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ABSTRACT

We use a stochastic birth-death process to model a multiple-agent competitive foraging task with

the goal of understanding the population’s dynamics and the evolution of phenotypes across gen-

erations. Agents forage for a limited amount of resources (food) in a finite domain. Speed of

movement and the acuity of their senses allow them to locate and reach resources. However, sharp-

ened senses and higher mobility are also metabolically costly. There is thus a trade-off between

the benefit imparted by a phenotype and the required metabolic cost to sustain it. We allow these

attributes to evolve by assuming that the phenotype of an agent and its descendants vary by a

small, random amount. We show that different phenotypes are selected dependent on the resource

generation rate. Semi-analytic and differential equation models can capture population dynamics

over time. We also discuss different conditions which lead to the co-existence of subgroups with

different attributes and incipient speciation.
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1 Introduction

Living organisms must compete for the available resources to survive and thrive in their natural

environment. This contest, both between members of the same species and members of different

species, often leads to adaptation and evolution. The evolutionary process drives the development

and refinement of different phenotypes over time. These phenotypes are characterized by different

attributes that include the type, range and acuity of the senses (hearing, vision, olfaction) that

enable the organism to perceive their environment, as well as the physical characteristics that

enable the organism to navigate the environment (agility, speed). Even though there has been a

significant amount of work done in studying the evolutionary process as a whole [21, 53, 81, 94],

comparatively little research has been dedicated to exploring the connections between the evolution

of different attributes within a single species.

Few quantitative methods are available to investigate whether and how evolution leads to trade-

offs between different phenotypic attributes of a species [34, 76]. Recent quantitative studies about

the relation between vision, hearing and olfaction based on anatomical sizes of sensory organs of

mammals suggest a correlation between vision and hearing [76]. Ontogenetic development of sensory

organs and their use are both metabolically expensive as sensory receptors and neuronal ganglia

require high adenosine triphosphate (ATP) consumption. This creates two contrasting evolutionary

pressures to either save energy by decreasing size and performances of sensory organs or demands

for higher energy cost in order to develop and maintain sensory organs with higher sensitivity [76].

Likewise high speed locomotion is metabolically costly [3, 40, 86] leading to similar evolutionary

pressures. Keeping in mind competition among organisms, limited resources and pressure to gain

and conserve metabolic energy, one must consider how changes in one phenotypic attribute will

affect others [7, 55, 56, 96].

Since the overall fitness of a species is in part determined by metabolic limitations, optimizing

all of its traits at once is highly unlikely [34, 55, 56, 92]. This is evident in nature since there

is no single creature that is superior to all others in every aspect. For instance humans, despite
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being arguably the most intellectually-advanced species on earth, are nowhere close to having the

best eyesight or the highest speed of movement in the animal kingdom. Here, we investigate, both

theoretically and numerically, the correlation between the evolution of two separate attributes:

speed and sensory acuity. In addition, we explore the relationship between the variations in these

attributes and the resulting changes in dynamics these variations usher over time in a controlled

environment with limited resources and extreme competition.

We develop a simple, abstract model that describes the ability of an organism to sense, and

its ability to physically explore and traverse the environment. Most organisms interact with the

world using their senses and organs that allow them to move, and interact with objects in their

surroundings. They can sense different aspects of the environment including heat, chemical compo-

sition, as well as light and vibration. All organisms also interact with the environment physically,

and have specialized parts to do so: From the flagella in bacteria, and the arms of hydra, to the

appendages of mammals. To capture these characteristics of living beings using an abstract model

we define acuity as a measure of an organism’s ability to detect an item of interest, such as prey or

any other (exhaustible) source of nourishment, in its vicinity. We do not specify the exact sense,

or combination of senses the organism might use to detect such items. We also introduce speed to

quantify the rate at which an organism moves through and explores its environment. We again do

not specify how the animal performs such movements: It could be swimming, flying, walking or

somersaulting.

Central to our model is the idea that both high acuity and high speed are costly. Better senses

require a larger number of receptors, and, even more importantly, a more extensive and metabol-

ically expensive processing system (e.g. nervous system) to process and interpret the information

communicated by the senses [76]. Similarly, higher speed not only requires more energy to achieve,

and maintain (due to, for example, friction or the need to dissipate heat generated during loco-

motion), but can also be the result of larger bodies and stronger limbs which again come with a

higher metabolic cost [38, 39]. There is also a trade-off between speed, maneuverability and motor

control which reduces the benefit of higher speed [21, 111, 114]. We develop a simple model to
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Figure 1: (A) An example of a potential trajectory of average attributes in phenotype space. In this
case the average speed and acuity do not converge to an equilibrium, but keep oscillating. (B)Under
some conditions a population starting with some random distribution of phenotypic attributes
converges under evolutionary pressure, and the final population can consist of individuals with
closely related phenotype. (C) Under different conditions, a population can consist of individuals
that exhibit a trade-off between the attributes, or (D) the population can split into two groups
with different pheontypes. Light blue dots represent random initial phenotypic attributes.

examine some fundamental questions (see Fig. 1): Under what environmental conditions can we

expect the evolution of specialized organisms that have acute senses, and/or travel at higher speed?

Do some environments lead to the evolution of one attribute at the expense of another? Under our

assumptions can some environments lead to speciation and support, for example, a few members

of a fast species with acute senses and high metabolism, and many slow, obtuse organisms with a

low metabolisms? We also explore the dynamics of populations and their attributes to see whether

they exhibit oscillations over generations, or whether they approach a stationary distribution.
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1.1 Notations and Definitions

Our model describes how a group of agents (organisms) interact with the environment and each

other. The agents and the environment are described using several features that are abstractions

of different characteristics shared by most living beings, and parts of the environment they interact

with. In the model agents are confined to a two-dimensional domain, and expend metabolic energy

to locate resources and move towards them in order to consume them. Our model consists of the

following components and characteristics which we define precisely in the following chapters:

• Resources: We assume that resources that can be consumed by the agents are distributed

throughout the environment. These resources are renewable, and generally appear at random

points in the domain at a fixed rate per unit area. We assume that each resource, when

consumed, provides a fixed amount of metabolic energy (F ) to an agent, energy that can be

used for movement or sensing. We assume that the value F represents the metabolic energy

that can be used for sensing and movement, which will be lower than the total caloric value

of the resource.

• Speed: We define the Euclidean Distance that an agent travels in a unit of time as the

agent’s speed. We assume that movement requires a speed–dependent amount of metabolic

energy.

• Acuity: We measure an agent’s ability to locate a resource using acuity, defined as the radius

of the disc around an agent throughout which the agent can sense (locate) a resource. In other

words, this is the maximal distance at which an agent can “see” a resource 1. Higher acuity

requires a higher rate of metabolic energy expenditure.

• Foraging: Foraging is the process of searching for resources which includes random motion in

the domain to find the resource and motion towards a detected resource in order to consume

it.

1although we will sometimes say that the agent “sees” a resource, the model is agnostic about the particular sense
or combination of senses that an agent uses to locate resources.
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• Run (flight) length: The distance covered by an agent in a straight line with constant

velocity before changing direction while exploring the environment. Agents move in straight

lines, but turn occasionally. The turns occur according to a Poisson process with a fixed

average distance, so that faster agents turn more frequently.

• Cost of Motion: Agents use metabolic energy as they move and sense the environment.

Since we assume that agents always move in an effort to collect resources, the cost of motion

is the rate at which energy is expended both for sensing and movement.

• Metabolic score of an agent (MS): The metabolic energy available to the foraging agent.

The score increases every time an agent collects a resource, and decreases during other times

at a rate determined by the agent’s speed and acuity.

• Birth: In the full version of the model we will assume that each agent with a sufficiently

high metabolic score can reproduce asexually resulting in the birth of a new agent.

• Phenotypic vector: A pair of attributes that determine the phenotype of each agent. Phe-

notypes are assigned at the beginning of the simulation, and at each birth. At the beginning

of the simulation phenotypic vectors may be identical for all agents or they can be sampled

from some distribution.

• Dispersal distance: This is the displacement of individual agent from its natal location

(co-ordinate). When an agent is born, it takes the same location as the parent or disperses

to a new location in the vicinity of the parent.

• Phenotypic variance: Phenotypic variance is the variance among phenotypic vectors which

measures the diversity across the population. Such variability is needed for evolution [16].

• Mutation: A mutation results in a difference (usually very small) between an agents’ phe-

notypic attributes at birth and those of its parent. Mutations generate phenotypic variance

and can increase such variance in the population.
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• Death: We also assume that agents die at a rate that is dependent on an agent’s metabolic

score. Agents with a low metabolic score die at a higher rate.

These features are not meant to capture the full diversity of foraging modes, and environmental

interactions that characterize even simple organisms. However, they allow us to define a somewhat

tractable model of foraging that captures essential features of the process, the basic attributes

necessary for foraging, and how these attributes can evolve over generations.

1.2 What Is Foraging?

Foraging or searching is one of the most ubiquitous behaviors in nature. Organisms must forage

for food and shelter as these are essential for survival and reproduction [98, 99]. Foraging consists

of learning, communication, statistical inference and decision making which provide opportunities

to optimize rewards under environmental and physiological constraints. Thus the ability to forage

is one of the determinants of fitness, and foraging is fundamental to natural selection [68].

Births, deaths, immigration, and emigration are the elementary processes that determine pop-

ulation dynamics. When viewed from the perspective of the consumer, the resources it gathers

through foraging partly determine its fitness since they determine the probability that the organ-

ism will survive and proliferate. In turn, the survival and proliferation probabilities of individual

organisms determine changes in population size. Decisions to disperse or shift habitats also affect

population dynamics, and these factors may differ from one environment to the next (we will not

consider immigration and emigration here). The relationships between foraging decisions and de-

mographic rates thus link foraging theory and population dynamic theory [98]. It is possible that

several different species’ dynamics are closely related to the foraging choices made by one species.

For instance, predator foraging choices can have a significant impact on the mortality rates of prey

species. Such dynamics are often described and determined by Lotka-Volterra equations (Eq. (1))

for two interacting species as predator and prey [108].

dm

dt
= αm− βmn,

dn

dt
= γn+ δnm, (1)
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where, n is the number of predators, m is the number of prey, and α, β, γ, δ are parameters which

describe the growth rates and interactions between the two species.

The choices of competitors in foraging can also change the resource availability for competing

species that share a common resource. All of these indicate that foraging choices can influence and

drive population dynamics. Thus, foraging behavior impacts population dynamics and also has

complementary impacts on foraging behavior itself.

While population dynamics is strongly determined by foraging behavior, the evolution of such

behaviors themselves are directed by external factors like resource availability. The uncertainties

and variations of resource availability shape foraging strategies. Any fluctuations in resource ac-

cessibility or unstable prey population dynamics, which are spatial or temporal in nature, can

produce an unstable resource environment for the species which rely on these resources for food.

For instance, the effect of temporal variation in the abundance of preferred prey type on a forager’s

decision is to be selective or opportunistic [98]. Phenotypes with attributes that are able to support

effective foraging in an unpredictable environment can be better at surviving and reproducing, and

thus have higher fitness.

Effective foraging always comes with a question: What is the best strategy organisms should

follow to locate and exploit resources in an environment? This question becomes more relevant

when the organisms have limited sensory capacities and when resources are rare. Random search

models are typically used to describe animals foraging for food or other resources [24, 112]. In these

models, one or more agents (organisms) search a landscape to identify targets whose positions are

unknown at the outset. The agents’ movements are subject to other external or internal limitations,

such as the environmental context of the terrain or the individual’s physical condition, and are

characterized by a particular search strategy. The success of the strategy is also determined by

the distribution of resources in the environment: Rare and patchy resources will typically require

different search strategies than resources that are abundant and evenly distributed [9, 73, 106, 107].

In response to such limits on the movements, and variations in resource distribution, evolu-

tion can lead to the emergence of a strategy or strategies that optimize search efficiency [20]. In
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foraging theory, it has often been asserted or assumed that the flight lengths of a forager have a

characteristic scale with a well defined variance taken from Gaussian, Rayleigh and other classical

distributions [106, 107]. These distributions of flight lengths influence the efficiency of exploration,

impact the resource encounter rates, and can dominate the overall foraging efficiency. Therefore

foragers may adopt a strategy suited to their environment or may enhance their efficiency by em-

ploying flexible strategies to explore unpredictable environments. The following are some common

search strategies used in models and based on random walks with variations in the distribution of

flight lengths:

(a) Brownian motion and random walks.

Brownian motion is the movement of suspended particles in a fluid medium, which is caused

by collisions with the molecules of the medium and occurs in a random and continuous fashion.

The movement represented by an abstract mathematical model describing this phenomenon is

also known as Brownian motion [30]. A stochastic process that describe the path where each

step and directions are taken from some particular distributions, is known as a random walk.

Random walk processes can be used to model diffusion process as the expression of Brownian

motion [24]. It is common to model movement of biological systems using random walks.

This is a vast and expanding area of applied mathematics, particularly in ecology (animal

movements) and cell movements [67]. Animal movements in search of food, resources, shelter,

and population redistribution and dispersal are often modeled and simulated using random

walks.

When a forager selects a random direction and moves in a straight line in that direction until

it finds a resource, this type of movement is termed ballistic motion. In ballistic motion, a

forager changes the direction only when it finds a resource. The path between two successive

foraging successes is a straight line and the velocity is constant during that motion. Instead

of moving in a straight line until finding a resource, if a forager selects a distance from a fixed

probability distribution, moves up to that distance or until finds a resource, and selects a new
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direction and new step length, the resulting search strategy constitutes a random walk. When

the direction of the current step is independent of the previous steps’ length and directions,

the random walks are called uncorrelated and unbiased random walk (UCRW). UCRWs are

the first simple model of movement where each location depends only on the location at the

end of the previous step. The location of an agent at the end of each step thus satisfies

the Markov property. The motion is unbiased due to the absence of a favored direction; each

step’s movement is independent from previous directions. A UCRW on an infinite domain can

be rescaled appropriately, and by “zooming out” such a random walk converges to Brownian

motion [24]. On the other hand in correlated random walks (CRWs) successive steps have

correlated directions and/or lengths. This may create a bias towards a particular direction for

some time. However, unless correlation is perfect, this bias weakens over time to eventually

have a uniform distribution of directions. When there is a consistent bias in direction, the

probability of net displacement in that direction will be greater resulting in a drift-diffusion

model (See Appendix A).

(b) Lévy walk.

Studies of foraging movement have shown that animals can exhibit unique patterns of foraging

when they have no or little prior knowledge of food location [9, 89, 106, 107]. The patterns do

not resemble Brownian motion or a random walk. Sometimes, foragers travel large distances

in a single direction followed by a sequence of much shorter excursions (see Fig. 2B) This

tactic can allow foragers to quickly obtain food in an unfamiliar area, particularly when the

food distribution is patchy. It has been analytically demonstrated that the best approach

for random searches is a model in which distance between two successive directions changes

follows inverse-square power law distribution [9, 106].

Studies have shown that the distances that animals travel can follow a power–law distribu-

tion. The flight lengths, ηj , associated with target searching are said to follow a power law
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Figure 2: Foraging strategies in an unknown resource distribution environment; (A) Brownian
motion, (B) Lévy walk, and (C) run-and-tumble motion.

distribution if

P (ηj) ∼ η−µj ,

where ηj is the step length and 1 < µ ≤ 3 is a parameter [106]. Choosing µ < 1 does not

give a probability distribution which can be normalized, unless it is truncated at some finite

value [23]. For µ = 1, the resulting random walk becomes ballistic motion. Similarly, when

µ > 3, asymptotically the resulting random walk approaches Brownian motion.

Lévy walk paths are self–similar, fractal and scale free. A forager following a Lévy walk

strategy does not have to adjust its range of motion to the environment under consideration.

Therefore, a Lévy walk describes animal movements in a flexible and concise manner. Re-

gardless of the value of µ chosen, a Lévy walk leads to more efficient searches when target

sites are sparsely and randomly distributed because the probability of returning to a previ-

ously visited location is lower than for a Gaussian distribution. The foragers might follow

Lévy walks because N Levy walkers cover a larger areas, and overlap less in their searches

compared to N Brownian walkers [9, 106].

Although the theoretical research on Lévy walk search optimality has had a significant impact,

there are still a number of significant areas of ambiguity. Some authors believe that non-Lévy
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processes could be misidentified as Lévy process, and vice-versa, due to the limitations on

sampling of paths that do not reflect actual movements [6, 85]. Others claim that Lévy

walks with the parameter µ ≈ 2 can offer a foraging efficiency that is higher than other

exponents [84].

(c) Run–and–tumble motion

The motion of animals varies according to the shape and behavior of the organism, and

is shaped by their habitats. For instance, E. coli is one of several bacterial species that

propel themselves by alternating between ‘runs,’ or periods of practically straight-line travel

at nearly constant speed, and ‘tumbles,’ which are sudden and rapid changes in direction that

happen stochastically at an approximately constant rate [12, 102]. E. coli cells are shaped

like rods with hemispherical end caps and long, helical filaments called flagella. The direction

in which these flagella rotate is controlled by intra-cellular signals, and thus determines the

direction in which the cell can move, and the speed of movement [12]. Computational and

analytical models for such run–and–tumble motions have been derived on the basis of following

observations [12, 52, 109, 102]:

1. The runner moves in a straight line during a ‘run.’

2. Run velocity is approximately constant, and ‘tumble’ duration is negligible compared to

run times.

3. The position of the bacterium does not change during a ‘tumble.’

Such models often also assume that the duration of runs follow an exponential distribution [12].

Let s be the average linear speed of a cell during a run, fη, the tumbling frequency or reciprocal

of the average run length time, t̂, then the average cell run distance, η, (displacement between

two consecutive tumbles) is given by,

η = s · t̂,
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and the measure of motion, also called the motility coefficient2, is given by

µ0 =
s2

nDfη(1− cos θ)
(2)

where nD is the dimensionality of the system and θ is the average turn angle between succes-

sive runs [79, 82, 90, 109]. Eq. (2) relates population and single-cell parameters. Even though

there are other parameters involved, the run and tumble motions can be well described by

two stochastic variables s(t) and ψ(t) where s(t) is speed and ψ(t) = cos θ(t) is the direction

change during tumble. In such cases, the statistical properties of run and tumble motions can

be described by a Langevin equation for the variables (s, ψ) with particular control parameters

as [31, 32];

ds

dt
= λ0 [s− ss(β)] + ζs(t) and

dψ

dt
= ρ [1− γ sin δθ] + ζψ(t)

where λ0, β, γ, δ and ρ are control parameters, ss is steady state speed, and ζs and ζψ model

Gaussian noise.

There are many experimental findings that have been used to support theoretical investiga-

tions of run and tumble motion in self-propelled microorganisms [12, 32, 79]. Though we

do not restrict ourselves to the movement of any unicellular or self-propelled organisms, we

consider movements in our model as ‘run–and–tumble’ motion.

1.3 Energy Cost of Physiology and Locomotion

All organisms require energy to live. Metabolic processes in living organisms include the transfor-

mation of energy from one form to another. Different parts of the body go through these metabolic

processes at varying rates, and an animal’s activity also affects its metabolic rate. Metabolic ac-

tivity is also essential for the assimilation of food required for products like amino acid and other

2the ability of living systems to move and carry out mechanical work at the expense of their metabolic energy is
known as motility [5].
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nutrients necessary for life. The synthesis of significant amounts of biomass and energy is necessary

for cell division and reproduction, which are both metabolically costly processes. Thus, it is not

surprising that a cell’s decision to begin dividing is influenced by both its metabolic state and the

presence of nutrients [46]. Moreover, organisms which require less metabolic energy for maintenance

and have efficient metabolic process are likely to survive and proliferate [15, 100].

In mammals the metabolic energy used by sense organs, the transport of information and neural

processing of that information is high. The visual system, for instance, demands a high amount of

energy [51, 64, 75, 110]. A significant amount of energy is required to maintain the basic function

of the brain. The energy required by tissues other than brain, are highly variable. However, the

metabolic energy used by the brain varies much less and resting energy required in the brain is a

considerable part of total energy consumed [64]. Thus, use or nonuse of sensory systems does not

make a significant difference in metabolic energy cost. Hence, the metabolic energy cost related to

the acuity of the different senses can be a large proportion of an organism’s energy expenditure,

whether the organisms is actively engaged in sensing or not.

The minimal energy required per unit time when an animal is at rest is known as basal metabolic

rate (BMR). This means that it includes the energy required for proper cellular functions, neuronal

activity in animals with brains, and other processes that consume energy while the animal is at

rest. BMR is considered as a baseline to make comparison of energy expenditure during physical

activities, however one needs to consider conditions like thermoneutrality. The animal must be in a

complete rest state while measuring BMR. In one of the earliest attempts, Kleiber concluded that

BMR is proportional to the animal’s mass raised to the power 3/4 [49]. There have been many

refinements of Kleibler’s conclusion, but in all cases BMR was found to scale sublinearly with mass.

Regarding the energetics and mechanics of animals’ terrestrial locomotion, Heglund et al. (1981)

concluded that the mechanical power P expended by a bird or mammal per unit mass is given

by [29, 39, 103],

P

M
= 0.478 · s1.53 + 0.685 · s+ 0.072 (3)
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where s is average ground speed and M is the mass of the animal.

