \Rightarrow h=\frac{.01}{4 \pi} \nRightarrow
\end{gathered}
$$

3. Verify the Mean Value Theorem for the function $f(x)=x^{3}-4 x^{2}-x$ on the interval $[0,2]$. $f^{\prime}(x)=3 x^{2}-8 x-1$
Find c so that $0<c<2$

$$
\begin{aligned}
& \text { and } \quad f^{\prime}(c)=\frac{f(2)-f(0)}{2-0} \\
& 3 c^{2}-8 c-1=\frac{8-16-2-0}{2} \\
& 3 c^{2}-8 c-1=-5 \\
& 3 c^{2}-8 c+4=0 \quad c=\frac{8 \pm \sqrt{64-48}}{6} \\
& c=\frac{8 \pm 4}{6} \quad c=\frac{2}{3}
\end{aligned}
$$

4. Find and classify the critical numbers of

$$
f(x)=3 x \sqrt{4-x}
$$

Domain: Need $4-x \geqslant 0$

$$
\begin{aligned}
& x \leq 4 . \\
& f^{\prime}(x)= 3 \sqrt{4-x}+3 x \frac{1}{2 \sqrt{4-x}}(-1) \\
&= \frac{6(4-x)-3 x}{2 \sqrt{4-x}}=\frac{24-9 x}{2 \sqrt{4-x}}
\end{aligned}
$$

C.N: $x=4$ AND $24-9 x=0 \Leftrightarrow x=\frac{8}{3}$

oc. max at $x=8 / 3$ floc. \min
 at $x=4$.
5. Find the absolute minimum value of the function $f(x)=3 x^{4}+16 x^{3}+24 x^{2}-1$ on the interval $[-1,1]$.
1.

$$
\begin{aligned}
f(-1) & =3-16+24-1 \\
& =10 \\
f(1) & =3+16+24-1=42
\end{aligned}
$$

2.

$$
\begin{aligned}
\text { Get C.N. in }[-1,1] \\
\begin{aligned}
f^{\prime}(x) & =12 x^{3}+48 x^{2}+48 x \\
& =12 x\left(x^{2}+4 x+4\right) \\
& =12 x(x+2)^{2} \\
f^{\prime}(x)=0 & \Leftrightarrow x=0 \text { or } x
\end{aligned}
\end{aligned}
$$

$$
f(0)=-1
$$

\therefore comparing $f(-1), f(1)$ and $f(0) \Rightarrow f$ has its abs min on $[-1,1]$ at $x=0$.
6. Find and classify the critical numbers of the function $f(x)=3 x^{4}+16 x^{3}+24 x^{2}-1$, and list the intervals of increase and decrease.

$$
\begin{aligned}
& f^{\prime}(x)=12 x(x+2)^{2} \\
& f^{\prime}(x)=0 \Leftrightarrow x=0 \quad \text { or } \quad x=-2
\end{aligned}
$$

C.N.: $\quad x=0, x=-2$.

$x=-2$ is neither a loo. max nor a loc.min
$x=0$ is a local min.
f is decreasing on $(-\infty, 0]$. f is increasing on $[0, \infty)$.
7. Give the intervals of concavity of the function $f(x)=3 x^{4}+16 x^{3}+24 x^{2}-1$, and list any values where inflection occurs.

$$
\begin{aligned}
& f^{\prime}(x)=12 x(x+2)^{2} \\
& f^{\prime \prime}(x)=12(x+2)^{2}+12 x \cdot 2(x+2) \\
&=12(x+2)[(x+2)+2 x] \\
&=12(x+2)(3 x+2) \\
& \text { Candidates for infl. } x=-2, x=-\frac{2}{3}
\end{aligned}
$$

Inflection at $x=-2$ and $x=-\frac{2}{3}$.
C.U.: $(-\infty,-2]$ or $\left[-\frac{2}{3}, \infty\right)$.
CD.: $\left[-2,-\frac{2}{3}\right]$
8. Graph the function $f(x)=3 x^{4}+16 x^{3}+24 x^{2}-1$.

Use the information from \# 6 and 7 .

12. Give the dimensions of the rectangle of largest area that can be inscribed in a semi-circle of radius 4 .

$$
\begin{aligned}
& x^{2}+y^{2}=16 \\
& y=\sqrt{16-x^{2}}
\end{aligned}
$$

$$
\text { Area }=2 x \cdot y=2 x \sqrt{16-x^{2}}, 0 \leqslant x \leqslant 4
$$

1. $A(0)=0, A(4)=0$
2. $A^{\prime}(x)=2 \sqrt{16-x^{2}}+2 x \cdot \frac{1}{2 \sqrt{16-x^{2}}}(-2 x)$

$$
\begin{aligned}
&= \frac{4\left(16-x^{2}\right)-4 x^{2}}{2 \sqrt{16-x^{2}}} \\
&= \frac{64-8 x^{2}}{2 \sqrt{16-x^{2}}} \\
& A^{\prime}(x)=0 \Leftrightarrow 64=8 x^{2} \quad x^{2}=8 \\
& x=2 \sqrt{2} \quad(\text { is btwn } \\
& \begin{aligned}
A(2 \sqrt{2})= & 2 \cdot 2 \sqrt{2} \sqrt{16-8} 4) \\
= & 4 \sqrt{2} \sqrt{8}=16 . \underset{\text { ABS. }}{\text { MAx }}
\end{aligned}
\end{aligned}
$$

