Midterm Exams: If you did not take your exam through CSD, then you can email yflores@math.uh.edu with the subject line "Please send me my graded midterm." Include your name and peoplesoft ID in the body of the email.

Recall: Linear Systems of Equations
Solution Process Via Elementary Row Operations
Review:

$$
\begin{aligned}
& \text { matrix Systems of linear equations } \\
& \text { have } 0,1 \text { or } \\
& \text { infinitely many sol'as. }
\end{aligned}
$$

Homogeneous vs Nonhomogeneous Linear Systems

$$
\begin{aligned}
& \text { Promos } \\
& \text { satin }
\end{aligned} \rightarrow A x=\vec{O}_{\text {zero vector }}
$$

(All of the ihs of equations are zero.
Note: $x=\overrightarrow{0}$ always solves.

$$
\text { Non homos systems } \quad A x=b \text { with } b \neq \overrightarrow{0} \text {. }
$$

Aside: Give a value of a so that the homogeneous system

$$
\left.\begin{array}{l}
\text { What the homogeneous }\left(\begin{array}{ccc}
-2 & 1 & 3 \\
1 & 1 & -1 \\
-1 & 2 & a
\end{array}\right) \frac{x}{=}=\overrightarrow{0} \\
\text { form } \\
\text { maris } \\
0 \\
0
\end{array}\right)
$$

has more than just the trivial ${ }^{3}$ solution.

$\xrightarrow[R_{1} \leftrightarrow R_{2}]{\text { Ang. Matrix: }}\left(\begin{array}{rrrr}-2 & 1 & 3 & 0 \\ 1 & 1 & -1 & 0 \\ -1 & 2 & a & 0\end{array}\right)$
ex.

$$
\begin{aligned}
x+a y & =0 \\
-3 x+2 y & =0
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & a & 0 \\
-3 & 2 & 0
\end{array}\right) \\
& 3 R_{1}+R_{2} \rightarrow R_{2}
\end{aligned}
$$

$3 a+2=0 \Rightarrow$ infinitely many solis (ie. There will be many nontrivial sol'ns)
27. For what values of a does the system

$$
\begin{aligned}
x+a y-2 z & =0 \\
2 x-y-z & =0 \\
-x-y+z & =0
\end{aligned}
$$

have nontrivial solutions?

Nobody said "use RREF"

"Review"
Row Reduced Echelon Form

see next pase.

I used the Matrix Calculator linked from http://online.math.uh.edu

The augmented matrix is
C 2, 3, 3, -1, 2;
$5 \begin{array}{ccccc}1, & -2, & 4, & 1, & -1 ; \\ -1 & 0 & 3, & 2, & 1 ;\end{array}$
$-1,0,3,2,1$;
R1 <-> R2 gives
(1.) $-2,4,1,-1$;

2,	3,	3,	-1,
-1,	0,	3,	2,
$1 ;$			

(-2)R1 + (1)R2 -> R2 gives
$1,-2,4,1,-1$;
$0,7,-5,-3,4 ;$
$-1,0,3,2,1 ;$
(1)R1 + (1)R3 -> R3 gives
$1,-2,4,1,-1$;

- $0,7,-5,-3,4 ;$
$0,-2,7,3,0 ;$
(1/7)R2 -> R2 gives
$1,-2,4,1,-1$;
$0,1,-5 / 7,-3 / 7,4 / 7$;
$0,-2,7,3,0 ;$
(2) R2 + (1)R3 -> R3 gives
$1,-2,4,1,-1$;
$0,1,-5 / 7,-3 / 7,4 / 7$;
$0,0,39 / 7,15 / 7,8 / 7$;
(2)R2 + (1)R1 -> R1 gives
$1,0,18 / 7,1 / 7,1 / 7$;
$0,1,-5 / 7,-3 / 7,4 / 7 ;$
$0,0,39 / 7$. 15/7, $8 / 7$;
(7/39)R3 $-\geq$ R3 gives
$1,0,18 / 7,1 / 7,1 / 7$;
$0,1,-5 / 7,-3 / 7,4 / 7$;
$0,0,1,5 / 13,8 / 39$;
(5/7)R3 + (1) R2 -> R2 gives
1, $0,18 / 7,1 / 7,1 / 7$;
$0,1,0,-2 / 13,28 / 39$;
$0,0,1,5 / 13,8 / 39$;
$(-18 / 7) \mathrm{R} 3+(1) \mathrm{R} 1->\mathrm{R} 1$ gives
$\begin{array}{lllll}1, & 0, & 0, & -11 / 13, & -5 / 13 ; \\ 0, & 1, & 0, & -2 / 13, & 28 / 39\end{array}$
$0,0,1,5 / 13,8 / 39$;