This equation is independent of mass on the right hand side and hence, can be applied equally

to a small or a large animal [39].This equation also shows that total mechanical work performed per

gram of muscle increases with increase in speed. Experiments based on the oxygen consumption by

different animals show that metabolic cost of transport is also proportional to a power of animal’s

mass so that the metabolic power required for walking, running or swimming is proportional to

(body mass)α × (speed)β depending on the environment. Alexander, et al. concluded that the

powers in this expression satisfy α < 1 and β ∈ (2, 2.8) [2, 3, 4]. However, for animals moving in a

similar environment in similar ways, mechanical cost of transport, that is {power/(mass× speed)},

is independent of body mass for specific modes of walking and running [2, 3, 4].

Since, animals don’t often spend a lot of time at their BMR, the field metabolic rate (FMR),

which measures how much energy an animal uses while roaming around in its natural habitat,

is a more useful metric of energy consumption during exploration and foraging [71]. The FMR

measures an animal’s overall energy expenditure, sheds light on its energetic strategies and hence

includes the implicit energy costs of other sensory activities. For example, animals not only expend

energy while in motion but also expend energy on the sensory mechanisms that allow them to

extract relevant information from their environment. From the sensors of unicellular organisms’

used to sense nutrient substrates, heat, light etc. to the sensory systems of mammals composed of

million of neurons, all use a significant portion of an organism’s energy budget [110, 51, 75]. Hence

a general model of energy cost for foraging must account for all such implicit energy expenditures.

In motile unicellular organisms, metabolic cost for motion is also a significant part of their

total metabolic cost. For instance, in the absence of flagella, soil bacteria P. putida adapt faster

and are more resistant to oxidative stress, presumably because of the negative metabolic impact

of the flagella [61]. As a result, flagellar motility serves as an example for the classic trade-off

that occurs when gaining environmental benefits comes at a high metabolic cost. The average

metabolic cost for run–and–tumble motion of flagellated bacteria is proportional to the square of

speed [66]. Flagellar size and number can impact drag, and determine the resources required to
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maintain them. However, they also determine speed and stability of the direction of motion. Thus

both the metabolic cost and the benefit to a bacterium is a function of flagellar length and number,

as well as the properties of the environment [66]. With these available methods and applications

to scale the metabolic cost of locomotion, we, in our model, devise cost of motion as the function

of square of speed.

1.4 Optimal Foraging Theory

Organisms forage for food in order to gain sufficient energy and resources to survive and reproduce.

The study of how organisms can best use food resources to optimize their chances of survival and

reproduction is known as optimal foraging theory. Spatially implicit patch-use models that highlight

the impact of various patch-leaving criteria on foraging effectiveness have historically dominated

this research. Optimal foraging theory was introduced to the field of ecology in order to determine

which types of food should make up a species’ diet and which patches it should feed on to function

in the most economical way [28, 57]. The assumption is that animals have to strike a balance

between two opposing strategies: investing a lot of time and energy into finding highly rewarding

food sources, or investing little time and energy and rely on more common but potentially less

rewarding food sources. Animals whose behavioral strategies increase their net energy intake per

unit time spent on foraging are favored by natural selection [28, 57]. Optimal foraging theory

also uses the marginal value theorem, that explains the process of exploitation of discrete resource

patches [19, 87], however the process of finding such patches is often ignored.

Some classical models of optimal foraging theory [19, 28, 57] consider foragers in environments

of resource patches. These patches can differ in resource density and quality. The average time

required to travel between patches is often fixed and the probability of revisiting the same patch is

zero in a short period of time. The proportion of a particular patch type present in the environment

determines the probability of visiting that patch. Since resource availability and consumption

decrease as resources are exhausted continuously from the patch, a forager acts in accordance with

the marginal value theorem to maximize its rate of overall resource intake. The ‘marginal value
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theorem’ states that “the forager should leave the current patch when its rate of resource intake in

that patch is equal to the expected rate of resource intake, calculated as the average rate throughout

the foraging area” [19]. The second rate depends on the probability that the organism will find

another patch upon leaving, and the resources available in the new patch.

Most optimal foraging theory based studies demonstrate their effectiveness through quantitative

evidence. However there have been some criticisms of these models’ validity and limitations. Since

the optimal model represents foraging as a deterministic process and some theoretical approaches

ignore the inherent stochasticity of the foraging environment, information on patch quality and

expected resource uptake rates as deterministic parameters is circular and even incomplete [77, 87].

Optimal foraging theory assumes that the organisms’ foraging strategies is improved via natural

selection [28, 57], however natural selection is a passive process that selects for genetically based

features that improve an organisms’ reproductive success rather than an all-powerful force that

creates ideal designs [83, 87]. Similarly, the assumption that foraging behaviors are independent

from other traits may not hold as organisms are integrated systems as opposed to associations

of non-interaction pieces [83]. Simple stochastic models can be used to solve complex foraging

problems. Optimal foraging theories based on stochasticity and random walk approaches in general

should enhance biologically precise modeling by highlighting congruity in search strategy design [10,

77, 107].

In patchy resource environments, a hybrid foraging model which uses both random search and

informed motion based on the memory can appropriately predict the process of searching for food.

In such a mixture model, a forager can estimate patch locations incrementally and store positional

target information with few parameters. In some cases, a hybrid model can result in motion

that resembles Lévy walks. Depending on the strength of the memory effects, foragers optimize

search efficiencies by continuous re-visitation of non-destructive3 targets [73]. To understand the

mechanisms behind the general rules for patch leaving decisions given by optimal foraging theory, a

Bayesian approach has been used which treats patch leaving behavior as a statistical inference and

3forager may visit and collect the resource from the same target site many times.
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decision problem. This recent approach uses probabilistic sequential updating and derives stochastic

differential equations about expected resource replenishment rate in the current patch and thus

generates analytically tractable models associated with optimal patch leaving strategies [47].

As we examine the changes in population and attributes over time, we also consider a resource

environment on which resources are distributed in patches within the foraging space. However,

we’re not trying to determine the best strategy for staying on any particular patch. Instead, since

the patches in our model change over time, we’re focusing on the agents’ capacity to locate and

exploit these patches, how this affects their fitness, and how it ultimately impacts the evolution of

their attributes.

1.5 Stochastic Birth-Death Processes and Evolution

Evolutionary dynamics is determined by the probabilities of births and deaths in a population.

Only populations of reproducing individuals can undergo evolution. Since changes in population

due to birth and deaths describe who survives and who does not, such changes affect which traits

evolve over time. However, some ecologists who study population dynamics ignore the prospect of

evolutionary change affecting the creatures they are investigating due to the challenges to grasp

the effects of continuously changing interactions between populations [104]. Population dynamics

models often assume that evolutionary processes move too slowly compared to ecological scales.

However recent studies have challenged these assumption and claim that population and evolu-

tionary dynamics may progress on similar time scales [65, 104]. These studies assert that the

relationship and interactions between population and evolutionary dynamics are important and

hence any population or evolutionary dynamics model must include the interplay between them.

Simplified population growth models are often described using non-linear population models.

The best known is captured by the logistic growth equation:

dx

dt
= α x

(
1− x

K

)
(4)
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where α is the intrinsic growth rate, x is the population density, and K is the carrying capacity

of the environment. This equation which accounts for competition among the member of similar

species, has been extensively employed to describe and predict a wide range of growth process.

The parameter K in Eq. (4) is due to environmental factors and can be experimentally determined.

The logistic equation describes how a stable population is reached after exponential growth in an

environment with limited resources and other constraints.

Two (or more ) competing species can be modeled by extensions of the logistic growth equa-

tion, of which the Lotka–Volterra equation (Eq. (1)) is a special case. In addition to describing

intraspecies competition, Lotka–Volterra equations also describe how the presence of competitive

species affects the growth of both species. A more general form of Eq. (1) can be written as;

dx1
dt = x1 (α10 − α11x1 − α12x2)

dx2
dt = x2 (−α20 + α21x1 − α22x2) .

(5)

where x1 and x2 are prey and predator densities respectively. The parameter α10 > 0 is the prey

growth rate, α11 and α22 are intraspecies competition rates, and α20 is the death rate of predators.

Using the Lotka–Volterra system to model the population dynamics driving evolutionary pro-

cesses requires addressing several challenges. First, the dynamics of Lotka–Volterra systems are

not stable and often display divergent extinction of one species or cyclic oscillation. This diver-

gent extinction of one species is also seen in the stochastic version of the Lotka–Volterra equa-

tions [63]. Contrary to most natural predator-prey interactions, which occasionally display stable

and sustained coexistence, we do not have a solution for asymptotic stability in Lotka–Volterra sys-

tems [63, 101]. Secondly, to solve these models (Eqs. (4) and (5)) the parameters and interaction

rates due to ambient features must be known. The utility of both models depend on the reliability

of experimentally determined parameters and rates. In a population, individual characteristics

like phenotypes, genotypes and other physical states determine birth-death and interaction rates,

however such rates also depend on a variety of other factors, including their own characteristics,

those of competing individuals from similar or different species, and the environment. Therefore,
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as populations and the environment change through time, birth–death and interaction rates often

fluctuate as well. Hence, knowing how these rate changes as the environment changes is essential

to understand the evolutionary dynamics that is driven by the underlying birth and death process

in the populations.

The evolutionary dynamics driven by a birth–death process depends on birth and death rates

which are in turn determined by a combination of phenotype, environment and interactions with

other organisms. These rates are not experimentally derived, constant parameters but rather

dynamically changing functions of current states and hence they need to be updated after every

event. Sequences of births and deaths describe a stochastic process in which the configuration of

population changes with every birth or death. A mechanistic approach based on the fundamental

events of births and deaths occurring in individual organisms has been proposed in order to build

a generic model of evolution [27]. This approach consists of a population of types4 of individuals

x1, x2, . . . , xn(t), where xi is the type of i-th individual, n(t) is population size at current time

t. If bi(t) and di(t) are the birth and death rates of individual i at time t, then these become

complicated functions of ‘internal’ and ‘external’ states at time t, given by:

bi(t) = bi (xi, E(t))

di(t) = di (xi, E(t)) .
(6)

where E(t) consists of external(environmental) factors like competing species, resource environment

and other abiotic factors.

After each birth or death event, the configuration of the population changes. When an individual

is added to the population through a birth, the offspring type is determined by several factors like

the parents’ type, mutation/recombination, environmental factors 5, etc. In a simple birth process,

the newborns have the same phenotype as their parents. The effect of mutations can be modeled

by selecting the phenotype of the descendants from a distribution that is centered around at the

4here ‘type’ characterizes individuals by phenotypic or genotypic differences.
5for example, the sex of some reptiles at birth is influenced by the ambient temperature.
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parents’ phenotype. In this way variability is introduced into the population. Phenotypes that

provide a reproductive advantage will be more likely to take over the population, and dominate,

unless variability is too high. Thus births, deaths and phenotypic variability in the population

drive evolution. The resulting dynamics can be shown as a cloud of points that moves around in

‘phenotype’ space [27]. Individuals are represented by the points in this cloud, which moves as

some of the points vanish and new ones appear in other places (see Fig. 1). Hence, the evolutionary

dynamics are represented by the cloud’s collective movement.

1.6 Evolutionary Constraints and Trade-offs

An evolutionary trade-off occurs when evolutionary processes advance one characteristic of an

organism at the determent of another. Trade-offs are the process by which one feature is improved

at the expense of another trait [34, 92, 93]. There is broad agreement that resource constraints

(such as those related to energy, habitat/space, or time) prevent the simultaneous optimization of

multiple features. Rather the process can be viewed as optimization under constraints. As a result

improvement of one attribute which increases fitness may impact another attribute whose impact

on the animal’s fitness may be smaller than that of the first attribute [34].

In evolutionary biology, predicting traits always requires discussions of trade-offs. Fitness trade-

offs limit and influence the evolution of traits to maximize survival and fertility. Statistical cor-

relations and functional relationships are often included in the trade-off, and have been observed

in many examples of life history6 traits [92, 113]. The impacts of trade-offs on organisms can be

proximate or ultimate. These have been examined at various levels, including the population level

to understand how trade-offs affect ultimate evolutionary trajectories, and the mechanistic level to

understand proximate causes. Some important categories of trade-offs that are frequently discussed

in the literature to classify and study it are allocation constraints, functional conflicts as well as

physiological and ecological circumstances [34].

There are allocation constraints when the overall amount of a resource is limited, making it

6the general characteristics of the life cycle, such as the rate of growth, the age of maturity, the length of life, and
the frequency of reproduction, are included in the life history.
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necessary to reduce allocation to one attribute or trait in order to increase allocation to another.

In biological system, the case is more complicated and multiple hierarchical constraints exist. Con-

straints relating to resources, however, may not result in trade-offs unless the organism is fully

utilizing these resources. Trade-offs can result from functional conflicts when features improve the

performance of one task while degrading the performance of another [42]. For example, higher

speeds are beneficial to flee from predator yet detrimental to manoeuvrability and motor con-

trol [111]. Similarly integrator molecules, which simultaneously influence several attributes through

numerous biochemical and physiological pathways, can have both positive and negative effects on

fitness-related traits [34].

The trade-off between costs and benefits is created also by selective pressures7, and this trade-

off eventually affects the fitness of the organism. Like other systems, the nervous system too is

under selective pressure to produce adaptive behavior, but it also has costs associated with how

much energy it uses. For instance, the total energy budget of an animal as well as the way energy

costs are distributed throughout the nervous system both serve as constraints on the amount of

energy that can be used for sensory processing. This affects the evolution of sensory systems,

causing trade-offs between sensory systems encoding different modalities [75]. However in some

cases, the sensory systems are interconnected in such a way that there is a correlation, and possible

cooperation between different senses [76]. Indeed, when a model is defined by only two traits,

then the ecological and evolutionary dynamics are influenced by possible co-operation or trade-off

between these two traits. In the absence of other infringing factors, a simple bivariate correlation

between two traits can be used to measure the trade-off between them. Although such an analysis

can be easily expanded to trade-offs involving three or more traits, we only address a trade-off

involving two traits for the sake of simplicity.

Based on the phenotypic variances and covariances, we can characterize the trade-off function

7selective pressure is any external or internal factor for certain phenotypes that result in survival benefit or
disadvantages.
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as follows [92, 93]:

a =

(
µa −

σPsa

σ2Ps

µs

)
+
σPsa

σ2Ps

s (7)

where µs and µa are mean values of traits speed (s) and acuity (a) respectively; σPsa is the pheno-

typic covariance between s and a, and σ2Ps
is the phenotypic variance of trait s.

This dissertation deals with constraints and trade-offs between attributes. For example, mod-

eling foraging with ‘run and tumble’ search requires the agents to be equipped with attributes like

speed and acuity. Due to competition, limitation of resources and expense of energy for traits,

there is a constraint on the total energy available to carry out the functions of these attributes.

We will examine the extent of these trade-offs, their impacts on fitness of agents and the direction

of the evolutionary trajectory. Moreover, we argue that constraints and trade-offs between traits

are important to the study of evolutionary dynamics and this dissertation will attempt to further

these studies by providing an another approach to mechanistic model of population dynamics and

evolution.

1.7 Agent-based Modeling

The applications of ‘conventional’ differential equation (ordinary differential equation and partial

differential equation) and statistical (regression and extrapolation) modeling to establish and test

evolutionary dynamics have limitations. Firstly, we need to have sufficient evidence, data over

long period of time, to generate and validate these models. Secondly, differential equations and

statistical modeling are thought to have restrictive assumptions that hinder their application in

certain examples [8, 13]. In many such cases, the control parameters and interaction rates are pre-

determined, and used in the equations and statistical models as constants. However such parameters

are changing due to ever changing interactions between agents. In theory, everything can be

accomplished by the use of equations, but the complexity of differential equations rises exponentially

with the complexity of behavior and the number of interacting species. To overcome such limitations

and to provide a design and implementation of system composed of many individuals whose local
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interaction produce an aggregate behavior, agent–based models have been used [8, 13, 112].

The purpose of agent–based modeling (ABM) is to identify the emergent behavior of ‘agents’

that can not be readily predicted by analytical treatment of rules themselves. In ABMs, an agent

describes an autonomous decision making entity which interacts with the environment and make

decision on the basic of sets rules. Such agents have the capacity to evolve, allowing unexpected

behaviors to appear. The following characteristics show why ABM is superior to other modeling

techniques: ABMs are flexible, captures emergent phenomena, and offer a natural description of

many complex system composed of interacting units. These benefits are largely driven by ABM’s

capacity to describe emergent phenomena [13].

In this dissertation, we apply ABMs to understand several perspectives of agents’ foraging be-

haviors and their evolution. Since foraging is one of the most important tasks organisms perform

and different behaviors evolve as the consequences of advantages and fitness of adapted organisms

over changing environment, it is important to understand the effect of interactions between in-

dividuals and emergent behaviors. Foraging consists of many steps like searching, collecting and

communication. It has become an active research area due to the ready application of foraging

models to real world problems [112]. ABMs are convenient when agent’s individual behavior is

non-linear; is characterized by threshold, or exhibits memory, and path-dependency. Often differ-

ential equation models smooth any variations however ABMs do not, so that the deviation from

predicted aggregate behaviors can also be captured [13]. We propose and simulate some ABM

models to understand foraging, probabilistic transition by birth-death and evolution of behaviors.

We also discuss the effects of foraging on agents’ ‘fitness’ to the evolution of attributes by the means

of ABM with plausible challenges to fit it to observational data.

1.8 Motivation and Outline of this Dissertation

Living organisms have the ability to sense their environment and respond to numerous chemical and

physical stimuli. Such senses and responses are carried out as the function of what we call different

attributes of the organism. An attribute characterizes, for example, an organism’s sense of smell,
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hearing, its ability to move, or its ability to resist infection, or heal from an injury 8. Each attribute

has its own role in survival and impacts the ‘fitness’ of the organism. These attributes sometime

function independently and sometime work together to help the organism perform certain task. As

we discussed in Subsection 1.6, the increase in ‘fitness’ due to changes in one attribute can cause

corresponding changes in other attributes leading to trade-offs between the two attributes. These

trade-offs partly determine the phenotypes of organisms and can direct evolutionary trajectories.

The question that motivate this dissertation is: Up to what extent are these attributes respon-

sible for the survival and ‘fitness’ of an organism, and how do the trade-offs and constraints impact

the evolution of the attributes? If agent ‘A’ and ‘B’ are foraging in a certain environment where

they have to collect resources. ‘A’ can sense resources up to distance aA in all directions and moves

sA units every unit of time. However, ‘B’ can sense resources up to aB units (say smaller than aA)

in all directions, but can move sb units with sB > sA in unit of time. There are two main questions:

On average, does one agent collect more resources over time than the other? Which agent will have

more progeny, and whose progeny will constitute the population in the future?

This study aims to discover the evolutionary dynamics inspired from the organisms’ foraging

behaviors. We simulate multi-agent foraging to understand different structures of foraging, to

discover the relative importance of attributes for the foraging success and ultimately to understand

evolution of these attributes. Our goal here is to capture some well known foraging strategies,

present a simple but tractable model of foraging in a typical environment, and show how foraging

success drives the evolution of a population towards an improved ‘fitness’ regime. We discuss the

challenges and issues understanding the evolution of foraging behaviors.

This dissertation is organized as follows:

• In Chapter 2, we present the ABM of foraging and derive an expression to estimate resource

collection rate for foraging agents. We also discuss the metabolic cost function, changing

metabolic scores, and evolutionary and non-evolutionary birth–death processes.

8here, we will focus on the senses, and ability to move, and will not model an organisms response to pathogens or
injury. However, a similar approach could be used to examine trade-offs between a wider range of attributes.
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• In Chapter 3, we develop a system of non-linear differential equations whose solution deter-

mines the population size and average metabolic energy equilibria and their local stability.

We numerically solve this system and discuss the stability of different fixed points under

various initial conditions.

• In Chapter 4, we summarize the results about how different phenotypes are able to collect

resources in competitive environment. We show that there is a fixed carrying capacity in a

given environment and certain behavioral rules which is independent of the initial number

of agents and their attributes. We also show that the transition to stable co-existence of

multiple phenotypes can be observed in patchy resource environment. We also compare the

population dynamics obtained from ABM simulation to that from a mean-filed model.

• In Chapter 5, we summarize the findings of this study, present limitations, and discuss open

issues for future research direction.
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2 Experimental Setting and Methods

To address the question of how different traits evolve under competition and under metabolic con-

straints we use agent-based modeling (ABM). We model a population of foraging agents that search

for and collect resources in order to survive. The model includes resources that represent nutrients

necessary for survival. The consumption of these resources increases an agent’s “metabolic score”

which represents the metabolic energy the agent has available at any time, and thus determines an

agent’s propensity to reproduce and die. Each agent has two attributes, speed and acuity, which

determine its behavior, but do not change over the agent’s lifetime. Finally, we also define the

mutation rate which quantify how much the attributes of an offspring can differ from those of the

parent.

We start by 1) a description of the domain on which the agents forage, 2) the agents’ movement

rules, and 3) the rules for reproduction and death. We assume that evolution is driven by mutations,

and capture this by differences in a descendant’s attributes from those of their parents. Limitations

on the resources and competition provide evolutionary pressure. The distribution of attributes in

the population changes dynamically as individuals that are less well adapted to the environment

are replaced by fitter individuals.

2.1 Domain and Resource Generation

We assume that the domain, Ω, on which the agents move is rectangular with size b×b, where length

is measured in arbitrary units. We assume that the domain has periodic boundaries and is thus

effectively a torus. We assume periodic boundary conditions for computational convenience and to

minimize edge effects. To simplify computations, we later compute the distance between resources

and the agents as the Euclidean distance between the two on the b × b square Ω. Our results do

not depend fundamentally on this assumption. We will also examine the impact of domain size on

the foraging dynamics of agents, and the evolutionary dynamics of the population.

To survive, agents forage for resources on this domain. Resources appear according to a spatial
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point process, with each point representing one resource unit. This unit could represent a fruit,

an insect, or a molecular resources, i.e. anything that an agent can translate into energy. For

simplicity we assume that resources do not move. Each resource unit has the same caloric value,

and thus has the same effect on an agent’s stored metabolic energy when consumed. We model only

the caloric intake of an agent, and assume that all of their other needs for survival are met if their

metabolic score is sufficiently high. We define the resource density, ρ, as the average number of

resources per unit area, so that the probability that a small area, A, of size, |A| contains a resource

is ρ|A|+ o(|A|). As resources appear and are consumed, the density, ρ, can change.

We mainly consider the following two methods of resource generation:

(a) Resources appear at a constant rate, λ, per unit time and unit area, and thus follow a spatial

Poisson process. We will first assume that resources appear with equal probability at any

point in the domain: The probability that a single resource appears in an small area, A, of

size |A| in an interval of length ∆t is equal to λ|A|∆t (ignoring higher order terms in ∆t and

|A|). Equivalently, the number of resources that appear in an area of arbitrary size, |A| and

time interval of arbitrary length, T is a random variable following a Poisson distribution with

parameter λ|A|T . If the rate at which agents collect resources is lower than the rate at which

they appear in the environment, λ|Ω|, the number of available resources diverges. Similarly, a

high rate of foraging and low replenishment rate, λ, can lead to few or no resources available

in the environment during most of the time.

(b) Resources appear in the domain so that resource density is fixed. In this case a resource is

reintroduced whenever one is consumed by an agent, so that the rate of consumption and

replenishment are equal. As the resource density is fixed, there is no possibility of resource

explosion as in the previous case.

The second case is less realistic: It is hard to think of a natural process that would generate

exactly one resource, whenever another is consumed (although some plants will generate more nectar

when nectar is consumed by insects, such nectar production is highly variable [74]). However, this
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assumptions simplifies the analysis in some cases, and thus we include it.

In both cases, the expected minimum distance between an agent and resources is a key factor in

determining whether the environment is high or low in resources ( We discuss about the expected

minimum distance between an agent an resources in detail in Subsection ??). If this distance is

smaller than the average acuity of foraging agents, then the environment is high in resources, while if

it is larger, then the environment is low in resources. Ultimately, by simulating and analyzing both

high and low resource environments, we establish a more complete understanding of the complex

dynamics of evolution in response to resource availability.

Later, we consider other types of spatial processes including those that result in the clustering

of resources. In such cases, resources appear in different sized stationary or non-stationary patches.

If the resource replenishment process has a fixed rate we have used non-stationary patches whereas

with fixed resource densities we used stationary patches. We also examined the effect of changing

the caloric value of each resource when holding the total calories generated per unit area and time

constant. This affects the variability of the energy available per unit area, as fewer resources with

a higher caloric value will result in higher fluctuations than many resources with low caloric value.

2.2 Agent Movement Rules and their Foraging Strategy

We next describe how we model the movement of agents, their foraging strategies, the energetic

cost of locomotion, and resource and energy collection rates. To find and collect resources, agents

need to traverse the domain. Resources and agents can be located anywhere in the domain, Ω, and

are not constrained to lie on a grid. The agents follow a prescribed strategy, described below, to

collect resources, and each agent’s resource collection rate (ri) is defined as the amount of resources

collected per unit time by that agent. To compute this rate, we simulate a population of agents

that forage, collect resource, reproduce and die according to the rules which we describe below.

Each agent, i, is characterized by a pair of attributes, speed and acuity which do not change

over an agent’s lifetime. Agents are thus characterized by a phenotype vector, ξi = {si, ai}. Speed

is the rate at which an agent covers distance, while acuity is defined as the maximal distance at
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which an agent can sense a resource. An agent’s metabolic score changes continuously as the agent

expends energy on movement, sensing, and collecting resources. The mutation rate is nonzero when

we simulate evolving populations. Mutations are determined by the same distribution for all agents

in the population.

2.2.1 Initialization

We initialize each simulation by placing a “foraging” agent or agents randomly with uniform prob-

ability into the domain, Ω. Each agent is characterized by an initial phenotype vector which is

generated uniformly at random from a range {[smin, smax] , [amin, amax]}. These attributes will be

constrained by metabolic limitations – e.g. an agent moving too fast may be expending too much

energy and may not collect sufficient resources to support this rate of movement. An agent moving

too slowly may not be able to gather sufficient resources to survive. Moreover, we will initially

assume that these attributes are fixed, but later allow descendants of an agent to have phenotypes

that differ from those of the parent. When the simulation starts, we seed the domain with an initial

set of resources, or allow them to appear at a fixed rate.

We denote the position of agent i at time t by Pi(t) where 1 ≤ i ≤ n, and the location of jth

resource by Rj where 1 ≤ j ≤ m. Resources do not move, and thus their location is independent of

time 9. Here n and m are the total number of agents and resources at some time. These numbers

can vary if agents reproduce or die, and if the resource number is not fixed. We define the resource

density as ρ = m/|Ω|. Thus ρ, n and m generally depend on time, but we suppress this dependence.

Agents moving in a straight line may not be able to explore the domain effectively. Thus,

to forage successfully, agents need to change their direction of movement occasionally. Similarly,

agents who change their direction of motion too frequently tend to repeatedly revisit regions they

have just left, and thus explore the domain inefficiently. Therefore we selected the frequency of

direction change, fi, in such a way that agents move an average distances, i.e. perform an average

straight run of length η independent of speed and agent number, before changing direction. This

9strictly speaking, resources need to be renumbered as they are consumed and generated. We take an arbitrary
enumeration at a point in time.
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ensures that the difference in the area being explored by an agent depends only on the speed of the

agent. Finally, we let Di be the m-vector of Euclidean distances between each agent, i, at position

Pi in the domain, and each resource, j at position Rj ,

Di =

[
d(Pi, R1) d(Pi, R2) . . . d(Pi, Rm)

]

We can also define the n×m matrix D where the i-th row is the vector Di.

2.2.2 Exploration and Foraging Strategies

Each agent uses the following foraging strategies to explore the domain Ω, and to collect resources

that become visible. Agents move according to two different rules, depending on whether a resource

is visible or not:

1. If there is a resource within the radius given by the agent’s acuity, that is if minmDi ≤ ai,

the agent will move towards the nearest resource at its prescribed speed (See Fig. 3B). An

agent that reaches a resource consumes it, the resource disappears, and the metabolic score

of the agent increases by the amount equal to the caloric value of the resource.

2. If no resource is visible, that is, mini∈1,...mDi > ai, an agent moves in a fixed direction, θi. The

agent moves in the same direction for random interval of time (See Fig. 3A). These intervals

follow an exponential distribution with mean η. Thus, when resources are not visible agents

exhibit a run–and–tumble type motion characteristic of some bacteria [12, 52, 102, 109].

By assumption, the average length of the runs, η, is equal for all agents, irrespective of their

speeds.

Hence, an agent moves in a direction θi which changes to a new direction θ′i ∼ U(0, 2π), with

probability fi∆t+o(∆t) in a small interval of length ∆t. The new direction is chosen independently

from the previous one. An agent covers on average a distance η = si/fi before changing directions.

For a fixed η, agents with slower speed should have smaller frequency of direction change whereas

agents with faster speeds change direction more frequently.
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Figure 3: Movement of agents in the domain Ω where P is a foraging agent with acuity ‘a’, and
R1, . . . , Rj are resources. The light green circle represents the region in which an agent can ‘see’
a resource; the length of the red line gives the distance, dj , between the agent and jth resource.
(A) Since dj > a, agent P cannot ‘see’ any resource and hence moves in a direction that has been
assigned uniformly and at random, and panel (B) since d0 < a, the agent can see resource R0, and
moves towards it.

Although this model approximately describes the movement of some bacteria [44], we do not

aim to model the movement of any particular type of organism. The assumption about how

agents move can be easily adjusted to produce foraging strategies more similar to those of other

species. Since typical mechanisms of agents’ foraging strategies are greatly influenced by the local

environmental conditions like density and distribution of resources [78], we can adjust η and fi or

the rules according which an agent moves to mimic other foraging behaviors.

To simulate this type of motion, we discretize time into increments of size ∆t, and define the

position of agent i recursively as

Pi(t+∆t) = Pi(t) + si · (cos θi(t), sin θi(t))∆t (8)

If no resources are visible to the agent i, then θi(t + 1) = θi(t) with probability 1 − fi∆t. With

probability fi∆t a new direction is drawn from the uniform distribution, θi(t + 1) ∼ U (0, 2π)

independently from the previous direction.
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If a resource is visible, the agent moves towards the resource along the straight line that connects

the position of the two. Thus, the position of the agent is still updated using Eq. (8), but with θ(t)

being the angle pointing from the agent to the resource. This movement is ballistic. We assume

that the agent stops at the resource location, and thus use an update Pi(t + ∆t) = Rj when the

resource is reached. When an agent finds a resource at location Rj , it consumes the resource which

therefore disappears from the domain, Ω. We chose the increments ∆t to be sufficiently small so

that the simulation outcomes do not depend on increment size ( See Subsection 4.1).

Algorithm 1 Single agent foraging

Input: speed(s1), width (b) of Ω, acuity (a1), resource density, time (t), ∆t, run distance (η).

Output: Resource collected Ft

Initialize:

Agent’s location P1(x, y) ∈ (0, b) × (0, b), resources location R1(x, y), R2(x, y), · · · , Rm(x, y) ∈

(0, b)× (0, b), choose a random angle θ ∼ U(0, 2π), iteration(i) = 1.

while k < iteration do

D1 = (d(P1, R1), d(P1, R2), · · · , d(P1, Rm))

if minj{dj} ≤ a1 then

move towards jth resource so that new position is P1(t+∆t) = P1(t) + s1

(
P1(t)−Rj

|P1(t)−Rj |

)
∆t

If agent’s location resource location; move up to the resource location only, and Update:

Ft+∆t = Ft + 1; sample a new direction θ∗ ∼ U(0, 2π) and let θ = θ∗

else

new position: P1(t+∆t) = P1(t) + s1 · (cos θ(t), sin θ(t))∆t

generate a random number r ∼ U(0, 1)

If r < f1 ·∆t; sample a new direction θ∗ ∼ U(0, 2π) and let θ = θ∗

2.3 Single Agent Foraging

We first examine the impact of the different attributes on the foraging success of a single agent. In

this section we also discuss some details of the numerical implementation of the model.
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Figure 4: Rectangular parts of the foraging space defined by the maximum displacement from an
initial position are shown along with the path of a single agent foraging on a 200 × 200 domain,
with speed s = 1, total simulation time of 500 units, and ∆t = 0.1. Here the average distance
between changes in motion direction, η, was (A) η = 0.5, (B) η = 1, (c) η = 5 and (D) η = 20.
For a fixed time realization when the average run distance η is small agents explore a smaller area
of the domain.

When the average distance between turns, η is small an agent changes direction frequently, and

thus explores a limited area. Figure 4 suggests that the area an agent can explore increases with η

so that an agent can forage more effectively [48]. We generally keep the run distance η larger than

the expected distance between an agent and its nearest resource to ensure effective exploration.

In the case of a single agent, or, more generally, when agents do not interact strongly, we

will approximate the resource collection rate as a function of the agent’s speed and acuity. The

resource collection rate translates directly into the rate at which the metabolic energy of the agent

increases. On the other hand, we will also assume that metabolic energy is expended on movement

and sensing. A higher speed and acuity will allow for a higher rate of resource collection, but will

also require a greater rate of energy expenditure. Thus even in the absence of interactions with

other agents, we expect that there is an optimal set of attributes that allows an agent to optimize

the rate of increase in metabolic energy.
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Let δ(m, b) be the distance from a point to the nearest among m other points placed uniformly,

and independently at random in the domain Ω. Also, let δ̄(m, b) be the average minimum distance

from a location chosen uniformly and at random in the domain to the closest of m other points

placed uniformly and independently at random inside a square of side length10 b. In the single

agent, single resource case, δ̄(1, b) is the average distance between an agent and a resource placed

uniformly at random in the domain, Ω. Moreover, the minimum distance δ(m, b) between an agent

and the closest of m resources in the single agent-multiple resources environment is a non-negative

random variable with range [0,
√
2b]. In other words, we can think of δ(m, b) as the random

variable δ(m, b) : Ω −→ [0,
√
2b], that maps the location u ∈ Ω to the distance of the nearest

resource. If a1 is the acuity of the agent, Markov’s Inequality yields;

Pr(δ(m, b) ≥ a1) ≤
E(δ(m, b))

a1
=
δ̄(m, b)

a1
. (9)

The probability that the distance to the nearest resource is larger than the agent’s acuity is thus

bounded above by a term proportional to the inverse of the acuity of an agent. This is a very

conservative estimate in our case, as we will see below.

When δ̄(m, b) ≪ a1 (larger acuity), an agent is likely to see at least one resource at any time.

According to the movement rules we described, we expect the agents to be moving towards a

resource most of the time, rather than forage randomly. The expected time to reach the nearest

resource equals δ̄(m, b)/s1 and so the expected rate of encounters with resources equals s1/δ̄(m, b).

On the other hand when δ̄(m, b) ≫ a1 (smaller acuity or fewer resources), an agent may not see

a resource for a considerable time, and will thus have to forage, i.e. head in a random direction

and explore. In this case the expected rate of finding a resource is P · s1/δ̄(m, b) where P is the

probability of selecting the correct direction towards the resource which is given by the likelihood

of choosing a correct direction which we explain and compute in Eq. (13) below. In this argument

we assumed that the average run distance is larger than the average minimum distance between

10note that this is also the average distance between one of m + 1 points chosen in the same way and its nearest
neighbor.
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agent to the resources.

2.3.1 Single Agent in a Fixed Resource Density Environment

As we explained in Subsection 2.1 resources can be generated either with a fixed resource replen-

ishment rate or with a fixed resource density. We start by considering the process of resource

replenishment with a fixed resource density. To approximate the resource collection rate we need

to estimate the following two properties of points that follow a spatial Poisson process. These will

allow us to estimate the average distance between an agent and the closest resource and hence the

rate at which the resources are collected average distances between an agent and resources.

(a) Average distance between two points chosen uniformly and at random in a square, δ̄(1, b)

Let Ω be a square from R2 and assume that we chose two points (x1, y1) and (x2, y2) in-

dependently and uniformly from Ω. The Euclidean distance between these two points is

||x− y|| =
√

(x1 − x2)2 + (y1 − y2)2.

Let b be the length of a side of the square Ω, then the average distance between two points

is the expected distance which is the quadruple integral of the Euclidean distance, given by;

δ̄(1, b) := E[||x− y||] = 1

b4

∫ b

0

∫ b

0

∫ b

0

∫ b

0

√
(x1 − x2)2 + (y1 − y2)2dx1dx2dy1dy2 (10)

Now, we consider two random variables u and v drawn from the standard uniform distribution

on [0, b]2. To find the distribution of the difference between the variables, i.e. |u−v|, we need

to find the probability density for |u–v| = w. For two independent random variables, each

having the continuous uniform distribution on the unit interval, their sum follows a triangular

distribution, and w has a probability density function of 2(1–w) with support 0 ≤ w ≤ 1 [60].

The integral in Eq. (10) can be expressed in terms of the distribution of |x2 − x1| by x and

for |y2 − y1| by y.

For a unit square, it follows that δ̄(1, 1) = 4
∫ 1
0

∫ 1
0

√
(x2 + y2)(1−x)(1−y)dxdy = (2+

√
2+5 ln(

√
2+1))

15 .

We can generalise this average distance for a unit square to the square of any side length b;
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δ̄(1, b) = (2+
√
2+5 ln(

√
2+1))

15 · b.

Once we find the distance between two uniformly and independently distributed points inside

a square, we can use this as the expected distance between a foraging agent and a resource

inside a square shaped foraging domain. This computation ignores the periodic boundary

conditions, however if the domain is large the error thus introduced will be small.

(b) Average minimal distance between an agent and the closest of m resources chosen uniformly

and at random in a square, δ̄(m, b).

We estimate the expected minimum distance from a point to one of m independently and

uniformly chosen points inside a square. We start with a unit square, and let R1, R2, · · · , Rm

be the positions ofm points placed uniformly and independently on the unit square. This gives

the resource density, ρR = m/|Ω|. Since the points are chosen uniformly and independently,

the distribution of points in small bounded regions inside the square is approximately a spatial

Poisson point process [69]. Let B̄r be an arbitrary closed disc of radius r with area πr2. For

a small disk contained completely inside the domain Ω, the number of points inside the disc

follows a Poisson distribution.

Now for an additional point, P , representing the foraging agent independently placed inside

the unit square, we define V = {minj |P − Rj | : P is a foraging agent} be the distance to

the nearest resource. The distance from P to its nearest point inside a square follows an

exponential distribution and for large m, this distribution asymptotically approaches the

Rayleigh distribution [50]. Hence, the probability density function of the distance from P

to its nearest point can be approximated in the form of fV (r) = 2πrm exp
(
−πr2m

)
. The

expected value of V , δ̄(m, 1) = E [V ] is given by;

δ̄(m, 1) ≈
∫ ∞

0
rfV (r)dr =

∫ ∞

0
2πmr2e−πr

2mdr =

∫ ∞

0
e−πr

2mdr =
1

2
√
m

(11)
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Figure 5: (A) The average minimum distance between m−resources and a foraging agent, and
(B) when an agent’s acuity is smaller than the average distance between the agent and the closest

resource, the agent moves towards the nearest resource R with probability
arcsin{ a1

δ̄(m,b)
}

π .

This generalizes to an estimate on a square of any side length b,

δ̄(m, b) ≈
∫ ∞

0
e
−πr2 m

|Ω|dr =
1

2
√

m
|A|

=
b

2
√
m

(12)

The estimate of the minimum distances between an agent and one of m resources in Eq. (12)

agrees well with numerically obtained values (See Fig. 5A).

Eq. (9) suggests that if the acuity of an agent exceeds the average distance to the closest resource,

then most of the time there is at least one resource that is visible to the agent. If no resources

are visible to the agent, the probability of the agent obtaining the nearest resource depends on

the agent’s direction of movement. Suppose that an agent is about to choose a new movement

direction. We can approximate the probability that the agent selects a direction that will bring it

within the acuity radius, a1 of the nearest resource, R (See Fig. 5B).

A single foraging agent chooses a random angle and moves in the same direction until it either

observes a resource, or changes direction again. We can estimate the resource collection rate by
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considering two cases:

1. If the minimum distance to the closest resource is smaller than the agent’s acuity, a1 >

δ̄(m, b), then the agent is likely to see at least one resource most of the time. Hence, the rate

at which the agent will gather resources can be approximated by the average time it takes

the agent to move between a resource, and its nearest neighbor, s1
δ̄(m, b)

.

2. If the agent’s acuity is smaller than the expected distance to the nearest resource, δ̄(m, b) >

a1, an agent placed at random in the domain is likely not to have a resource within its sight,

and will hence be forced to forage. To find the expected rate of encounter with the nearest

resource at location Rj , we need to find the range of directions an agent has to take so that

it will have the resource at Rj within its sight before it chooses a new random direction. Let

θ∗ be the angle between two tangents drawn from the agent’s position on the circular disc

around Rj of radius a1. Then θ
∗ is the range of directions an agent can take upon turning so

that it will detect the resource while moving along this direction. The agent will encounter

the resource, unless it happens to turn beforehand (this is again unlikely if we assume that

run distances are sufficiently large). Fig. 5B, shows that sin θ∗

2 = a1
δ(m, b) which gives us

θ∗ = 2arcsin a1
δ(m, b) .

The estimate of the probability that an agent turns in the right direction to spot the nearest

resource when turning, is

Pest =
E [θ∗]

2π
=

E
[
2 arcsin a1

δ(m, b)

]
2π

=
1

π
E
[
arcsin

a1
δ(m, b)

]

where δ(m, b) is the minimum distance between an agent to m resources in its neighborhood.

The second estimate relies on a couple assumptions: The distance between turns needs to be

large enough so that the probability that the agent turns before having the resource within sight

is small. We could improve the estimate slightly by taking accounting for the probability that the
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agent does not turn during the trip to the resource, but we found that such a correction does not

have a large impact. Also, we neglect the probability that the agent will see the second farthest,

third farthest, or any of the farther resources before turning again. This is justified if the turning

rate is not too small, and the resources are not too dense. Indeed, if resource density is high, the

first estimate is likely to hold, since agents will have a resource in view most of the time.