this is $_{\text {ref }}$ form.
Q: What does this tell us about

$$
2 x_{1}+3 x_{2}+3 x_{3}-x_{4}=2
$$

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+3 x_{3}-x_{4}=2 \\
& x_{1}-2 x_{2}+4 x_{3}+x_{4}=-1
\end{aligned}
$$

$$
-x_{1}+3 x_{3}+2 x_{4}=1
$$

$$
\text { A: } \begin{gathered}
-x_{1}+3 x_{3}+2 x_{4}=1 \\
x_{1}=\frac{11}{13} x_{4}-\frac{5}{13} \\
x_{2}=\frac{2}{13} x_{4}+\frac{28}{39} \\
x_{3}=-\frac{5}{13} x_{4}+\frac{8}{39}
\end{gathered} \Rightarrow\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
11 / 13 \\
2 / 13 \\
-\frac{5}{13} \\
1
\end{array}\right) x_{4}+\left(\begin{array}{c}
-5 / 13 \\
28 / 39 \\
8 / 39 \\
0
\end{array}\right)
$$

Row Reduced Echelon Form (RREF)

General Process: Apply elementary row operations to a matrix until

1. The first nonzero entry in each row (if there is one) is 1. (These are called leading entries.)
2. The leading entry in a row is to the right of a leading entry in a row above.
3. The entries above and below leading entries are all 0 .

Examples: Which of the following augmented matrices are in REF?

$\left(\begin{array}{lllc}1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right) \quad$ Mes

Example:
The RREF of the augmented matrix for the linear system

$$
\begin{aligned}
& -x_{1}+3 x_{2}+x_{3}-x_{4}=-4 \\
& -3 x_{1}+8 x_{2}+4 x_{3}-3 x_{4}=-14 \\
& 4 x_{1}-11 x_{2}-6 x_{3}+7 x_{4}=20
\end{aligned}
$$

is

$$
\begin{array}{ccccc}
1 & 0 & 0 & -11 & 2 \\
0 & 1 & 0 & -3 & 0 \\
0 & 0 & 1 & -3 & -2
\end{array}
$$

$$
\begin{aligned}
& \text { Solve the system. } \\
& \qquad\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
11 \\
3 \\
3 \\
1
\end{array}\right)+\left(\begin{array}{c}
2 \\
0 \\
-2 \\
0
\end{array}\right)
\end{aligned}
$$

where x_{4} is an arbitrary real \#.
infinitely mans Sol'ns.

$$
\leftrightarrow ?_{0} ?
$$

Let's see if $\left(\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right)$ is invertible. If it is, then find its inverse.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
2 & 3 & 1 & 0 \\
-1 & 2 & 0 & 1
\end{array}\right) \\
& G \text { RREF }
\end{aligned}
$$

See the video
"A is a real $m \times n$ matrix"

$A x=\left(\begin{array}{llll}\vec{C}_{1} & \vec{C}_{2} & \ldots & \overrightarrow{C_{n}}\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)=\underbrace{x_{1} \vec{c}_{1}+x_{2} \vec{c}_{2}+\cdots+x_{1} \vec{c}_{n}}$
Key phrase: linear combination.
linear combination
$\begin{aligned}\left(\begin{array}{ccc}2 & -1 & 3 \\ 1 & 1 & 4 \\ \uparrow & \uparrow & \uparrow\end{array}\right)\left(\begin{array}{c}-6 \\ 7 \\ 8\end{array}\right) & =\left(\begin{array}{l}(-6)(2)+(7)(-1)+(8)(3) \\ \text { of } \vec{c}_{1}, \vec{c}_{2}, \ldots, \vec{c}_{n} \\ (-6)(1)+(7)(1)+(8)(4)\end{array}\right) \\ \vec{c}_{1} & \vec{c}_{2}\end{aligned} \vec{c}_{3} \underset{x}{ } \quad=-6\binom{2}{1}+7\binom{-1}{1}+8\binom{3}{4}$.

The product is a linear combination of the 3 columns in the matrix.

Important Note: You can only solve $A x=b$ if b is a linear combination of the columns of A.

i.e. the columns of a matrix A are linearly independent if and only if the only solution to $A x=0$ is the trivial solution. Otherwise, the columns of A are linearly dependent.