When m is large and when we repeat the same process for many independent trials, the average

value of minimum distance between an agent will converge to the expected value, and since f(x) =

arcsinx is a non-negative, strictly increasing, convex function in (0, 1), using Jensen’s inequality

twice, we have

Pest ≥ 1

π
arcsin

{
E
[

a1
δ(m, b)

]}
=

1

π
arcsin

{
a1 E

[
1

δ(m, b)

]}
≥ 1

π
arcsin

{
a1

1

E[δ(m, b)]

}
=

1

π
arcsin

{
a1

δ̄(m, b)

}

The right hand side in this inequality is the lower bound for the probability to select the correct

direction, which gives us an estimate of the lower bound for the resource collection rate when the

acuity of an agent is small, or when resources are few (Fig. 6). It follows from Subsection 2.3 that

the rate of encounter with the nearest resource is therefore P s1
δ̄(m, b)

, where the lower bound for the

probability is estimated by Pest ≥ 1
π arcsin

{
a1

δ̄(m, b)

}
.

Summarizing, the rate of encounters of a single agent, r1, with resources can be bounded by

the two estimates,

r1 ≥
1

π
arcsin

{
a1

δ̄(m, b)

}
· s1
δ̄(m, b)

for a1 < δ̄(m, b) (13a)

r1 ≤
s1

δ̄(m, b)
for a1 > δ̄(m, b). (13b)
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Figure 6: The resource collection rate for a single agent can be approximated both when i) the
acuity, a1 satisfies, a1 < δ̄(m, b) and ii) when a1 > δ̄(m, b). When a1 < δ̄(m, b), this approximation
gives a lower bound, and when a1 > δ̄(m, b) the approximation provides an upper bounds for the
resource collection rate. Foraging simulations were performed on domains of different sizes: (A)
|Ω| = 200× 200, (B) |Ω| = 400× 400, (C) |Ω| = 600× 600, and (D) |Ω| = 800× 800 space, speed
= 1; resource density (ρ) = 1/1000 per unit area.

40



When we estimate the resource collection rate by assuming that a1 < δ̄(m, b), this neglects

the possibility that even if this condition holds sometimes a resources may be inside the acuity

range of the agent. Moreover, the foraging space we consider is a finite square with periodic

boundary conditions. When approximating the average minimum distance between an agent and

a resources, we assumed that the number of resources is high and the distances between agent to

resources follows a generalized exponential distribution. These assumptions limit our approximation

to regimes where boundary effects are not significant.

The lower bound, Eq. (13a), we obtained when a1 < δ̄(m, b) agrees well with the resource

collection rate computed from simulations (See Fig. 6 and 7). When a1 > δ̄(m, b) the upper bound

in the same equation again agrees well with the numerically obtained resource collection rate (See

Fig. 6). Note that the values of the two functions defining the bounds in Eq. (13) do not agree at

a1 = δ̄(m, b). This is also where the assumptions we made in the derivation of these bounds fail,

and neither expression provides a good estimate of the resource collection rate when compared to

empirical results.

Resource availability near a single foraging agent changes only due to is own activity. Similarly,

when agent density is low, we can assume that interactions between agents are rare and can be

neglected. In such cases, we can describe the resource collection rate as a function of speed, acuity

and δ̄(m, b), as we have done here.

Below we show how to obtain an estimate that bounds the resource collection rate, and use this

estimate to understand the dynamics of the population of foraging agents in Section 3.

2.3.2 Single Agent in a Fixed Resource Replenishment Rate Environment

In another model of resource generation, we assume that resources appear at a fixed rate, but that

the number of resources in the domain can fluctuate as they are consumed and regenerated. We let

λ be the number of resources that appear per unit area per unit time, and assume that this rate is

independent of the action of the agent or agents. If the agent does not consume any resources, the

expected resource number grows with time t as λ·|Ω|·t. The expected distance from an agent to the
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Figure 7: The empirically estimated resource collection rate and its estimate given by Eq. (13a) on
domains of different sizes: (A) 200× 200, (B) 400× 400, (C) 600× 600, and (D) 800× 800 spaces
with single agent and single resource, resource density (ρ) = 1/|Ω|. This estimate gives the lower
bound for the rates. When acuity is smaller than the expected distance between an agent and a
resource, speed = 1, time = 200000.
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nearest resource decreases as more resources are accumulated, and equals δ̄(m, b) ≈ b

2
√
λ|Ω|t

= 1
2
√
λt

(See Eq. (12)) in the absence of resource consumption.

When this expected distance to the nearest resource becomes smaller than agent’s acuity, agents

see a resource most of the time. Assuming that we start with an empty domain with a single agent,

the time for this condition to be satisfied is approximately t > b2

4a21λ|Ω| =
1

4a21λ
. Indeed, the acuity

of an agent, a1, will exceed the expected distance to the nearest resource, a1 > δ̄(m, b) when

a1 >
b

2
√
λ|Ω|t

= 1
2
√
λt
, giving the previously mentioned estimate.

If agents are foraging and consuming resources and a resource is always visible, then the expected

time to reach the nearest resource when it is visible now becomes δ̄(m, b)
s1

. Hence, the rate at which

agents consume resources when the expected distance to the nearest resource is δ̄(m, b) is then

s1/δ̄(m, b). In equilibrium, the resource collection rate equals the resource replenishment rate and

hence,

r1 =
s1

δ̄(m, b)
= λ|Ω|. (14)

To verify this prediction, we simulated a single foraging agent in a fixed resource replenishment

rate environment. We assumed the agent has speed 10 and acuity 10 and simulated environments

with different resource replenishment rates. We computed the average distance between an agent

and its nearest resource, the resource collection rate and the number of resource available in the

domain at each instant of time. At equilibrium, the estimated resource collection rate, s1/δ̄(m, b),

equals the exact resource collection rate which is also equal to resource replenishment rate (See

Fig. 8A and 8B). The variability in the resource collection rate obtained using Eq. (14) and shown

in Fig. 8B is due to the fact that the number of available resource in the estimate was obtained

from simulations to compute the average minimum distances.

At equilibrium, when the resource collection rate equals the resource replenishment rate, we can

also estimate the resource density in the domain (See Fig. 8C and 8D). If δ̄(m, b) is the expected

minimum distance between agent to resources at equilibrium, then s1
δ̄(m,b)

≈ λ|Ω|, which implies

δ̄(m, b) ≈ s1
λ|Ω| , i.e.

b
2
√
m

≈ s1
λ|Ω| . We therefore see that m ≈

(
λ|Ω|b
2s1

)2
, where m is the current
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Figure 8: The resource replenishment rate, resource collection rate and resource density in fixed
resource replenishment environment with single agent simulations after equilibrium is reached: (A)
resource collection rate in a single foraging agent simulation, (B) resource collection rate estimated
as s1/δ̄(m, b), (C) resources available for foraging after equilibrium, and (D) estimation of available

resources (ρ× |Ω|) as
(
λ|Ω|b
2s1

)2
. Simulations were performed on a domain of size 200× 200, with a

single agent with speed, s1 = 10, and acuity a1 = 10. The resource replenishment rate in the entire
domain was set to λ|Ω| = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 per unit time. The simulation time was set
to 50000 units.
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number of resources in the domain.

The estimate of δ̄(m, b) given by Eq. (12) has limitations which restrict the applicability of the

estimate of the resource collection rate given in terms of the upper and lower bounds in Eq. (13).

First, the domain, Ω, has periodic boundary conditions. For simplicity we assumed a square

domain to estimate the expected distance between the nearest resource and an agent. Second, the

estimate of the expected minimum distances from an agent to the closest of m resource, δ̄(m, b),

is an approximation that improves with resource number, m. We thus obtain a good agreement

between the estimated resource collection rate and simulation results with longer simulation times

and larger domains. When an agent detects a resource and moves towards it, the position of an

agent becomes dependent on previous positions resulting in a directed motion towards the resource

(not i.i.d. anymore). Hence, the average minimum distance from the agent to the nearest among

m resources available in the simulation cannot be used to estimate the resource collection rate.

In this case, we can numerically estimate the average minimum distance from a randomly placed

agent and a resource by the expected minimum distance Eq. (12).

2.4 Multi-Agent Foraging

We next turn to the case of multiple agents foraging in the domain Ω defined in Subsection 2.1.

We again assume that the resource number is fixed, or replenished at a fixed rate. These resources

are generated in the domain with homogeneous or clustered patterns. Multiple foraging agents are

characterized with phenotype vectors ξk = {sk, ak}, where sk is the speed and ak is the acuity of

agent k, with 1 ≤ k ≤ n and n is the number of agents. A phenotype vector can be assigned by

independently sampling attribute values from some distribution for each agent. In addition, a linear

combination of the attributes could be constrained by some metabolic limitation11. We denote the

initial position of the kth agent by Pk(0) and the location of jth resource by Rj where 1 ≤ j ≤ m

(m resources). However, as resources are replenished and consumed, so Rj and m change with time

in the simulation. To keep the notation simple, we suppress this dependence on time.

11later we will assume that the phenotypes can be changed through an evolutionary process, and show that such
constraints arise through selection.
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When the simulation starts, multiple foraging agents characterized by phenotype vectors ξk =

{sk, ak} are introduced independently and uniformly in the domain at positions P1(0), P2(0), . . . , Pn(0).

We assign at the same time the first set of resources which are also distributed uniformly and in-

dependently on locations whose positions are given by Rj where 1 ≤ j ≤ m (m resources). The

number of resources that will appear later in the simulation is determined by resource density ρ,

in case we keep the resource density fixed, or by the resource replenishment rate λ in which case

an average of m = λ|Ω| · t resources appear in the domain over an interval of length t.

Let D(t) be the initial distance matrix (m× n) between each agent to each resource at time t,

D(t) =



d11(t) d12(t) . . . d1n(t)

d21(t) d22(t) . . . d2n(t)

...
...

. . .
...

dm1(t) dm2(t) . . . dmn(t)


.

If the resource number is not fixed then the dimension of the matrix D changes as simulation

progresses since resources are being consumed and new resources appear in the domain.

In simulations of the ABM model we update the state of the population at discrete time incre-

ments, ∆t. To simulate multi-agent foraging, we choose ∆t in such a way that any further finer

subdivision of time does not result in appreciable differences in the dynamics. If dkj(t) = 0 (the kth

agent is exactly on the top of jth resource), we update the location of agent to the resource location

and assume that the resource is consumed. If dkj(t) ≤ ak (resource Rj is visible to agent Ak), the

agent Ak moves towards the resource along the line joining the agent location and resource location

covering a distance sk ·∆t distance during a time increment ∆t. If the movement causes the agent to

overshoot the resource location, we assumed that the agent stops exactly at the resource location.

The average overshoot depends on ∆t, but we chose a sufficiently small increment so that resource

encounters occur on only few time–steps, and this assumption does not affect the outcome of the

simulations. The agent Ak moves according to the same rules as described in the single agent case
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and the position of agent i is updated recursively as;

Pk(t+∆t) = Pk(t) + sk · (cos θk(t), sin θk(t))∆t. (15)

where θk ∈ U(0, 2π). As described earlier, if no resource is visible to the agent, on average this

movement direction changes after covering a run-distance η. Hence a foraging agent who does not

observe a resource changes direction at rate fk = sk/η, and this rate can differ between agents.

With multiple foraging agents, when agent density is low, we can assume that interactions

between agents are rare and can be neglected. In such cases, we can describe the resource collection

rate as a function of speed, acuity and the average distance to the nearest resource, δ̄(m, b) as in

the previous subsection. However when the number of agents is larger, and their density increases,

interactions between agents also increase. They often ‘compete’ for the same resource which may

become visible to multiple agents at the same time12. Thus, the presence of other agents can affect

the foraging ability of other agents by changing the resource availability near it. Therefore, unlike

in the case of a single agent, interactions between agents can affect their ability to forage.

2.4.1 Synchronized Movement of Multiple Agents and Under-Harvesting

In simulations with agents that share similar attributes, we observed the emergence of synchronous

movement of a group of agents foraging in a domain, Ω. Agents with similar speeds and large

acuities will often follow the same path after reaching a resource in the same time increment,

or getting close to the same resource. The emergence of synchronisation is due in part to time

discretization in simulations: When two agents with similar speed reach the same resource within

a time ∆t, they split the resource and end up at the same location at the end of the time-step.

If resources are densely distributed, both agents will then continue to the same closest visible

resource. Since their speeds are similar, they can again reach the resource within the same time

increment. They can thus move identically for a long time. In these cases, synchrony is a numerical

12When two or more agents arrive at a resource at the same time-step, they share it equally. In general, sharing
of resources happens rarely since the time increments are small. However, it does happen with a high resource
replenishment rate in non-evolving birth death simulations. We discuss these cases in Subsections 2.4.1 and 2.5
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artefact due to the discretization of time.

However, the tendency to synchronize movements is not only due to discretization errors. In

simulations, as ∆t approaches zero, the chance of two agents reaching the same resource at the

same time increment also goes to 0, unless they start at the same distance from a resource, and

move at equal speeds. However, we observed that decreasing ∆t does not prevent agents from

synchronizing. This synchronous behavior is more prevalent when resource density is high. The

reason is that two or more nearby agents with the same or similar speeds, and large acuities will

tend to converge onto the same nearest resource. This will cause the distance between them to

decrease as they approach the resource, until one of them reaches it and consumes it. The agents

now form a pack around the consumed resource, and if the next closest resource is within the acuity

radius of this pack, then the pack will move on to this next resource. If the speeds of the agents

in the pack are close the distance between them contracts. When more than one agent reaches a

single resource, they occupy same location and now they move to the another resource together13.

If resource density is very high, then it becomes less likely that two nearby agents are going to have

the same closest resource to start with. Similarly, if agent speeds differ, then the slower agents

eventually lag behind the faster, breaking the synchrony of movement. However, when speeds are

similar, the slower agents can follow the slightly faster agents for a considerable time.

Due to the contraction in distances between the agents the synchronous pattern of movements

becomes difficult to break. The group of synchronously moving agents can sometimes grow until

it contains most of the population. This pattern leads the average resource collection to approach

one resource per synchronous group per the average time to go from one resource to the next

closest resource. Synchronisation thus decreases the agent’s ability to collect resources, which in

simulations causes resources to start accumulating due to under-harvesting.

To break such synchronous behavior we can assume that agents do not always move towards the

closest resource. Rather, we assume that an agent chooses to move towards a resource within an

agents’ acuity range with probabilities inversely proportional to the square of the distance between

13We observed synchronous movements in high resource density, non-evolving birth death simulations when offspring
with the same phenotypes share the same location as their parents upon birth.
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the agent and the resource. This breaks synchrony, and the resource collection rate of the group

of foraging agents becomes approximately the sum of the resource collection rates of individual

agents,

Σnri = n× r̄ = λ · |Ω|,

where r̄ is average resource collection rate of an individual agent and n is the number of foraging

agents.

In birth–death simulations, another main source of the synchrony is due to sharing of the

location by parents and new-borns. In non–evolving population, when an offspring is produced

with the same attributes as parent, it starts foraging from the same location as the parent and

both of them move together towards any resources within their acuities. In high resource density

environment, this creates a synchronous motion between the similar phenotypes. To break such

synchronous behaviors, we assume that the new–born is not reproduced exactly at the parent’s

location but around the parent location within some distance. We define the distance between

the parent and the new–born at the time of birth as dispersal distance. We generate the dispersal

distance by sampling from a bivariate normal distribution with zero mean, and fixed variance. The

position of the offspring is obtained by adding the result to the parent’s location. The effect of

dispersal distance is discussed in the result section.

When acuity is small or when there are few foraging agents, the group of agents can only sense

resources in a small area. Similarly, when the resource density is low, the average distance between

agents and the resources becomes large. In such cases, agents have to explore a larger area to gather

resources, and it takes longer for the sum of resource collection rate and the resource replenishment

rate to equalize.

On the other hand, when acuity is large, or when the resource density is high, the average

minimum distance between resources and agents becomes small, and agents see resources most

of the time. The resource collection rate again approaches sk
δ̄(m,b)

for each agent. Equilibrium is

attained when the acuity satisfies a > δ̄(n ·m, b) ≈ b
2
√
n·m where n and m are the number of agents
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Figure 9: The product of the number of resources and number of agents at equilibrium, is inversely
proportional to the acuity of agents. For each simulation, we chose acuities independently with
uniform probability in [1, 30], and also number of agents from [5, 50] in a 200 × 200 domain, with
replenishment rate λ = 1/|Ω| per unit time. Speed = 10, time = 10000.

and number of resources available in the domain respectively, which also show that the sum of

resource collection rates of all agents, is equal to the resource replenishment rate. However, the

time to reach this equilibrium differs for various acuities. In such cases, the product of the number

of resources and number of agents at equilibrium is inversely proportional to the acuity of agents

(See Fig. 9).

2.4.2 Resource Collection and Metabolic Cost of Motion

In Subsection 1.1.2, we discussed the energy expended on sensing and locomotion. The energy

expended on locomotion mostly depends on the speed, body temperature and the mass of the

organism. Besides speed and mass, organisms expend energy on sensing and processing sensory in-

formation. The processing of sensory information can also take a considerable amount of metabolic

energy: For instance, in humans the brain is responsible for 20% of the energy used, and much
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Figure 10: Metabolic cost with different cost functions: (A) C = αs+βa, (B) C = αs2+βa, (C)
C = αs+ βa2, and (D) C = αs2 + βa2.

of this energy is expended on processing information arriving from the senses. Thus part of the

metabolic energy is expended even in the absence of movement.

In general, the basal metabolic rate is affected by body temperature, and body mass [22]. In

our model, we do not explicitly consider mass and resting body temperature and assume that

energy expenses related to mass and resting body temperature are part of the static cost which are

implicitly included in the basal metabolic cost. Here, we assume that metabolic cost of motion as

the energy expenses to forage per unit time.

C(s, a) = αsγ + βaδ (16)

where s, a are speed, acuity of a foraging agent, and α, β, γ and δ are non-negative constants.
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Higher speeds require more energy to achieve and maintain, but also typically require larger

bodies and stronger limbs which are again energetically costly [38, 39]. In aquatic and terrestrial

locomotion, the total energy cost of motion per unit mass is a function of speed [3, 4, 39] and can

be approximately modeled as cost proportional to sγ where γ ∈ [1.5, 2.8].

Although the energy cost necessary to maintain a given speed is relatively simple to model, the

energy cost of sensory processing is difficult to measure. For instance, the visual system contains

different components ranging from the eye’s retina and muscles needed for its movement, to different

areas of the brain dedicated to processing visual information. Each of these components consumes

energy, but in an amount that depends on the component and on the task [110]. Similarly, the

metabolic cost of the neural mechanism starting from retinal neurons to the cost of transmitting,

processing and decoding information is much larger than the thermodynamic14 minimum [51]. In

our model, we assume that metabolic costs of sensory processing scale equally for all agents, and

this cost is directly related to the ‘sharpness’ of their sense [64]. We assume that the acuity cost

(sensory metabolic cost) depends linearly on the acuity, and is added to the cost of movement to

determine the total metabolic expenditure of the agent so that γ = 2 and δ = 1. Hence, Eq. (16)

becomes:

C(s, a) = αs2 + βa (17)

Since each resource collected provides a fixed amount of metabolic energy, agents with higher

resource collection rates have more metabolic energy (a higher metabolic score) at their disposal

and thus can use this energy to explore the foraging area better. Moreover, resource availability and

collection rates are among the main factors which determine the ecological dynamics of populations

and species [80]. Among specific phenotypes, the resource collection rate of an agent in fixed

resource replenishment rate environments is predominantly determined by competition and the

resource replenishment rate itself. Because of interactions between agents, the resource collection

rate of an agent in simulations with multiple agents becomes a function of the number of agents

and the resource replenishment rate. Hence, the resource collection rate of an agent is a function

14The minimum value of internal energy of a closed system at equilibrium
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Figure 11: Average metabolic energy trajectories in simulations with different resource replenish-
ment rates: when, (A) g(n, λ) ·F > C(s, a), (B) g(n, λ) ·F = C(s, a), and (C) g(n, λ) ·F < C(s, a).

r̄ = g(n, λ) that depends on the replenishment, and the total number of interacting agents, n.

Since, we assumed that each resource provides a fixed amount of metabolic energy, F , if g(n, λ) ·

F > C(s, a), agents gain metabolic energy (Fig. 11A) and, if g(n, λ)·F < C(s, a), agents lose energy

(Fig. 11C), on average. At the ‘break even’ point when g(n, λ) ·F = C(s, a), agents collect exactly

enough resources to offset the energy expended for foraging (Fig. 11B). The agents with higher

resource collection rates can regenerate metabolic energy faster and will be ‘fitter’ in the birth-

death simulations we consider subsequently.

We next considered multi-agent foraging simulations and estimated the average resource collec-

tion rates of multiple foraging agent with different foraging strategies. Clearly, when the resource

replenishment rate, λ, is fixed and many agents are competing for resource, the resource collection

rate is lower than in the single agent case, and decreases with the increase in number of agents. In

the next subsection, we discuss the birth and death of agents and the dynamics of the population.

2.5 Birth-Death and Dynamics of Population

We next assume that agents whose metabolic energy drops too low are likely to die, while those

whose metabolic energy exceed that needed to sustain motion and sensing are likely to reproduce.
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Often a ‘fitness function’ that depends on the attributes of an agent, and defines how many descen-

dants an agent has on average is introduced in order to study the evolution of a population. The

optimization of this ‘fitness function’ is thus typically considered to be the outcome of evolutionary

models [27]. However, it is not always the case that a fitness function can be defined, and therefore

that evolution can be viewed as a process that optimizes fitness. For instance, even in simple

models phenotypes can exhibit oscillations and chaotic behavior and thus do not have to converge

to the maximum of a fitness function [88].

Therefore, rather than focusing on optimization, we consider a stochastic birth-death process [27].

Birth and death events across the entire population typically lead to the emergence of successful

phenotypes. However, these phenotypes are not necessarily optimal, and may be able to coexist with

other phenotypes, and might even be labeled as “sub-optimal” if using optimization approaches [54].

With multiple foraging agents, we assume that agents reproduce or die at rates that depend on

the metabolic score. While the metabolic score determines the birth and death rates, several other

factors determine the metabolic score of an agent. Such factors are not limited to the attributes, but

also include factors like the number and attributes of competing foraging agents, and the density

and distribution of resources.

We start simulations with a population of n agents with the same assumptions and rules defined

in Subsection 2.4. Agents in the population start foraging with an initial metabolic score, l0, which

provides them with a head start to make sure that the metabolic scores remain positive in the early

exploring stages. Upon initiation resources can be sparse, and agent may not be able to find them

as quickly as in equilibrium. We assume that agent i reproduces according to a non-homogeneous

Poisson process with rate bi(t). Hence the probabilty of reproduction is bi(t)∆t + o(∆t) in a

small time interval ∆t. An agent dies with probability di(t)∆t + o(∆t). Both bi(t) and di(t) are

functions of the metabolic scores of the agent i at time t. At birth a single agent generates a

single descendant. The offsprings’ phenotype is a copy of the parents’ phenotypes (see below for

mutations which we will include later), and the metabolic score of the parent is equally divided

among the two descendants after deducting a ‘birth energy cost’. We assume that this cost is
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the energy required to produce a descendant. A death removes the agent from the population.

Since, birth and death rates depend on the current metabolic scores, they change continuously as

successful foraging increases the metabolic scores, and foraging consumes energy.

Figure 12: The probabilities of reproduction (birth) and death are determined by birth and death
rates, which are functions of the metabolic score of an agent. These rates thus define a birth
death process which depends on the ability of an agent to gather resources. Here MS = l(t) is the
metabolic score.

This birth-process generates selective pressure on the phenotypes. Those that can forage effec-

tively will have a higher metabolic score, and hence produce more descendants. Those that do not

forage effectively will have lower metabolic scores, and will be more likely to die.

We use the following birth-death rates,

a. Birth-death with metabolic score threshold: In this type of birth-death process, we use

maximum and minimum metabolic score thresholds to define birth and death. A minimum

metabolic score, Θb, is required for a birth. If this threshold is met or exceeded an agent

reproduces immediately. If the metabolic score falls below a threshold, Θd, the agent dies

immediately. We assume that 0 ≤ Θd < l0 < Θb. We also choose Θd and Θb so that

Θd < Θb/2, which ensures that newborn agents do not have a metabolic score that falls

bellow the death threshold immediately after birth. The probability of a birth, bi(t)∆t, and
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Figure 13: Two kinds of proposed birth-death functions: (A) birth-death defined in terms of
thresholds on the metabolic score, li(t) of agent i, and (B) birth and death rates defined using Hill
functions of the metabolic score with Hill coefficients{α, β} ≥ 2. Here, the initial metabolic score
is l0.

probability of death, di(t)∆t, in a small time increment ∆t, (omitting terms that vanish as

∆t→ 0) are give by the following step functions:

bi(t)∆t =


1 if li(t) ≥ Θb,

0 if li(t) < Θb,

and di(t)∆t =


1 if li(t) ≤ Θd,

0 if li(t) > Θd.

(18)

While implementing the model numerically, we assume that the following three events are

mutually exclusive; 1) birth of an offspring, 2) death, or 3) foraging only, within a short time

interval ∆t. The range of metabolic scores l(t) ∈ [Θd, Θb] is an exclusively foraging zone (See

Fig. 13A).

b. Probabilistic birth-death

In a second model we define birth and death probabilities using Hill functions of an agent’s

metabolic score. We use a Hill coefficient α, β ∈ [0.5, 4]. The birth rate is defined in terms

of the constant (Kb) that defines the point at which the rate reaches half its maximum.
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Similarly, the death rate is defined in terms of the half-max constant (Kd). The constants Kb

and Kd are fixed for all simulations and are independent of initial metabolic scores. Hence,

the rates are given by,

bi(t) =
(li(t))

α

(li(t))α + (Kb)α
(19)

di(t) =
(Kd)

β

(li(t))β + (Kd)
β
+ c, (20)

where c is a small uniform death rate for higher metabolic score such that 0 < c ≪ 1. The

rates in Eqs. (19) and (20) are continuous, and defined for all values of the metabolic score,

li(t). There is always some chance that an agent will die or reproduce, regardless of the

metabolic score (See Fig. 13B).

The birth-death processes defined in a (a) and (b) above are both stochastic. For instance, while

simulating using thresholds, a population can initially increase exponentially leading to competition

among agents for resources. This causes resource collection rates to decrease. As a result, agents

cannot get sufficient resources to sustain the metabolic costs of foraging and maintain metabolic

scores above threshold, Θd. Indeed, as continuously cycling environment from higher population-

high competition to lower population-lower competition leads to the cycle of low average metabolic

scores to higher average metabolic scores and ever changing birth-death rates. Later in Section 3, we

will demonstrate by numerical simulations that this type of dynamics leads to dampened oscillations

and eventually to a stationary distribution in population size and phenotype.

2.6 Evolution of Attributes

For the stochastic birth death processes described in Subsection 2.5, the structure of the population

changes when an individual gives birth or dies. When an individual dies and is removed from the

population, their phenotype is removed and as a result, the composition of the population changes.

Similarly when an individual reproduces, and their offspring is added to the population, in nature

the attributes of this offspring are determined by various factors [27]. We consider two ways of

determining the phenotype of the offspring in our model: In a non-evolutionary process a newborn
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has the same attributes as their parent. However, populations in nature are diverse. There are

numerous potential sources of such phenotypic diversity within any given population, each with

distinct underlying causes. A species’ capacity to respond to the forces of selection depends on the

source and extent of such phenotypic variability [16]. Thus, to capture evolutionary processes using

our model which includes asexual reproduction only, we assume that mutations drive phenotypic

variability across generations: The offspring has different attributes from those of the parent, but

its phenotype remains constant throughout an organism’s lifetime. More precisely, consider an

agent A, whose phenotype is represented by an order pair (s, a). In the non-evolutionary birth

process its offspring A′ has the same phenotype as the parent. However, in the evolutionary birth

process the phenotype of the offspring is a random perturbation of that of the parent, but the two

are equal on average.

Thus, we assume that at reproduction the attributes of the offspring are chosen randomly and

independently from some distribution whose mean equals that of the parent’s attributes. These

mutation distributions can be Gaussian or uniform, depending on the model we select. We also

assume that the variability in speed and acuity are independent. Therefore, the new-born agent’s

phenotype is (s± ϵ, a± ϵ′), where ϵ, ϵ′ ∈ N (0, σ2) or U(0, ϕ), and independent. We tune and choose

the Gaussian and uniform distribution parameters σ and ϕ in such a way that we can achieve

‘slower’ or ‘faster’ evolution, and simulate the evolutionary process until the population reaches a

stationary distribution of attributes. When there is no variance at birth, we can observe selection

without evolution when starting with a range of phenotypes. In this case we typically observe a

group of identical winning phenotypes. In contrast, larger variances in phenotypes at reproduction

lead to a wider distribution of phenotypes at equilibrium (See Fig. 14) with sudden declines and

spikes in population.

Fig. 14 shows the population dynamics and phenotypic clouds for some typical cases, where we

seek to identify the conditions and sources for phenotypic variances. We will discuss these dynamics

in more detail in the results section.
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Figure 14: Dynamics with non-evolving and evolving population. Increase in mutation leads to
larger variation in population size, and changes attribute distribution in equilibrium. (A) Popula-
tion, (B) speed, (C) acuity as functions of time. Bottom right (i− iv) : scatter-plots of attributes
with mutation ϵs, ϵa ∈ U(−ϕ, ϕ). i) ϕ = 0 (non-evolving population), ii) ϕ = 0.001, iii) ϕ = 0.01,
and iv) ϕ = 1. |Ω| = 400× 400, λ = 1/500 per unit area.
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3 Mean Field Model and Semi-Analytic Approach

Agent–based models are often relatively easy to describe and implement, but their dynamics can

be difficult to analyze [13, 59]. While the mechanisms and immediate effects of individual interac-

tions are easy to understand, the behaviors that emerge on the level of the population are often

difficult to predict [59]. Reduced, tractable mathematical models of the population dynamics can

be difficult to derive rigorously because agents interact between themselves and their environment,

which can make it hard to describe their joint behavior. In our case, it is challenging to derive

a mathematical model of the average population dynamics rigorously due, in part, to the unique

individual attributes of each agent in the population and the stochasticity of the birth-death pro-

cesses. In evolving population, these processes become even more complicated due to continuously

changing phenotypes of the offsprings.

In our agent–based model we assumed that each foraging agent has their own phenotype, so

that phenotypes can differ across the population. As we will see, under evolutionary pressure

phenotypes can converge, so that the population becomes more homogeneous. However, if we

assume that descendants differ from their parents due to mutations, some variability can and will

be maintained. Even with similar or identical phenotypes it can be difficult to find a reduced model

of population dynamics. Here we derive a mean field model of the aggregate population behavior

that is valid when the individuals in the population do not interact strongly [13].

3.1 Reduced Model Characteristics

We next describe a formal model of the dynamics of a non-evolving population. This model takes

the form of a system of differential equations that describe the averaged dynamics of the agents.

The reduced model describes the evolution of the population size, and the average metabolic score

of the agents.

We base the reduced model on the following set of assumptions:

1. The overall dynamics of the population is captured well by the average population density

60



and average metabolic score. Hence, we do not keep track of each agent’s metabolic score,

but consider the average metabolic score and total metabolic score of the population.

2. We assume the agents in the population have the same fixed phenotype, and assume there is

no phenotypic variation at birth. Hence, all descendants share the same phenotypic attributes,

and metabolic costs of their parents.

3. We assume that the resources added to the system and their metabolic energy content are

available to all of the agents. Hence the average metabolic score increases at a rate equal to

the resource replenishment rate times metabolic energy of resource. The metabolic costs of

movement and sensing represent a metabolic energy sink.

When the agents in a system interact according to a given set of rules, in ABM simulations

we recursively update the state of the system according to the outcome of these interactions. It

is challenging to obtain the probability of all possible states of the system, as we would have to

account for all possible agent positions and directions, along with resource locations. Hence, we

approximate only the average properties of the system of interacting agents.

In the absence of strong interactions, we can often approximate the evolution of averaged

quantities, such as population size, and mean metabolic score using a mean-field model. In this case

the evolution of the N -body system is approximated by the dynamics of a single body by averaging

the interactions between the individual agents and the environment, and assuming that interactions

between agents are negligible. We develop a mean field model by describing the population of agents

using a continuous, time dependent variable which is determined by agent density at an instant of

time, t. To formalize the model, we recall some parameters/variables defined earlier from the list of

notations and from Subsection 1.1. We will develop the mean field model in term of the following

quantities:

• resource replenishment rate per unit area, λ,

• resource density, ρ,
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• initial agent density, x0, and agent density at a given time, x(t),

• the metabolic score (energy) gained by consuming a single resource, F ,

• the initial metabolic score of an agent, l0, and the average metabolic score of an agent at time

t, l̄.

We derive the mean field model for a unit foraging area and can extend it to any other arbitrary

area Ω. The total number of agents in an area Ω of size |Ω| at time t is x(t)|Ω|. In the same area,

resources are replenished at a rate of λ|Ω| resources per unit time. The average total metabolic

score of all agents in that area is x(t)|Ω|l̄(t). We will use the reduced equations to compute the

limiting average of the population. Thus we look for the equilibrium solutions of the population

density and average metabolic scores. At equilibrium the resource collection rate of the population

equals the resource replenishment rate.

In order to survive and reproduce in a competitive environment, agents have to collect resources

at a rate such that the metabolic score gained must exceed, or equal, the metabolic cost per

unit time C(s, a) (See Subsection 2.4.2). In the mean-field model, we assume that the average

resource collection rate of an agent per unit area is a function of the agent density and the resource

replenishment rate, and hence has the form g(x, λ). More resources can be collected when the

replenishment rate is higher. Moreover, at higher agent densities resources are shared due to

competition. In Subsection 2.4, we have verified that the resource collection rate is a function of

resource replenishment rate and the number of foraging agents. Hence, the resource collection rate

is directly proportional to the resource replenishment rate and is inversely proportional to the agent

density. If ρ is the resource density (in a unit area) at any instant of time t, the rate of change of

resource density is

dρ

dt
= λ− g(x, λ) x. (21)

While the solution of Eq. (21) gives the resource density at any instant of time t, the expression

is complicated due to the birth-death process, as the resource collection rate is continuously chang-

ing with the number of agents in the domain. When the system approaches an equilibrium, the
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Figure 15: Resource collection rates are shown in two panels: (A) non birth-death simulations
with similar phenotypes ξk = (10, 10), where the resource collection rate is a function of resource
replenishment rate and agent density, and (B) non-evolving birth-death simulations in which the
trajectory of resource collection rate attains an equilibrium of λ/x. In each non birth-death sim-
ulation, identical agents are placed on a 200 × 200 space with a resource rate of λ = 0.0005 and
a simulation time of 10000. In each birth-death simulation, a random number of identical agents
with ξk = (10, 10) are placed on a 200×200 space with a resource rate of λ = 0.0005, F = 100, and
a simulation time of 10000. In birth-death simulations, the initial increase in population causes a
decrease in the resource collection rate, but ultimately it attains an equilibrium of λ/x.

resource collection rate in a unit area approaches the resource density, which in turn depends on the

replenishment rate. At equilibrium the resource collection rate equals the resource replenishment

rate, and so

g(x, λ) =
λ

x
.

We have thus obtained a resource collection rate, under the assumption that the system is in

equilibrium, and hence the resource density, ρ, is constant.

We ran simulations using evolutionary and non-evolutionary birth-death processes and found

that the average resource collection rate is approximated well by the ratio of resource replenishment

rate and agent density at equilibrium. Fig. 15B shows how the resource collection rate attains an

equilibrium λ/x in a typical non-evolving population simulation and resource collection rate attains

a value of λ/x in different non birth-death simulations (Fig. 15A).
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3.2 Mean Field Model of Agent Density and Metabolic Scores

Non-linear models, such as the logistic growth model in Eq. (4), are often used to describe pop-

ulation dynamics. Such models are defined in terms intrinsic growth rate and other terms char-

acterizing population size changes. However, in the foraging model we described, such rates are

difficult to obtain since they change as the population grows and evolves. We therefore model a

non-evolving birth-death process in a foraging population by considering a system of differential

equations, namely, the rate of change of metabolic score, and the rate of change of agent den-

sity. We next provide a nonlinear second order differential equation that describes the evolution of

these quantities. Although the full equation cannot be solved explicitly, we can find the equilibria

analytically.

3.2.1 Rate of Change of Average Metabolic Score

Each resource has a metabolic score (caloric value) F , which equals the increase in an agent’s

metabolic score when consumed. The metabolic score of an agent thus increases at a rate equal

to the product of F and the resource collection rate. Similarly, the agent’s movement and sensing

reduce its energy budget at a rate C(s, a).

If l is the average metabolic score, and x is the agent density at any instance of time, the rate of

change of the average metabolic score per unit area due to foraging gains and losses is then given

by,

dl̄

dt
=
λ

x
F − C(s, a),

where we have used the resource collection rate at equilibrium, g(x, λ) = λ
x . However, this equation

is incomplete, as it does not account for the change in the average metabolic score due to births.

After each birth, the agent’s metabolic score is equally divided between the parent and offspring,

and the rate of these events is given by the birth rate rb. Hence,

dl̄

dt
=
λ

x
F − C(s, a)− rb l̄ ln 2. (22)
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We can use this equation to define equilibria of the system: When the rate of gain of metabolic

score exactly meets the current metabolic energy dissipation rate, we have

λF

x
= C(s, a) + rb l̄ ln 2.

In this case there is no net gain in the metabolic score, and l̄ approaches a fixed point l̃. When l̄

becomes constant, x approaches a fixed point x̃. Indeed, l̃ and x̃ are the equilibrium solutions of

the system defined by Eq. (27) discussed next.

3.2.2 Rate of Change of Agent Density

To model the evolution of the agent density, we use the birth–death dynamics described in Subsec-

tion 2.5. In particular, we assume that the dependence of the birth rate on the metabolic score of

an agent is given by the Hill equation defined by Eq. (19) in Subsection 2.5.

Similarly, to define the death rate of an agent, we use the same Hill equation (Eq. (20)) in

Subsection 2.5. We assume that an agent can die even with a large metabolic score, and that there

is a small uniform constant death rate, c, in the population,

rd =


(Kd)

β

l̄β+(Kd)
β + c l̄ ≥ 0

∞ l̄ < 0

(23)

We recall from Section 2.5 that birth-death rates can also be defined using Heaviside step

functions in terms of thresholds on the metabolic scores (Eq. (18)). Using Heaviside functions

in the resulting mean field ODEs would lead to a discontinuous right hand side, and potential

numerical problems. We therefore approximate these step functions using logistic functions. The

logistic functions give the probabilities of birth and death in a small time interval as follows;

pb =
1

1 + exp{−2k(l̄ −Θb)}

pd =
1

1 + exp{2k(l̄ −Θd)}

(24)
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Figure 16: Birth–death rates by Hill functions and the thresholds on metabolic scores: (A) birth
and death rates defined using Hill functions of the metabolic score with Hill coefficients {α, β} = 2,
and (B) birth and death rates translated from Heaviside step function (Eq. (24)).

where for larger k the transition of probability is sharp, and approaches the step function in Eq. (18)

in the limit, i.e

pb = lim
k→∞

1

1 + exp{−2k(l̄ −Θb)}
=


1 if l̄ ≥ Θb

0 if l̄ < Θb

(25)

and similarly for the probability of death.

As in the ABM model, we choose the thresholds so that Θd < l0 < Θb and Θd < Θb/2.

Any metabolic scores l̄ ∈ (Θd, Θb) fall in the zone where there is no birth or death. Indeed, the

equality holds in the limit of the smooth approximation of step function defined by logistic functions

(Eq. (24)), these logistic functions are well approximated by Hill equations and vice-versa [1, 35].

We thus obtain the following systems of non-linear differential equations with initial conditions;

l(0) = l0, x(0) = x0
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• When birth-death occurs with threshold on metabolic score,


dl̄
dt =

λ
xF − C(s, a)− ln 2

(
l̄

1+exp{−2k(l−Θb)}

)
dx
dt =

(
1

1+exp{−2k(l̄−Θb)}
− 1

1+exp{2k(l̄−Θd)}

)
x

(26)

• When birth rate and death rates are determined by Hill equations, then the system becomes;


dl̄
dt =

λ
xF − C(s, a)− ln 2

(
l̄α

l̄α+(Kb)α

)
l

dx
dt =

(
l̄α

l̄α+(Kb)α
− (Kd)

β

l̄β+(Kd)
β − c

)
x

(27)

To find the stationary points and their stabilities of the Systems (26) and (27), we set left hand

sides to zero. When dx
dt = 0 from System (26), we get metabolic score (l̃) = (Θb + Θd)/2 which is

one of the stationary point.

Now from dl̄
dt = 0;

0 =
λ

x
F − C(s, a)− ln 2

(
l̃

1 + exp{−2k(l̃ −Θb)}

)

=
λ

x
F − C(s, a)− ln 2

2

(
Θb +Θd

1 + exp{−2k((Θb +Θd)/2−Θb)}

)
=

λ

x
F − C(s, a)− ln 2

2

(
Θb +Θd

1 + exp{k(Θb −Θd)}

)

For k ≥ 1 and for larger difference between birth threshold and death threshold (Θb −Θd), the

denominator of the second term is very large compared to the first term. Hence we can neglect the

second term so that we get the equilibrium point for the agent density as,

x̃ =
λ

C(s, a)
F.
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Figure 17: Stationary points (metabolic scores (l̃)) to the System (27) obtained from Eq. (30) with
different birth propensities (Kb) and death propensities (Kd), α = β = 4.

Similarly, for the System (27), by equating the LHS to zero, we have

x̃ =
λ

C(s, a) + ln 2
(

l̃α+1

l̃α+(Kb)α

)F, (28)

and (
l̃α

l̃α + (Kb)α
− (Kd)

β

l̃β + (Kd)
β
− c

)
x̃ = 0.