Question

How is lincar independence related to solving $A x=0$?
i.e. the columns of a matrix A are linearly independent if and only if the only solution to $A x=0$ is the trivial solution. Otherwise, the columns of A are linearly dependent.

Determine whether the set $\left\{\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ is linearly independent.

1. Form

$$
A=\left(\begin{array}{rrr}
-1 & -2 & 1 \\
2 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

2. Solve $\Theta x=\overrightarrow{0}$

$e^{\circ} \cdot$ int. many solis.
$\Rightarrow A_{x}=\overrightarrow{0}$ has nontrivial sol'ns.
\therefore The columns of A are linearly dependent.
ie. $\left\{\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ is linearly dependent.

Determine the values) of c so that $\left\{\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{c}-2 c \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}c \\ -1 \\ 1\end{array}\right)\right\}$ is linearly independent.
2. "Solve" $A x=\overrightarrow{0} \quad$ (Really, just determine $\left(\begin{array}{cccc}-1 & -2 c & c & 0 \\ 2 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 0\end{array}\right)$ sol'n5

$$
\begin{aligned}
& \begin{array}{l}
2 R_{1}+R_{2} \rightarrow R_{2} \\
R_{1}+R_{3} \rightarrow R_{3}
\end{array}\left(\begin{array}{cccc}
-1 & -2 C & c & 0 \\
0 & -4 C+1 & 2 C-1 & 0 \\
0 & -2 C & c+1 & 0
\end{array}\right) u=c \\
& \text { (sc) } R_{2}+(-4 c+1) R_{3} \rightarrow R_{3} \\
& \left(\begin{array}{cccc}
-1 & -2 c & c & 0 \\
0 & -4 c+1 & 2 c-1 & 0 \\
0 & 0 & -5 c+1 & 0
\end{array}\right) \\
& \underbrace{(2 c)(2 c-1)+(-4 c+1)(c+1)}=4 c^{2}-2 c-4 c^{2}-4 c+c+1=-5 c+1
\end{aligned}
$$

Case 1: If $-4 c+1 \neq 0$ then we
get $\left(\begin{array}{cccc}-1 & -2 c & c & 0 \\ 0 & -4 c+1 & 2 c-1 & 0 \\ 0 & 0 & -5 c+1 & 0\end{array}\right)$.
Here we on'ygget the trivial solin iff $c \neq \frac{1}{5}$.

Case 2: If $-4 c+1=0$ then we
set $\left(\begin{array}{cccc}-1 & -\frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 5 / 4 & 0\end{array}\right)$
Only Yin trivial solis.
Combining: we only get the trinal sol'n when $C \neq \frac{1}{5}$.
ie.

$$
\left\{\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{c}
-2 c \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
c \\
-1 \\
1
\end{array}\right)\right\} \quad \text { is } \quad \begin{aligned}
& \text { Linearly } \\
& \text { inf } \quad \text { indepen dent } \\
& C \neq \frac{1}{5}
\end{aligned}
$$

EMCF06

1. Determine whether the set $\left\{\left(\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{c}-2 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ -3 \\ 1\end{array}\right)\right\}$
isinearly independent or linearly dependent.
a. line early independent
b. linearly dependent
c. there is not enough information

$$
A=\left(\begin{array}{ccc}
-1 & -2 & 1 \\
-2 & -1 & -3 \\
1 & 0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
-1 & -2 & 1 \\
-2 & -1 & -3 \\
1 & 5 & -6 \\
\text { int. solis }
\end{array}\right.
$$

$N a$ problem.
R_{2} and 33 are not Multiples of each other.
$\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c$
Determinants
How do we take the determinant of a 1×1 matrix?
$\operatorname{det}(a)=a \quad$ Just the entry
How do we take the determinant of a 2×2 matrix?
$\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c$
How do we take the determinant of an $n \times n$ matrix? value.

1. Pick a row. (expansion across the row you pice. Spae it is the

$$
\operatorname{det}(A)=\sum_{j=1}^{\frac{k+2}{n}}(-1)^{k+j} a_{k, j} \operatorname{det}\left(A_{k, j}\right)
$$ row and \rightarrow Th Column from A.

2. pick a column. (expansion down the column you pickle. Spae it Is the

$$
\operatorname{det}(A)=\sum_{j=1}^{\frac{\sum_{j}}{n}}(-1)^{k+j} a_{j, k} \operatorname{det}\left(A_{j, k}\right)
$$

Formed by; th removing the ${ }^{\text {th }}$
entries in the $k^{\underline{y} h}$ column. row ard k th Column from A.
 entries.