Since, if agent density is 0, either this is a ‘trivial’ solution or the death rate exceeds the birth

rate. So, for x̃ ̸= 0, l̃ is obtained by the solution of

l̃α+β(1− c)− c(l̃αKβ
d + l̃βKα

b )− (1 + c)Kβ
dK

α
b = 0. (29)

For α = β

l̃α =
1

2

 c

1− c
(Kα

d +Kα
b ) +

√(
c

1− c

)2

(Kα
d +Kα

b )
2 + 4Kα

dK
α
b

(
1 + c

1− c

) (30)

For any admissible parameter values, Eqs. (28) and (29) give a single fixed point (l̃, x̃). We

analyze the stability of the fixed point as follows:
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Let, 
ϕ(l̄, x) = λ

xF − C(s, a)− ln 2
(

l̄α

l̄α+(Kb)α

)
l̄

ψ(l̄, x) =
(

l̄α

l̄α+(Kb)α
− (Kd)

β

l̄β+(Kd)
β − c

)
x

(31)

J =

 ∂ϕ∂l ∂ϕ
∂x

∂ψ
∂l

∂ψ
∂x

 =


− ln 2

1+(α+1)
(

Kb
l̄

)α

(
1+

(
Kb
l̄

)α)2 − λ
x2
F

x
l̄

 α
(

Kb
l̄

)α

(
1+

(
Kb
l̄

)α)2 +
β
(

Kd
l̄

)β

(
1+

(
Kd
l̄

)β
)2

 (
l̄α

l̄α+(Kb)α
− (Kd)

β

l̄β+(Kd)
β − c

)
 (32)

For fixed point (x̃, l̃), the Jacobian has the form; J =

a b

c d

 where a < 0, b < 0, c > 0 and

d = 0.

The eigenvalues of J are a±
√
a2+4bc
2 . For a < 0, b < 0 and c > 0, the discriminant (a2 + 4bc)

determines the nature of eigenvalues. Since a is negative, and 4bc is large (negative) as compared

to a2, a2 + 4bc < 0. So the eigenvalues are imaginary with negative real part (a/2). This shows

that the only equilibrium solution (l̃, x̃) for the System (27) is indeed a stable focus.

For example, we take Hill coefficients (α, β) = 4 and solve the equations15. For Kb = 1000,

Kd = 100, λ = 1/500 and F = 25 on 200×200 space, the equilibrium point is (l̃, x̃) = (336.8, 143.5)

and the Jacobian evaluated at equilibrium point is

J|(l̃, x̃) =

−0.043 −0.097

0.034 0


with eigenvalues λ1 = −0.02−0.05i and λ2 = −0.02+0.05i. This shows that the equilibrium point

(l̃, x̃) = (336.8, 143.5) is stable. The solution path16 forms a spiral sink near the equilibrium point.

We have established a limited mean field model to find the dynamics of agent density and their

metabolic scores which are carried with two types of stochastic birth death processes. The dynamics

of these two Systems (26) and (27) will be used to analyze and compare with the ABM results.

15to solve the equations numerically we used MathWorks-vpasolve[41]
16we obtained the phase portrait in Fig. 18 using PhasePlane App in MATLAB [43]
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Figure 18: Stability of the equilibrium point to the System (27) forKb = 1000, Kd = 100, λ = 1/500
and F = 25 on 200× 200 space: (l̃, x̃) = (336.8, 143.5) .

When births and deaths are modeled using thresholds on the metabolic scores, it takes longer to

achieve a stationary distributions due to ‘foraging only’ zones, and the method in which birth and

death rates are determined by Hill equation of metabolic score, often achieves stationarity quickly.

We will present these and other comparisons in the result section next.
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4 Results

In previous sections we defined a stochastic evolutionary birth-death process that was the basis

of an agent-based modeling (ABM) approach. We also defined a limited corresponding analytic

description of the model in terms of a non-linear system of ordinary differential equations. In this

section, we analyze the data obtained from ABM simulations, and compare and contrast this data

with analytical results. We show that the resource environment and the dynamics of the birth-death

process used to define our ABM lead to selection of particular phenotypes. While the birth-death

rates are determined only by the agents’ metabolic scores, the phenotypes go through selective

pressures since they determine these metabolic scores. We find that in some resource environments

(for instance, homogeneous resource distribution with high replenishment rates in the domain),

the phenotype may experience weaker selective pressure, whereas in other resource environments

(low resource replenishment rates or patchy resource distribution), phenotypes go through strong

selective pressures. We show that populations that experience strong selective pressures converge

to phenotypes in a narrow range of values that are adapted to such hostile environments. Thus we

find that the birth-death process creates a variation among the phenotypes, forces the model to

select the competitive ones and hence directs the overall evolutionary process.

To establish and verify the assertions in the previous paragraph we simulated the ABM using

the algorithm and methods explained in Section 2. We ran simulation on two-dimensional domains

of varying sizes, including 100 × 100, 200 × 200, 400 × 400 and 800 × 800 with different initial

phenotypes. The attributes (speed and acuity)of the agents determine how they explore their

environment in search for resources. The phenotypes which allow for effective exploration of the

environment and maximization of the net metabolic energy gain per unit time, are more likely to

replicate. In what we call the ‘evolutionary model’ offspring can acquire mutations resulting in

phenotypic variance at birth. This can occasionally produce ‘fitter’ phenotypes, i.e. phenotypes

that forage more successfully than their ancestors and thus have a higher probability of reproducing.

Agents which cannot sustain the required metabolic costs of foraging are more likely to die, and the
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death process also alters the phenotypic composition of the population. In the ‘non-evolutionary’

model offspring do not acquire mutations (no variance at birth), so that newborns are copies of

their parents. In this model the ‘fittest’ phenotypes are selected among the initial phenotypes

in the population. Changes in the phenotypic composition of the population in non-evolutionary

birth-death processes are caused solely by selection on the phenotypes that are available initially.

When we include mutations changes in the phenotypic composition are due to both selection and

mutation.

Further technical details about the the ABM simulations are described in Appendix B.

4.1 Dependence of Dynamics on Simulation Parameters

Before presenting the analyses and results, we briefly discuss the accuracy of the numerical imple-

mentation of the ABM. In particular, we checked that our simulation results are independent of

the size of the discrete time increment, ∆t, we used in our simulations. Since our ABM is defined

in continuous time, and it is simulated using a discrete approximation of the model it is important

to show that the time increment is small enough to give accurate results, yet not too small to be

computationally inefficient. Smaller increments lead to longer and slower simulations, while larger

increments may not provide a valid results.

We ran simulations with different time increments, ∆t, and here show some of the resulting

population sizes in equilibrium along with the average attributes (Fig. 19). Note that when the

time increment is smaller than about 0.1, any further reduction in the increment does not alter the

results. To verify this, we performed corresponding simulations on 200× 200 and 400× 400 spaces

with the parameter in the ranges that are discussed below, and found that a time increment of 0.1

is sufficient in all cases we examined. We therefore chose an increment of size 0.1 in our simulations.

Similarly, in ABM simulations, the values of some variables must be fixed at the beginning of

the simulations. We will see that these initial values often do not impact the long term dynamics

of the population. In Subsection 2.5, we assumed that the agents in population start foraging with

the initial metabolic scores (l0) to assure that they have sufficient metabolic energy in the early
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Figure 19: Semi-log plots of showing population, speed, and acuity versus the time increment
used in simulations, ∆t. Error bars represent the standard deviation of the final population and
attributes, based on 10 independent simulations for each time increment, ∆t, and for each evolving
and non-evolving populations. Simulations start with an initial population 10000 and a domain of
size 200 × 200, λ = 1/500, F = 25 and T = 10000. For evolving population; ϵs and ϵa are taken
uniformly random from U(−ϕ, ϕ) where ϕ = 0.05.

exploratory stages. We fix this initial value, l0, to a constant between Kd and Kb, depending on

the resource availability and competition at the beginning of simulation, as we explain next. For

smaller l0, the probability of survival of agents with high speed and high acuity (metabolically costly

attributes) is low at the early exploring stage, so phenotypes with less costly attributes are selected

for. Moreover, the phenotype once eliminated cannot re-emerge in the non-evolving population

model. Considering these facts, we chose initial metabolic score17 sufficient for an organism to

survive over a relatively long initial time. However, the long term behavior of the population is

not sensitive to this initial value, as long as the initial metabolic score is sufficiently high for the

initial population to survive, and individuals do not starve before they are able to find and reach

any resources (Fig. 20B, 20D and 20F).

As we discussed earlier, to forage effectively agents need to change their direction appropriately.

Recall that we define the frequency of direction change, fi, for each agent so that all agents move

an average distance, defined by the run-length η, before changing direction (see Subsection 2.2).

This fixed average run distance ensures that, on average, each agent eventually explores an area

17with (l0) = 0, the current metabolic score becomes negative at the first instant of time ∆t for all unsuccessful
agents and hence death rate become infinity.
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Figure 20: Semi-log plots of (A), (B), (C), (D), (E), and (F) showing population, speed, and
acuity as a function of average run distance (η) on the first column and versus initial metabolic score
(l0) on the second column. Error bars represent the standard deviation of the final population and
attributes, based on 10 independent simulations for each run and initial metabolic score, and for
each evolving and non-evolving population. The results show that the equilibrium is independent
of the choice of run distance and initial metabolic score, with consistent patterns observed across
multiple independent simulations. Simulation on a domain of size 400 × 400, with λ = 1/500,
F = 25 and T = 10000. For evolving population; ϵs and ϵa are sampled uniformly at random from
U(−ϕ, ϕ) where ϕ = 0.05.
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in a given amount of time whose size depends solely on the speed of the agent. Thus all agents

have the same average run distance, but faster agents will explore an area more quickly. While

modeling single agent foraging earlier (see Subsection 2.3), we fixed η to ensure effective foraging.

However, since resources are being accumulated at a fixed resource replenishment rate, agents start

to exploit (when resource density in the domain becomes high enough so that resource is being

available inside ones acuity range) their acuities instead of exploring the domain, even for smaller

η. Hence, at high resource replenishment rates agents will go from one visible resource to the

next, and will not spend much time seeking resources they cannot see. In that case the choice of

η does not impact the long term dynamics of the population and the evolution of attributes (Fig.

20A, 20C and 20E). When resource rate is very low (highly competitive foraging simulation), the

choice of η does impact the dynamics. Since smaller values of η result in less effective exploration

and foraging, such values also favor agents with larger acuities. To overcome such dependency, we

typically chose the η larger than expected distance between an agent to its nearest resources (see

Eq. (12)) i.e., η ≥ 1
2
√
λ
.

4.2 Non-evolutionary Birth-Death Process

In order to understand the population dynamics and selection of phenotypes in non-evolutionary

birth-death process, we generally start simulations by considering a large number of agents (usually

≥ 10000) with distinct phenotypes chosen randomly and uniformly from {[smin, smax] , [amin, amax]}.

Because non-evolutionary birth-death processes don’t naturally introduce variation, we need a large

number of agents to ensure that there is enough variability in the population. We initially place

each agent to a location Pi chosen uniformly and at random in the domain. This ensures that a

diversity of phenotypes at the start of the simulation. These phenotypes have different attributes

and different metabolic costs, and hence the ‘fittest’ among the phenotypes is expected to survive.

However, when our goal is to compare the competitive foraging and resource collection rates

of different phenotypes, we conduct simulations using only a few ”representative” phenotypes.

Likewise, if we want to investigate the population dynamics, specifically the carrying capacity, of
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identical phenotypes in non-evolving birth-death simulations, we start the simulation with a smaller

number of initial agents. In short, the initial number of agents in a simulation can be tailored to

fit the specific objective of the model.

In our model, the dynamics of the stochastic birth-death processes are determined by agents’

foraging abilities and their metabolic energy accumulation rates. In such cases, the pivotal part

of the process is to model the resource collection rates. In Subsection 2.3, we have estimated the

upper bound and lower bound for the resource collection rates (Eq. (13)) for a single foraging agent.

We can extend the same estimates to multi-agent foraging. However, the estimate works only for

populations composed of agents with similar phenotype. In heterogeneous populations individual

resource collection rates are determined by the different phenotypes, which makes the analysis more

difficult. Moreover, our reduced models do not capture evolution.

We therefore simulated the model numerically to estimate the resource collection rates of such

heterogeneous populations. We started with 900 agents on domains of different areas ranging from

50 × 50 to 800 × 800. Each agent was assigned a phenotypic vector ξi, and these vectors took all

possible integer-valued ordered-pairs of speed and acuity from a range [1, 30]. We set the resource

replenishment rate to be constant at λ resources per unit time per entire domain 18. This means

that the resource replenishment rate per unit area was smaller in the larger domains, but the total

amount of resource generated per unit time was constant. In larger domains the resources are

therefore more sparsely distributed.

The resource collection rates in the smaller domain are mainly determined by competing agents’

speeds. Acuity is not a strong determinant, unless it becomes too small to observe even closeby

resources, and agents engage in futile exploration (Fig. 21A). This makes sense as in smaller

domains resources are more densely distributed. However, in larger domains with more sparsely

distributed resources both speed and acuity are important for effective foraging (Fig. 21E and 21F).

Fig. 21 shows that speed is crucial for effective resource collection in a competitive environment.

We next show how the resource collection rate affects the rates of births and deaths. When agents

18we note a slight abuse of notation here: Previously λ denoted the resource generation per unit time per unit area.
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Figure 21: Resource collection rate for each of 900 agent attributes in different domains: (A)
50× 50, (B) 100× 100, (C) 200× 200, (D) 400× 400, (E) 600× 600, and (F) 800× 800 spaces.
Agents’ attributes are chosen from [1, 30] and a resource collection rate was obtained for every
integer-valued ordered pair. Ten independent simulations were used for each estimate. Resource
replenishment rate was set to λ = 1 resource per unit time on the entire domain and T = 10000.
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Figure 22: Non-evolving population with similar phenotypes: (A) population size, (B) available
resources as a function of speed and acuity in a 200×200 domain at the equilibrium. Horizontal blue
line separates the simulations which end with high resource density and low resource density. Each
non–evolving birth–death simulation starts with the same phenotype and 100 agents. Resource
replenishment rate was set to λ = 1/500 resources per unit time, F = 25 per resource and T =
10000.

Figure 23: (A) Simulation result where the population as the function of speed and acuity in a
200 × 200 domain at the equilibrium. Each non–evolving, birth–death simulation starts with the
same phenotype and 100 agents. Resource replenishment rate was set to λ = 1/500 resources per
unit time, F = 25 per resource and T = 10000. (B) Number of agents (x̃ × |Ω|) given by the
equilibrium solution of Eq. (27) with the following parameters; Kd = 100, Kb = 1000, λ = 1/500,
|Ω| = 200× 200, F = 25, T = 100, and random initial agent density and initial metabolic scores.
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with similar attributes compete with each other, the metabolic cost of these attributes dictates

the population dynamics. Phenotypes with very costly attributes may forage to just maintain

their energy requirement. Agents able to collect excess energy reproduce. However reproduction is

costly, as energy is divided between parent and offspring. Hence, higher speeds and acuity typically

lead to a smaller population, given equal resource rates (see Fig. 22A). To compare these result

with the minimal mean field model described in Subsection 3.2, we recall at equilibrium the agent

density for the system described by Eq. (27) is given by;

x̃ =
λ

C(s, a) + ln 2
(

l̃α+1

l̃α+(Kb)α

)F,
where α = β, Kb and Kd are birth and death propensities respectively, λ is resource replenishment

rate, F is the caloric value of the resource, and l̃ is the equilibrium point for the average metabolic

score.

Population (carrying capacity) of certain environment with non–evolving birth–death process

are well approximated by above equilibrium points and the simulation results given in Fig. 22A

agree with solution of the System (27) as shown in Fig. 23. In such similar phenotypes simulations,

the number of available resource in the domain (resource density) at the equilibrium are determined

by the agents’ acuities. Some simulations attain equilibrium with low resource density and some

with high resource density. The separation between simulations which result to high resource or

low resource are due to synchronous movements of agents and under–harvesting (see Fig. 22B),

which we discuss in the following Subsection 4.3.

4.3 Synchronized Motion and Spikes in Population Size

Although the non-evolving population dynamics is mainly dictated by the metabolic cost of motion,

and speed is more costly than acuity, the resource density at equilibrium is determined by the agents’

acuity in simulations with similar phenotypes, with non–evolving birth death processes (see Fig.

22B). When agents have larger acuity, they may not use it as speed is needed to reach the resource
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before the other agent that ‘claim’ that resource. In such cases, many agents ‘see’ the same resource

but only few can exploit it. In this case we observed collective motion of agents towards a single

resource. As a consequence agents can lose energy rapidly by futilely following resources that are

visible but that they fail to reach before others do. For the few successful agents who are either

faster or happen to be closer to the next resource, the energy can be shared (if they reach the

resource in the same time step) and used to sustain them. Hence the probability of these agents

to go through birth process is small. Due to a lack of phenotypic variance, every agent moves in

similar patterns within groups, resulting in under-harvesting. As a consequence, more resources

are accumulated in the space, resulting in higher resource density.

We have identified following conditions to have such synchrony in birth–death simulations:

• The population is non-evolving with uniform phenotypes, so that the new-borns are the same

phenotypes as the parents.

• The acuity is larger than the average minimum distance between a foraging agent and re-

sources. For example, in a typical case on 200 × 200 space with λ = 1/500, the average

minimum distance between an agent and resources (at the time of resource replenishment) is;

δ̄(m, b) =
1

2
√
λ
=

1

2
√
1/500

≈ 5
√
5.

So if any acuity a > 5
√
5 (in Fig. 22B), we see the high resource density at the equilibrium

above the acuity line a = 5
√
5.

• The dispersal distance must be zero or small compared to an agent’s acuity. In such cases,

offspring is placed at the same location or very near to heir parent at birth.

Hence, the periodic spikes in the non-evolving population are mainly due to the high resource

rate, high acuity and small dispersion distance. We verify these facts by simulating a population

on a domain of size 200 × 200 with resource rate 1/500, speed s = 25 and acuity a = 25 for all

agents in the population. We start the simulation with random number of identical agents with
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Figure 24: Snapshots of synchronized motion of agents in domain. The simulation starts with
identical agents on random location in the domain. Since the birth-death process is non-evolving,
the phenotypes have same attributes and the dispersal distance is small (0.1), the agents form
groups and start to move together. Even though the number of agents is high, due to synchronous
movement and the fact that many agents share the same coordinates, we see only a few dots
(in the scatter plot) towards the end of the simulation. Simulation on 200 × 200 space, resource
replenishment rate (λ) = 1/500, F = 25, s = 15, a = 30, initial number of agents = 100, and
T = 2000.
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Figure 25: An example of the result of synchronous movement of similar phenotypic agents leads
to the spikes in population and resource density at equilibrium when dispersal distance is small.
Trajectory of: (A) population, and (B) resources available on the space with two different dispersal
distances. (C) Semi–log plot of dispersal distance with resources (density) at the equilibrium.
Though the average population remains almost the same with different dispersal distances, the
resource density remains high with small dispersal distance. Simulation on 200 × 200, resource
replenishment rate (λ) = 1/500, F = 25, s = 25, a = 30 and T = 10000.

these attributes and perform the simulation with various dispersal distances. Figs. 25A and 25B

show the spikes in population and resource density. Although the average population remains same

on these simulations, the resource density at equilibrium increases with a decrease in dispersal

distance19 (Fig. 25C).

4.4 Population and Attributes as Functions of Resource Environment

The foraging patterns in simulations with heterogeneous populations are distinct and complex, in

contrast to those of homogeneous phenotypes. When agents with different attributes compete for

resources in an environment it becomes challenging to analytically describe the extent of interactions

between them. In an evolving population, due to the differences in traits and phenotypic variances

emerging from mutation during birth, the mean field model described in Section 3 may not able to

capture the evolution of attributes. To find the population dynamics of an evolving population and

the trajectory of the attributes as the population evolves, we simulated the evolution of populations

in different environments with different initial parameters.

19the notion of dispersal distance is mainly applied to explain synchrony and spikes in non-evolving population .
In evolving population, the model itself creates a phenotypic variance and hence the synchrony vanishes within short
period of time, however we take standard normally distributed dispersal distance in all birth–death simulations.
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Figure 26: Population and attributes in different domains with low resource rate λ = 1.25× 10−4,
high caloric value F = 400: (A) population, (B) speed, and (C) acuity vs the width of |Ω|,
T = 10000. For evolving population: ϵs, ϵa = 0.05.

As we saw in previous sections the resource collection rates for certain homogeneous phenotypes

mainly depend on the resource environment itself. We extend this idea to evolving populations,

and validate our assertion that the population size and attributes at equilibrium are determined

by the resource environment.

To understand the results of our simulations, we will assume that the resource environment

characteristics are features, i.e. independent variables, and use them to predict the population

size, speed and acuity in equilibrium. In particular the resource environment is defined by the

following features,

Features ( input) =

{ Resource Rate

Resource value (energy)

Size of space

}
=⇒

{ Population

Speed

Acuity

}
.

Here we also indicate that the features of the environment are used to predict the features of the

population at equilibrium.

Although agents need to accumulate metabolic energy to forage and reproduce, the quality of

resources (metabolic energy per resource) is also critical for a successful foraging. For instance if the

resource density is high but the resources have less energy (low ‘quality’) then the agents have to
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Figure 27: Population size and attributes at equilibrium in different domains with high resource
rate λ = 2 × 10−3, low caloric value F = 25: (A) population, (B) speed, and (C) acuity vs
the width of Ω, T = 10000. For evolving population: ϵs, ϵa = 0.05. For non-evolving population,
simulations start with 10000 agents randomly assigned to various attributes chosen from sk ∈ [1, 30]
and ak ∈ [1, 30].

forage for a considerable time to increase their metabolic score by an appreciable amount. However,

if the resource density is low with high caloric value (high ‘quality’) then agents need to find fewer

resources, but may need to put more effort into finding such high energy resources. Hence, fixing

the average total energy (caloric value) input rate per unit area, we performed simulations on two

kinds of resource environments: (a) high resource rate (low quality), and (b) low resource rate

(high quality). In both low resource rate (Fig. 26) and high resource rate (Fig. 27) environments,

the population size grows as a quadratic function of space width. However, speed and accuracy at

equilibrium grow initially as a function of space–size and eventually settle to high values for larger

spaces.

Since these simulation were performed with fixed resource values (high quality and low qual-

ity resources) and fixed resource rates, the results thus obtained could not elucidate the effects of

interaction between different input features. When the resource rate and resource values (caloric

value) change simultaneously along with change in domain size, then the problem becomes multi-

dimensional. We use multivariate polynomial regression on row staked multidimensional data to

fit a second degree polynomial [18], and estimate the values of output with the fitted polynomial

as follows.
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We simulate agents foraging on domains of sizes ranging between 50 × 50 and 800 × 800, in

increments of 50 units per side. For every simulation we chose a resource rate which was either low

λ = 1.25 × 10−4 or high λ = 2 × 10−3, and a corresponding resource value (caloric value of each

resource) ranging between 10 to 1600, with intervals of 40. The initial number of agents was set

to 10000, and each agent was equipped with initial attributes sk and ak chosen randomly from a

fixed range. We ran 10 independent trials for each domain and each resource value to find the final

population, speed and acuity.

Once this data was generated we fit the resulting speed, acuity and population size to the

parameters characterizing the environment using polynomial regression. We assumed a linear de-

pendence on the parameters, except for the domain side, b. We also included possible interactions

between domain size and resource caloric value, F . We hence obtained the following model for the

data, 
X = βX0 + βX1 b+ βX2 F + βX3 b2 + βX4 b · F

s = βs0 + βs1 b+ βs2 F + βs3 b
2 + βs4 b · F

a = βa0 + βa1 b+ βa2 F + βa3 b
2 + βa4 b · F.

(33)

Here X is the population size at equilibrium, s the average speed, and a the average acuity at

equilibrium. Since from single–variable relation (see Figs. 26 and 27 ), the population has a

non-linear relation with |Ω|, for a fixed resource environment.

The second-degree polynomial fit to the data given by Eq. (33) is shown in Fig. 28. The

goodness of fit for the fitted value with respect to actual values are presented in the Fig. 29, and

the coefficients of fitted second degree polynomials with R-squared values, mean absolute error

(MAE), mean-squared error (MSE) and 95% confidence interval are listed on the Tables 1 and 2.

Since the size of second degree terms (βs3 b
2 and βa3 b2) are very small as compared to the size

of first degree terms (βs1 b and βa1 b) for attributes, a linear model would be sufficient to capture

the dependence of the attributes on the domain size. Similarly, the terms which represent the

interaction between domain width and resource value (βs4 b · F and βa4 b · F ) for attributes are

negligible as compared to the first degree terms for resource value (βs2 F and βa4 F ), showing that
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Figure 28: Second degree polynomial fit for population, speed and acuity for two resource envi-
ronments; first column: high resource rate (λ = 2 × 10−3) environment, and second column: low
resource rate (λ = 1.25× 10−4) environment. The domain Ω and resource value (caloric value) are
randomly chosen from discrete uniform distributions. T = 10000, ϵs and ϵa = 0.05.
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there is roughly a linear relation between resource values and attributes.

λ = 0.002 Population Speed Acuity

β0 808.454 7.575 8.8995
( 95% C.I.) (728.6, 888.3) (6.925, 8.856) (8.496, 9.303)

β1 −6.103 0.0707 0.0161
( 95% C.I.) (−6.547,−5.659) (0.0636, 0.0778) (0.0138, 0.0183)

β2 −0.982 0.0111 −0.001
( 95% C.I.) (−1.056,−0.9086) (0.0099, 0.0122) (−0.0013,−0.0006)

β3 0.0094 -6.125e-05 −1.316e− 05
( 95% C.I.) (0.0089, 0.0098) (-6.933e-05, -5.318e-05) (-1.571e-05, -1.063e-05)

β4 0.0086 -5.867e-07 -1.043e-06
( 95% C.I.) (0.0084, 0.0088) (-4.011e-06, 2.838e-06) (-2.122e-06, -3.469e-08)

R-Square 0.9852 0.7671 0.4925
-

MSE 6.866e+04 17.68 1.752
-

MAE 179.606 3.260 0.9048
-

Table 1: Coefficients of multi-polynomial regression fit for high-resource rate environment

4.5 Birth-Death Process Selects Competitive Phenotypes.

Since resources are readily available in a high resource rate environment, agents evolve with lower

attribute values (Figs. 27B and 27C). However, if the resource energy (caloric value) is also high,

then agents will evolve with higher speeds to outcompete other foraging agents. The fitness of

phenotypes with these attributes is mainly determined by the resource environment, and initial

attribute values do not impact the emergence of these traits. Moreover, other initial values like

number of agents and initial metabolic scores do not influence the ultimate evolution process.

One of the key features of our model is that the birth–death rates do not depend on the

agent’s phenotype directly. The fitness of an agent is impacted by the phenotype only because the

phenotype determines an agent’s ability to forage and accumulate metabolic energy. Similarly, the
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Figure 29: Goodness of fit of 2nd-degree polynomial for model predicted values versus the true
values. First column: high resource rate (λ = 2 × 10−3) environment and second column: low
resource rate (λ = 1.25× 10−4) environment. The domain Ω and resource value (caloric value) are
randomly choose from a given range. T = 10000, ϵs and ϵa = 0.05.
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λ = 1.25e-04 Population Speed Acuity

β0 9.093 -0.2721 5.748
( 95% C.I.) (2.574, 15.61) (-0.7444, 0.2001) (4.441, 7.055)

β1 -0.0806 0.0333 0.0760
( 95% C.I.) (-0.1155, -0.04575) (0.03086, 0.03591) (0.06903, 0.08301)

β2 -0.0271 0.00286 0.0044
( 95% C.I.) (-0.03287, -0.02133) (0.002444, 0.00328) (0.003251, 0.005565)

β3 0.00033 -2.971e-05 -6.48e-05
( 95% C.I.) (0.0002917, 0.0003699) (-3.255e-05, -2.688e-05) (-7.265e-05, -5.696e-05)

β4 0.00038 6.898e-06 8.006e-07
( 95% C.I.) (0.000373, 0.0004068) (5.674e-06, 8.122e-06) (-2.585e-06, 4.187e-06)

R-Square 0.9564 0.8324 0.6004
-

MSE 677.98 3.5585 27.2402
-

MAE 16.3996 1.4506 4.0356
-

Table 2: Coefficients of multi-polynomial regression fit for low-resource rate environment

population of a certain environment depends on the birth–death rates and hence on the resource

rates and phenotypes. Since the model is based on the assumption that offspring has the same

phenotype as the parent up to a small difference due to mutation, we look into the direction of

change in phenotype and overall dynamics of population.

To understand how competitive phenotypes are selected we simulated the population in different

resource environments. We started the simulations with a large number of agents, each charac-

terized by a phenotypic vector, ξk = (sk, ak), where sk ∈ [smin, smax] and ak ∈ [amin, amax] were

selected uniformly and at random from the corresponding interval. Fig. 30 shows that if, for fixed

average energy per unit area, the resource rate is low, then agents with higher attribute values are

selected for. In the case of non evolving population, once any phenotype dies and a trait is removed

from the space, there is no mechanism for the emergence of such traits again. Hence phenotypes

with lower attributes become fit and population remains higher in non-evolving simulations.
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Figure 30: Population and attributes at equilibrium for evolving (ϕ > 0) and non-evolving (ϕ = 0)
population simulations; first row: 400× 400 and second row: 800× 800 spaces. Each semi-log plot
consists of data from six different resource rate–energy pairs (λ × |Ω|, F ) so that average energy
per unit area is constant λ|Ω|F = 32000 and T = 10000.
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Figure 31: Population and attributes are independent of initial population and phenotypes from
which the simulations start. With random initial population and phenotypes, the model selects
the ‘fit’ phenotypes and attains an equilibrium with an average stationary population. Panel (A)
population and its average over 500 simulations. In panel (B) a green dot represents the average
initial phenotype, blue dot represents the average (evolved) phenotype, and red line shows the
trajectory of the average phenotype on the phenotype space for a single simulation. Simulations
on 200× 200 space, resource rate λ = 1/500, F = 100, T = 10000, and ϵs, ϵa = 0.05.

The stochastic birth–death process in agent-based simulations is indeed independent of choice

of initial values, and the ‘fit’ phenotypes survive as the result of the birth–death process. Although

the time to reach equilibrium (when average population and available resources become stationary

in the space) may differ for different initial conditions, ultimately the process reaches a particular

distribution of phenotypes (see Fig. 31). Interestingly, as shown in Fig. 31, speed seems to be under

stronger selective pressure, and reaches equilibrium before acuity. This could be due to the higher

metabolic cost of this attribute.

4.6 Multimodality and Co-existence

When we explore the process of selection of ‘fit’ phenotypes in a certain environment, we generally

track the average phenotypes and their trajectories in phenotype space (see Fig. 31). However, the

evolved population may consists of heterogeneous phenotypes and there may be intrinsic distribu-

tions of different traits. To characterize the resulting distributions we performed further simulations
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starting with 10000 agents on domains of size 400× 400 and 800× 800. Each agent was again ini-

tially assigned a phenotype vector ξ = (sk, ak) where sk and ak were sampled from [smin, smax] and

[amin, amax] uniformly and at random, respectively. The energy produced per unit area was fixed,

and we varied both the resource rate and the resource energy simultaneously.

When resource rate and resource energy were changed in different simulations, the population

dynamics also changed. Although the average energy supplied to the system per unit area was

fixed, different distributions of attributes emerged in the system at equilibrium. In some cases, two

or more distinct phenotypes appeared to co-exist in the simulations. To verify this observation, we

performed an additional 100 simulations on each environment described above, and tested whether

the resulting equilibrium were multimodal. We found that some of the resource environments

produced bi-modal distributions of attributes. Histograms and the distribution plots of speed

and acuity show that the distributions of these attributes are indeed bi-modal in some cases (see

Figures 32B, 32C, 33 and 34). This indicates that in some cases two groups of agents with distinct

phenotypes could co-exist for extended amounts of time in our simulations.

The multi-modal distributions of attributes shown in Figures 33 and 34 are based on the final

attributes collapsed over 100 simulations. This leaves open the possibility that such multimodality

is due to different distributions being reached in different simulations, rather than coexistence.

To verify that this is not the case, we re-ran several of these simulations in environments in which

multimodality was apparent (see Fig. 35). We found that, with suitable resource environments, the

multimodal distribution of speed emerges from a single simulation also, as the birth-death simula-

tion progresses. We also appliedHartigan’s dip statistics test [36, 37, 58] to confirm multimodality

in these distributions. The dip statistic test result are consistent with multiple peaks seen in the

distribution plots (see Appendix D).

When resources are abundant, most agents can obtain resources and competition is weaker. As

a result, most phenotypes with higher attributes or lower attributes can collect resources, survive

and multiply. On the other hand, if resources are rare, only the faster and more efficient exploring

phenotypes can obtain resources. Hence there will be stronger competition, which creates a strong
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Figure 32: Estimated densities of speed and acuity: for evolving (ϕ = 0.05) population simulations
on 800 × 800 spaces. Each plot consists of data from six different resource rate–energy pairs
(λ × |Ω|, F ): (A) (640, 50), (B) (320, 100), (C) (160, 200), (D) (80, 400), (E) (40, 800), and (F)
(20, 1600), so that average energy per unit area is constant λ|Ω|F = 32000. T = 10000, on 800×800
space. Data is pooled across 100 independent simulations for each case.
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Figure 33: Distributions of speed (first column) and acuity (second column): for evolving (ϕ = 0.05)
population simulations on 400× 400 spaces. Each plot consists of data from six different resource
rate–energy pairs (λ × |Ω|, F ): (a) (640, 12.5), (b) (320, 25), (c) (160, 50), (d) (80, 100), (e)
(40, 200), and (f) (20, 400), so that the average energy generated per unit area was constant.
λ× |Ω| × F = 8000, T = 10000. Data is pooled across 100 independent simulations for each case.
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selective pressure favorable to the agents with higher speed and acuity. So the phenotypes with

higher attributes may have higher chances of finding resources and reproducing, passing these

competitive attributes to the offsprings. Between these two extreme conditions, the birth-death

processes lead to bimodal and multimodal distribution of attributes. In these cases, a few agents

with high metabolism can coexist with a mass of agents with low metabolism. Moreover energy

expended depends quadratically on speed (Eq. (17)) and higher speed agents can search for the

resource swiftly. Hence, small changes in speed can have a significant impact on foraging success

and energy expenditure process. Accordingly, the histograms and probability distribution functions

for speed show distinctive bimodality when some unique resource conditions are met in the foraging

spaces.

4.7 Distribution of Resources and Dynamics of the Population

We have seen in the previous subsection that distinct phenotypes can co–exist in some environments.

These resource environments were homogeneous, and resources appeared randomly and uniformly

in the domain. We observed a similar kind of bi-modal distribution of attributes with ‘patchy’

resource environments. In such environments resources appear in patches of various size (radius

or width w), and are replenished by resources for a certain time. Let λ be the resource rate on a

domain |Ω|. We started simulations with λ × |Ω| resources at locations distributed in the domain

uniformly and at random. For every interval of ∆t, on average λ× |Ω| ×∆t resources were added

to the system within a distance w around any of the previous resource location. In that way we

can have λ× |Ω| patches of resources in the domain at any instant of time t. This process repeats

up to a fixed time, the patch duration, K, and further resource appear at a new location which is

chosen uniformly and at random in the domain. Regardless of w, if K = 0, then every new resource

belongs to a new patch, and we have a homogeneous resource environment. For larger values of K,

the patches can become more dense, and patches are permanent when K = T .

In some cases, when the rate of resource generation is high in a patchy resource environment, the

dynamics of the population and the distribution of attributes are similar to those in homogeneous
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Figure 36: Kernel density plots for evolved speed on patchy resource environment with fixed K;
left two columns: patch radius, w = 1, and right two columns: patch radius, w = 10. High resource
rate (λ) = 1/500, F = 25, ϕ = 0.05, and T = 10000 on 400× 400 space.
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resource environments. When K = 0, the resource environment becomes homogeneous. Similarly,

when w is large (w > 1/2
√
λ) and resource rate is high, then most of the patches overlap with

each other and the resource environment is again approximately homogeneous. For w < 1/2
√
λ,

some patches do not overlap with each other. In such an environment some agents tend to explore

new patches, while others stay and forage inside patches. While faster agents can explore and

forage quickly, the slower ones tend to stay in a patch to collect resources, expending less metabolic

energy, and reproducing quickly. We hence observe the bimodality in the distribution of speed in

patchy resource environment (see Fig. 36). However, these bimodalities can often shift their peaks

and cause changes in the the average speed of agents.

When resource rate is low, then the average distance between two patches becomes large. For

smaller w and larger K, agents with lower speed emerge. These agents forage inside small dense

patches, and proliferate and evolve with smaller attribute values (see Fig. 37). When a patch is

exhausted, some of these phenotypes are able to find another patch. The low metabolic cost and

high population size allows the population to disperse and some of them to find a new patch,

although many die in the voyage. Hence for smaller w, larger K in low resource rate environment,

agents with smaller attributes can be fit. Indeed, due to stronger selective pressures and uncertain

resource environment, we see multimodality in few instances only (see Fig. 37).

4.8 Correlations and Trade-offs Between Attributes

In Subsection 1.6, we discussed how constraints on available resources can lead to phenotypic

trade-offs. While the parameter values may vary quantitatively, these trade-offs are often present.

Additionally, some phenotypic traits have correlated roles in determining an organism’s fitness,

meaning that changes in one trait can impact others. While phenotypic models20 typically assume

that trade-offs are fixed functions, this is not always accurate [93]. Nonetheless, phenotypic models

based on a fixed trade–off function still offer a broad qualitative prediction of the equilibrium state

that a population would reach in response to changes in selection pressure [93].

20model based on observable traits and characteristics of an organism.
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Figure 37: Kernel density plots for evolved speed on patchy resource environments with fixed K;
left two columns: patch radius w = 1, and right two columns: patch radius, w = 20. Low resource
rate (λ) = 1.25× 10−4, F = 400, ϕ = 0.05, and T = 10000 on 400× 400 space.
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Figure 38: Scatter-plots of speed and acuity where each dot represents a phenotype at the equi-
librium, for evolving (ϕ = 0.05) population simulations on 400× 400 spaces. Each plot consists of
data from six different resource rate–energy pairs (λ× |Ω|, F ): (A) (640, 12.5), (B) (320, 25), (C)
(160, 50), (D) (80, 100), (E) (40, 200), and (F) (20, 400), so that average energy per unit area is
constant λ|Ω|F = 8000. T = 10000. Green lines show the linear fits, which represent the linear
approximation to the relationship between the speed and acuity.
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Figure 39: Linear regression analysis of the relationship between two traits (speed and acuity) over
time, depicted as a series of subplots. The subplots show snapshots of the linear regression line at
different time stamps, starting with the initial horizontal line (left column) and ending with the final
linear relationship (rightmost column). The simulations were conducted in two different resource
environments, with the first row representing a low resource rate-high energy environment, and the
second row representing a high resource rate-low energy environment. The initial attributes were
chosen randomly, resulting in a zero slope. As the selective pressure weakens, only the changes in
the intercept become visible, and with strong selective pressure, both the intercept and slope (β1)
change. Evolving (ϕ = 0.05) population simulation on 200 × 200 domain, (λ|Ω|, F ) = (10, 1600)
for low resource rate–high energy environment and (λ|Ω|, F ) = (320, 50) for high resource rate–low
energy environment, T = 4000.

Even though the two traits (speed and acuity) usually show convergences, exhibiting bimodal

distribution in some environments, their transient relation shows a linear model. Fig. 38 also

illustrates the linear relation and positive correlation between speed and acuity that we observed

in our simulations. To infer the strength of the correlation between them in different resource

environments, we find the coefficients (slope and intercept) for the linear regression fit, as described

in the next paragraph.

When the resource rate is low but the energy of the resources is high, the agents in the simulation

must search for the scarce, high-calorie resources in the environment. To do this effectively, they

require a high speed, but also some level of acuity. However, an agent’s success is largely determined

by its speed, as those that can collect resources more quickly are more fit and have more offsprings.

As a result, the agents evolve to have higher speed and lower acuity, leading to a negative correlation
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between these traits (see Fig. 39). However, there are some lines (for some time instants) in the plot

with higher intercepts, which correspond to agents with high speed and low acuity. On the other

hand, when the resource environment has high resource rate but low energy per resource, most

agents are able to easily obtain resources. In this scenario, a wide range of phenotypes emerge

in the space, which maintains the variances of the attributes. As a result, only the intercept

of the regression line changes (see Fig. 39 second row). Based on this evidence and observing the

distributions of attributes over time, it appears that, with the weaker selective pressure, the slope of

the regression line remains constant but the intercept changes due to changes in average attributes.

However, if the selective pressure is strong enough, then both slope and intercept of the regression

line change, resulting the substantial change in the correlation between two attributes.

4.9 Mean Field Model and Numerical Solution of Non-linear ODEs

Here, we assume that the birth-death process in foraging game as a non linear phenomenon, whose

solution may not be explicitly established. So instead of solving such non-linear systems explicitly,

we only look for equilibrium solutions if the system is stable and approximate the solutions numer-

ically. Our main goal of use of mean-field model is to gain further insight of population dynamics

with agreement with simulation result.

In Section 2, we have explained in detail about the agent based foraging and stochastic birth

death simulation models. Using these agent based simulation, we have explained population dy-

namics and distribution of attributes in different resource environments. These simulation models

are flexible and can accommodate any number of parameters however are difficult to calibrate and

sometime lack analytic insights [13]. So, an analytical perspective at aggregate level driven by

mean–field model and differential equations can complement simulations, and provide a tool for

comparison to choose the right approach for our population and attribute dynamics problem.

We have seen in Subsection 4.2, that the population dynamics for non–evolving population with

similar phenotypes can be well approximated by solutions of a non–linear system of differential

equations (see Fig. 23). Here, we compare the dynamics of evolving populations and the solution
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of this system of non–linear differential equation.

We have derived a ‘limited’ system of non linear differential equation to model the population

dynamics in Section 3. These systems given by Eqs. (26) and (27) track changing population densi-

ties and metabolic scores, and their equilibria. We have discussed the stability of such equilibrium

points in Subsection 3.2.2. Here we compare the equilibrium solutions of system to the population

dynamics obtained from agent based simulation.

Recall from Section 3 the following equilibrium points for the system of non-linear differential

equation as;

l̃α =
1

2

 c

1− c
(Kα

d +Kα
b ) +

√(
c

1− c

)2

(Kα
d +Kα

b )
2 + 4Kα

dK
α
b

(
1 + c

1− c

)
and

x̃ =
λ

C(s, a) + ln 2
(

l̃α+1

l̃α+(Kb)α

)F,
Where α = β, Kb and Kd are birth and death propensities respectively, λ is resource replenish-

ment rate, and F is the caloric value of the resource.