1. Expound down the $2^{\frac{\text { nd }}{}}$ column.

$$
\begin{aligned}
\operatorname{det}(A) & =0+(-1)^{2+2} \cdot 3 \cdot \operatorname{det}\left(\begin{array}{cc}
2 & 1 \\
-3 & 4
\end{array}\right)+0 \\
= & 3 \cdot(8--3)=33
\end{aligned}
$$

2. Expand across row 1.

$$
A=\left(\begin{array}{lll}
2 & 0 & 1 \\
-1 & 3 & 2 \\
-3 & 0 & 4
\end{array}\right)
$$

$$
\operatorname{det}(A)=(-1)^{1+1} \cdot 2 \cdot \operatorname{det}\left(\begin{array}{ll}
3 & 2 \\
0 & 4
\end{array}\right)+0+(-1)^{1+3} \cdot 1 \cdot \operatorname{det}\left(\begin{array}{cc}
-1 & 3 \\
-3 & 0
\end{array}\right)
$$

$$
=2 \cdot(12)+(0--9)
$$

$$
=24+9=33
$$

Questions (cont.)

Is there a geometric interpretation of the determinant of an nun matrix?

$$
2 \times 2 \quad \text { case } \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

3×3 case: we generate a parallel lopped.

$$
|\operatorname{det}(A)|=\begin{array}{|cc}
\text { volume of } \\
\text { the parallelopiped }
\end{array}
$$

In general: A non matrix

A acts on *his
set in \mathbb{R}^{n}

Spae your set is a circle.

$$
\begin{gathered}
\text { Area }=\pi r^{2} \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{r \cos (\theta)}{r \sin (\theta)}=\binom{\operatorname{arcos}(\theta)+b r \sin (\theta)}{c r \cos (\theta)+d r \sin (\theta)}
\end{gathered}
$$

You should

1. Watch the portion of The video posted earlier this weele dealing with determinants. Pure is a link between deternivats and ERO.
2. Watch the partition of video dealing with eigenvalues. and eigenvectors t the supplemental video.

Question

How do elementary row operations effect the determinant of a matrix?

Question

How is the determinant of a matrix related to the determinant of the transpose of the matrix? Of the inverse of the matrix (if it exists)?

Question

Suppose A and B are nxn matrices and α is a scalar. Determine which of the following are true:

- $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
- $\operatorname{det}(\alpha A)=\alpha \operatorname{det}(A)$

Questions (cont.)

How is the idea of determinant related to linear independence?

Definition

An nxn matrix A is nonsingular if and only if

EMCF06

2. Give the determinant of $\left(\begin{array}{ccc}2 & 1 & 1 \\ -1 & -1 & 2 \\ -3 & 0 & -2\end{array}\right)$.

Eigenvalues and Eigenvectors

Definition - Part 1

Suppose $A \in R^{n \times n}$. We say that a number $\lambda \in R$ is a real eigenvalue of A if and only if there is a nonzero vector $x \in R^{n}$ so that $A x=\lambda x$. In this case, the vector x is referred to as an eigenvector associated with the real eigenvalue λ.

Definition - Part 2

Suppose $A \in R^{n \times n}$. We say that a number $\lambda \in C$ with $\operatorname{im}(\lambda) \neq 0$ is a complex eigenvalue of A if and only if there is a nonzero vector $x \in C^{n}$ so that $A x=\lambda x$. In this case, the vector x is referred to as an eigenvector associated with the complex eigenvalue λ.

Question: How do we find the eigenvalues and associated eigenvectors of a real square matrix A ?

Definition: Characteristic Polynomial

Example

Find the eigenvalues and associated eigenvectors
for the matrix $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

EMCF06

3. Give the smallest eigenvalue of the matrix $\left(\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right)$.
4. Give the largest eigenvalue of the matrix $\left(\begin{array}{ll}3 & 2 \\ 0 & 2\end{array}\right)$.

Example

Find the eigenvalues and associated eigenvectors for the matrix $A=\left(\begin{array}{cc}-1 & 1 \\ -1 & -1\end{array}\right)$.

Example

Find the eigenvalues and associated eigenvectors
for the matrix $A=\left(\begin{array}{ccc}2 & -2 & 1 \\ 1 & -1 & 1 \\ -3 & 2 & -2\end{array}\right)$.