First, we run ABM simulations of stochastic birth-death processes, where the population can

evolve with the mutation factors ϵs, where we set ϵs = 0.05. We fix the average energy rate per

unit area, and vary the resource rate and resource energy (caloric value) alternatively. For instance,

in 400 × 400 space, we fix the total metabolic score per unit time λ × |Ω| × F = 4000. For every

combinations (λ×|Ω|, F ), we performed separate simulations, and recorded the average metabolic

score, population, average speed and average acuity over time. Since the resource environment are

different in each case, these simulations result to the different population and attribute dynamics.

We recorded the final attributes, and used them in the system of differential equation, solved it,

and keep the track of population and metabolic score trajectories (see Fig. 40).

For low resource rate environments (Figs. 40A and 40B), both ABM and DE models predicted

similar trajectories of population and average metabolic scores over time. Some of the population
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Figure 40: Comparison of trajectories of population and metabolic scores, obtained from ABM and
numerical solution of differential equations for different resource environments. Along the columns,
are: (A) population, (B) average metabolic score. The differential equations were solved for 5
different initial conditions (initial agent’s density and initial metabolic scores). Along the rows, are
plots for 4 different resource environments: (a) (λ×|Ω|, F ) = (40, 100), (b) (λ×|Ω|, F ) = (80, 50),
(c) (λ × |Ω|, F ) = (160, 25), (d) (λ × |Ω|, F ) = (320, 12.5). |Ω| = 400 × 400, T = 5000 for ABM
and time (t) = 200 for system of differential equations.
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trajectories from the differential equation model show steady growth of at the initial stage due to

large random initial metabolic scores. The differential equation model shows that the population

ultimately reached its equilibrium point regardless of initial values. Despite yielding the same

equilibrium population and average metabolic energy, the ABM simulation and mean-field model

exhibit different trajectories. This can be attributed to the fact that the mean-field model’s time

to reach equilibrium varies greatly with different initial conditions, leading to distinct trajectories.

However, there are few cases where the two models produce different results (see Figs. 40c and

40d). The main source of discrepancy between two models, is due to uncertainties and fluctuations

of the resource environment. Since two models have different time scales, and are capable of treating

stochastic events and interactions in different ways, such discrepancy arise. When resource rates are

high enough that an agents can ‘see’ a resource on every instant of time, then there is a noticeable

impact of interactions between agents, which leads to short-term synchrony of agents’ movement

and under-harvesting of resources. Many agents emerge with lower speed and acuity, however

due to synchrony they can not proliferate. As a result, agent-based simulations yield equilibrium

populations that are lower than those predicted by the mean field model.
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5 Conclusion

In this dissertation, we have examined the impact of two abstract phenotypic attributes on the

survival, fitness, and evolution of foraging agents. We have also scaled the trade–offs between

two attributes namely ‘speed’ and ‘acuity’, and the effect of metabolic energy constraints on such

attributes. We have also used a modified population dynamics model to explore the evolution of

attributes of agents foraging in an environment with randomly distributed resources. We were able

to identify the phenotypes which are able to collect resources efficiently in competitive environments.

In that way, we were able to identify the ‘fit’ phenotypes and direction of selection pressure which

lead towards the evolution of phenotypic attributes.

We have shown that a fixed carrying capacity characterizes a given environment and fixed

behavioral rules. This carrying capacity is independent of the initial number of agents and their

attributes. We have demonstrated how delayed environmental feedback leads to population collapse,

and a smaller space with high resource replenishment rates leads to spikes. We have shown that

there is a linear relation of population with resource replenishment rates and metabolic score (caloric

value) of resources. We have also shown that multiple types phenotypes can coexist at equilibrium

in homogeneous and patchy resource environments.

We have used both stochastic agent–based simulation and a mean field model to understand the

process of population and evolutionary dynamics. For a non-evolving population, we have derived

a system of differential equation whose solution predicts the population for a certain environment.

At equilibrium the ABM results agree well with the solutions of the minimal mean field model

whose solutions we obtained by using MATLAB® (see Appendix C) [41, 95].

Our main results are based on agent-based simulations of a stochastic birth–death process to

understand evolutionary dynamics. In high resource rate environments, we observed co-existence

of phenotypes with higher speed and lower speed. We were thus able to identify the resource

environment characteristics that support multiple phenotypes at equilibrium. Similarly, we were

able to compare the population dynamics to the system of non linear differential equation, with some
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discrepancies. These discrepancies were due to the time-scale differences, fluctuation in average

metabolic scores and hence fluctuation in birth-death rates in agent-based simulations. Since our

mean-field model is limited and allows for the exploration of the population dynamics only, to

fully comprehend and analyze the stochastic birth-death process using the mean-field model, more

robust and hierarchical attribute comparison methods are necessary.

5.1 Limitations of Research

Natural phenomena are often described by models, and such models are used to explain and to

make predictions. A model which is simple enough to understand and visualize, yet sufficiently

accurate to predict some aspects of the natural world, is a decent model. However, there are

always explicit as well as implicit limitations associated with any model. Our assumptions may

not capture all facets of phenomena we want to investigate. The assumptions we mad to simplify

the model potentially exclude details of the process and may have implications for the results we

presented. Here, we discuss some of important generalized assumptions, their role and impact

on the proposed model, and their effects on our results. We also discuss some of the important

overlooked assumptions which are otherwise relaxed in our case to make the model more tractable.

(a) Metabolic cost and definition of acuity

We defined acuity as the radius of a closed disc around an agent throughout which it can

sense a resource. Acuity could be a combined effect of vision, olfaction and hearing by which

an agent locates the resource. Much work has been done to scale the metabolic cost related

to the overall visual system [75, 76, 110]. However, a general model or data on relative energy

costs of the combined sensory systems and the total energetic cost of the associated nervous

system is not available, making it difficult to scale the energy cost of acuity. The metabolic

cost of acuity varies greatly among different species as they have different levels of sharpness

of the senses. Since we consider the metabolic cost for acuity as the static cost which is

the basic metabolic cost at rest related to all senses, we assume that this cost does not vary

108



abruptly with variation in acuity, and hence a linear cost function is a suitable approximation

(Eq. 17).

There would be a significant impact on the result if we changed this to a non-linear cost

function. In such cases changes in the cost function would result in changes in birth-death

rates, and hence the overall dynamics of the population.

We also assumed that agents will always detect objects within a given distance. More realis-

tically agents are less likely to detect objects that are further away. Moreover, some agents

could have a poor chance of detecting resources, but have a chance to sense them even when

they are far away. Others could be very good at spotting closeby resources, but may not

detect resources that are far. Such tradeoffs are different from the ones we considered here,

but our model could be easily extended to capture such descriptions of acuity.

(b) Asexual reproduction vs sexual reproduction

A common method of reproduction in both prokaryotes and eukaryotes, is asexual reproduc-

tion, which does not involve the formation of gametes [14, 26]. Many unicellular and multi-

celluar plants and some common phyla of animals reproduce asexually. Most of the examples

of asexual reproduction are often considered primitive genetic and evolutionary processes due

to their relative simplicity compared to sexual reproduction across different organisms. [14].

Asexual reproduction can provide many crucial advantages over sexual reproduction, such

as rapid population growth, not requiring mobility or mates, and convenience in the case of

hardship. Even with such advantages, organisms which generally reproduce asexually, can

exhibit sexuality, and a balance between asexual and sexual reproduction to maintain genetic

diversity [11, 72].

In our ABM model, we only considered asexual reproduction due to its simplicity and its

prevalence among many organisms. Our model can be modified to include sexual reproduction

in which agents are assigned a gender, and can switch between the strategies of foraging and

finding mates determined by some function of their metabolic scores. The newborn agent’s
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phenotype would then be determined by a combination of parents’ phenotypes.

(c) Resource shelf-life and depleting resource environment

We considered resources with a fixed replenishment rate and fixed density which do not have

shelf-lives. With this assumption, a resource does not change in its quality, energy content

and accessibility once it appears in the domain. With a fixed resource rate, consumption

of resource does not alter the replenishment of new resources. In such cases, agents are

prompted to resource exploration and consumption which in turn changes the fitness. The

phenotypes which successfully explore such resources environment are more fit, and drive the

evolutionary dynamics. However, these phenotypes may not able to explore in any other

type of resource environment. When resource environment changes, one needs to redefine the

model and hence overall evolutionary dynamics would be different for the new environment.

Exploring these possibilities will be an interesting direction to further the understanding the

evolution of attributes.

(d) Metabolic cost of the birth process

In our model, we do not consider any costs or penalties for the birth process itself. However,

organisms must spend a large proportion of available resource to give birth, and hence there

is a trade–off between their allocations of resources and energy needed for reproduction and

other aspects of life-history [45, 97]. One could also extend our model to account for the cost

of reproduction and birth. However, the fact that energy is split between the parent and the

offspring at birth can be viewed as a penalty of this type.

(e) Agent’s lifespan and evolution timescale

The time-scale of an individual’s lifespan is much shorter than the evolutionary process itself.

The effects of environmental changes, physiological manipulations like dietary changes can

be seen in the behaviors of organisms within their lifespan, however it is hard to scale effects

of those individual level manipulations to the evolutionary process [34]. Also organisms’
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behaviors are not simply limited to foraging and reproduction, many microorganisms show

complex social behaviors like cooperation in foraging and communicating too [25]. A recent

study has shown that the short term behavioral changes in some phenotypes of population

are not persistent, and for a visible change to phenotypes which accumulates to the change

in population level, it takes at least a million year [105]. It is challenging to find a common

model that captures the complex behaviors and adaptions within the lifespan and yet is

applicable to million year long evolutionary processes. A more comprehensive model with a

larger, hierarchical phenotype space that can accommodate both short term changes and long

term evolution would address these challenges. However, the implementation of such a model

requires computationally efficient tools due to explosion of the interactions and complexity

of phenotypes.

(f) Application of mean–field model to similar phenotypes, non-evolving population only

The mean-field model proposed here by the system of non-linear differential equation (Sec.

3) is limited to model the equilibria of population dynamics only. In the system, there is

no mechanism to integrate evolving attributes, so it cannot capture, in the present form,

changing attributes over time. Similarly, the attributes (speed and acuity) only contribute

to the cost functions C(s, a) and do not determine agents foraging capacities. Due to these

limitations, the system of non-linear differential equation can be used to estimate non-evolving

populations and metabolic scores for similar phenotypes only.

5.2 Discussion and Future Directions

Agent-based modeling has been used widely in literature. In this dissertation, we have implemented

a ‘multi-agent foraging’ approach to explore the evolution of phenotype attributes. The agents in

our model have limited ‘acuity’ to sense resources and are characterized by ‘speed’ that determines

how quickly they explore their environment. We also compared agent-based simulations and a

limited mean field model to predict the population dynamics.
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There are some important areas for further investigation into the model, which we have not

explored here. Firstly, the design of the model could include more realistic features of environment

and attributes of agents inspired by real organisms. For instance, a model which considers more

comprehensive attributes, physiological, biotic as well as abiotic factors (age, sex, availability of

mates and resources etc.) that shape the birth-death process could better describe actual evolution-

ary dynamics. In this way we can compare our model to the behaviors of real organisms and better

understand evolutionary processes. Secondly, we could develop a more comprehensive mean field

model, which could include a description of the evolution of multiple attributes. ABM results could

then be compared and tested using this mean field model. Finally, when we consider agents in a

model with many complex attributes, then the behavior of these agents behaviors is also complex.

One can imagine the agents with sensory capacities who can process information and respond ac-

cordingly. The evolutionary process would focus largely on evolution of sensory attributes. Direct

implementations of such models would be challenging. However, our model could become the basis

for more realistic models of complex foraging organisms and the evolution of their physiological

attributes.
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APPENDIX

A. Random Walks, Brownian Motion, and Drift-Diffusion Model

Consider a walker start walking on a one dimensional space which has been divided into discrete

points. The distance between two points in is ∆l and that’s the length walker moves in a short

period of time ∆t. The walker movement is random so that it has equal probability of moving

either to the left or to the right at the time ∆t. For example, when the walker starts moving from

the origin, its position at even numbered time is at even numbered distance either to the left or to

the right only. We use combination to find the probability [24] that the walker is even numbered

distance (say m∆l) after n (even) time steps (n∆t) as;

p(m,n) =

(
n

n−m
2

)(
1

2

)n
=

n!

2n ((n+m)/2)! ((n−m)/2)!

This can be generalized by considering a probability distribution function ϕ(x), that represent

the probability of x successes in n Bernoulli trials. Such Bernoulli trial has two possible outcome:

probability ‘success’ p and probability of ‘failure’ q = 1− p. We have the binomial distribution as

follows;

ϕ(x) =

(
n

x

)
pxqn−x

,

When n is very large this binomial distribution is well approximated by the normal distribution.

So, for t = n∆t, taking the limit ∆l, ∆t −→ 0 and n −→ ∞ the binomial probability distribution

function can be written as
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ϕ(x) =
1√

2πnpq
exp

(
−(x− np)2

2npq

)
=

1√
4πDt

exp

(
−(x− 2D

q t)
2

4Dt

)

where D is a constant called diffusion coefficient given by 2D = (∆l)2/∆t. Now if we add a

waiting time to above process, i.e., at each time step ∆t, the walker moves: (a) either to the left

with probability p, (b) or to the right with the probability q, and (c) or stays at the same location

with the probability 1− p− q, we have

ϕ(x, t+∆t) = ϕ(x, t)(1− p− q) + ϕ(x−∆l, t)q + ϕ(x+∆l, t)p.

Using Taylor Series expansion about (x, t) and taking limits ∆l, ∆t −→ 0

∂ϕ

∂t
= −u∂ϕ

∂x
+D

∂2ϕ

∂x2
(A1)

where

u = lim
∆l, ∆t→∞

∆l(q − p)

∆t
, D = (p+ q) lim

∆l, ∆t→∞

(∆l)2

2∆t
.

The Eq. (A1) is drift–diffusion equation, whose first term is drift(bias) term and second term is

diffusion. It can be extended to N−dimensional space and is widely used in to model the movement

of organism and cells.

B. Details About Agent–Based Simulations

In the Agent–based modeling, we simulated multi–agent foraging and stochastic birth–death process

in a continuous domain Ω with |Ω| = b× b. The resources in the domain appeared at the location

chosen uniformly random(for homogeneous resource environment) in the domain either by constant

rate λ or by making constant density ρ per unit time. When the resources replenished at constant
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rate, they appeared according to a spatial Poisson point process distributed with rate (and mean)

λ. The domain |Ω| generally had size 200 × 200 or 400 × 400, however we also used domains of

other sizes to explore the effect of size of domain on the population and attributes.

In each simulation, 10000 agents each equipped with attributes (ξi = (si, ai)) were introduced in

the domain. We took large number of initial agents to make sure that the phenotypic vector ξi may

take all possible order-pairs of speed and acuity from an initial range [1, 30]. We ran most of the

simulation sufficiently long (typically T > 10000), so that the system has converged to a stationary

distribution. In fact, for evolving populations we initiated the simulations with any initial number

of agents with randomly chosen attributes however the time to achieve the stationary distribution

depends upon initial parameters.

To reduce noise and variability associated with stochastic birth–death process, we took at least

10 independent simulations with similar initial parameters for all agents. We took averages of

population and attributes, and the standard errors.

The agent-based models for foraging and stochastic birth–death process were simulated in the

MATLAB® [62] computing environment. Similarly, other multiple MATLAB® in-build functions

and applications like ode45 [41, 95], PhasePlane App [43] were used to simulate, analyze and visu-

alize the data. All foraging simulations to find resource collection rates and stochastic birth–death

simulations were run in computing server with Intel® Xenon® CPU E5-2690 v4. Generally, 100

stochastic simulations with same initial parameters were run independently by MATLAB® par-

for loop. Run-time was depended upon initial conditions, domain size and how fast the resource

density grew up.
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C. System of Non-linear ODEs and Equilibrium Points

Consider, a system of differential equation;

u̇1 = f1 (t, u1, u2, . . . , un)

u̇2 = f2 (t, u1, u2, . . . , un)

...

u̇n = fn (t, u1, u2, . . . , un)


(A2)

It is written as;

u̇ = f (t,u) (A3)

where u =


u1
...

un

 ∈ Rn, and f : Rn+1 −→ Rn.

This System (A3) is autonomous if it can be expressed as: u̇ = f (u). Such autonomous system

is called linear if there exists a A ∈ Rn×n such that ;

u̇ = Au (A4)

If a system can not be written as the form u̇ = Au for some matrix A, such system is called

nonlinear system of differential equations.

Consider an autonomous non-linear system f : Rn −→ Rn as;

u̇ = f (u) (A5)

We define the equilibrium points or fixed points of this System (A5) as the points ũ such that

f (ũ) = 0.

We determine the stability of these equilibrium points by linearizing the system about the

equilibrium points. Let u = ũ + ϵ be any point near to ũ. We can expand f (ũ+ ϵ) applying
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Taylor’s theorem as;

f (ũ+ ϵ) = f (ũ) +Df (ũ) ϵ+O
(
|ϵ|2
)

(A6)

where Df (ũ) is the Jacobian matrix given by,

J|u=ũ =



∂f1
∂u1

∂f1
∂u2

. . . ∂f1
∂un

∂f2
∂u1

. . .
. . .

...

...
. . .

. . .
...

∂fn
∂u1

∂fn
∂u2

. . . ∂fn
∂un


(A7)

Since ũ is a fixed point of the system, u̇ = ϵ̇ and f (ũ) = 0. The behavior of the stationary

points of the non-linear System (A5) can be predicted by;

ϵ̇ = J ϵ (A8)

This is a linear system in ϵ where J is an n×n Jacobian matrix evaluated at the equilibrium point.

The solution of the System (A8) can be written as a superposition of eλit where {λi} is the set of

eigenvalues of the Jacobian J evaluated at ũ [17, 91]. These eigenvalues can be expressed in the

form of Re(λi) + iIm(λi). Now the exponential terms in the solution become,

eλit = eRe(λi)tei Im(λi)t = eRe(λi)t (cos Im(λi)t+ i sin Im(λi)t) .

This shows that the imaginary part only adds-up oscillation to the solution however if the real

part of any eigenvalue is positive then the solution grows-up exponentially with time, and the

trajectories of solution move away from equilibrium point. Hence, if all the eigenvalues of Jacobian

J evaluated the equilibrium point ũ have negative real parts then the equilibrium point ũ is stable.

If any of the eigenvalues has positive real part then the equilibrium point is unstable [91].

Here, we prove the stability of equilibrium points of the System (27) by numerically calculating

the eigenvalues of matrix J ( Eq. (32)) for different values of Kb and Kd.
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Figure 41: Experimental evidence showing that the eigenvalues of the Jacobian matrix J (Eq. (32))
has negative real parts. The System (27) is defined for different values of Kb, Kd, and the J is
evaluated at the equilibrium points. The eigenvalues are calculated and their real parts are plotted.
System defined for λ = 0.005, F = 25, speed = 10, acuity = 10, and α, β = 4.

D. Hartigan’s Dip Test of Unimodality

Multimodality occurs in the data if more than one local maxima occur in its probability density

function. Generally, it is possible to identify the bimoality and mutimodality in the univariate

data by observing the shape of histogram and density plots, however identifying and scaling the

multimodality in multivariate data is often challenging. There are few tests available to discover the

multimodality in a distribution. Harigan’s dip test for unimodality is one of the such tests which

compare the empirical distribution function of the data set with a unimodal distribution that has

the smallest value deviations from the empirical distribution function [36, 37]. In Hartigan’s test,

data is sorted and empirical distribution function is computed. A dip statistics is defined by taking

the maximum difference between empirical distribution function and a fitted unimodal distribution.

Then, the Monte Carlo simulation method is used to compute the p-values of dip statistics. Any

p-values less than 0.05 implies significant bimodality, and values greater than 0.05 but less than 0.1
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suggest the bimodality with marginal significance [33]. A package ’diptest’ is available in R-program

to apply Hartigan’s dip test [58, 70].

E. Numerical Solution of Non-linear Ordinary Differential Equations (ODEs) by

Using ode45

One of the prominent solver for the numerical solution of ordinary differential equations is the func-

tion ode45 in MATLAB®[95, 41]. This function is based on Runge-Kutta method with changing

time-steps to have efficient computation. This function is able to solve a general system like (A3).

This method is also known as single-step ODE solver where it approximates the behavior of the

model at time t+∆t by considering the behavior only at the time between t and t+∆t. Indeed,

each successive steps are independent of previous steps. The ode45 also utilizes continuous exten-

sion and interpolation in between time-steps in the case when the solution changes considerably

between a single time-step and values computed only at the end points of time-steps may not be

adequate to plot the phase portraits.

An ODE with single solution component can be directly solved by defining span of time “tspan”.

The output contains two corresponding column vectors “time points” and “solution at the time

points.” However, for a system of ODEs with more than one solution components or for higher-order

ODE, following are the steps to use ode45 [95]:

• Write the given system as a sequence of first order ODEs for each solution component. If the

system is higher-order, rewrite it as a system of first-order ODEs by using suitable substitu-

tion.

• Next, we need to define the “tspan” and any initial conditions. Once we solve using ode45, the

output contains a column vector “time points” followed by solution matrix with size “total

time steps” by “number of first order equations.”

These solution components can be plotted against ‘time’ on suitable scales as required.
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