Population Dynamics and Evolution of Phenotypic Attributes During

Multi-Agent Foraging

by
Manoj Subedi

A dissertation submitted to the Department of Mathematics,
College of Natural Sciences and Mathematics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Mathematics

Chair of Committee: Kresimir Josié¢
Committee Member: Mikhail Perepelitsa
Committee Member: Loic Cappanera

Committee Member: Alexander Stewart

University of Houston
May 2023



Copyright 2023, Manoj Subedi



ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my advisor, Dr. Kresimir Josi¢, whose invaluable
insights and unwavering support allowed me to advance this work to its conclusion. I sincerely thank
Dr. Mikhail Perepelitsa and Dr. Alexander Stewart for serving on my committee and making such
insightful comments at the beginning of this work. I would also like to thank Dr. Loic Cappanera
for serving on my committee and providing me the research assistantship support during my final
year at the University of Houston. A special thanks to Dr. B. Pahari, whose company had inspired
me to consider graduate study in Mathematics at The University of Houston. Finally, I would like to
express my gratitude to my family for their support and presence in my life. Their encouragement
has been instrumental in enabling me to pursue my aspirations, and I am particularly thankful
to my wife Pooza and son Pratyush, whose unwavering dedication has been a constant source of

inspiration.

iii



ABSTRACT

We use a stochastic birth-death process to model a multiple-agent competitive foraging task with
the goal of understanding the population’s dynamics and the evolution of phenotypes across gen-
erations. Agents forage for a limited amount of resources (food) in a finite domain. Speed of
movement and the acuity of their senses allow them to locate and reach resources. However, sharp-
ened senses and higher mobility are also metabolically costly. There is thus a trade-off between
the benefit imparted by a phenotype and the required metabolic cost to sustain it. We allow these
attributes to evolve by assuming that the phenotype of an agent and its descendants vary by a
small, random amount. We show that different phenotypes are selected dependent on the resource
generation rate. Semi-analytic and differential equation models can capture population dynamics
over time. We also discuss different conditions which lead to the co-existence of subgroups with

different attributes and incipient speciation.
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1 Introduction

Living organisms must compete for the available resources to survive and thrive in their natural
environment. This contest, both between members of the same species and members of different
species, often leads to adaptation and evolution. The evolutionary process drives the development
and refinement of different phenotypes over time. These phenotypes are characterized by different
attributes that include the type, range and acuity of the senses (hearing, vision, olfaction) that
enable the organism to perceive their environment, as well as the physical characteristics that
enable the organism to navigate the environment (agility, speed). Even though there has been a
significant amount of work done in studying the evolutionary process as a whole [21], 63| 81 94],
comparatively little research has been dedicated to exploring the connections between the evolution
of different attributes within a single species.

Few quantitative methods are available to investigate whether and how evolution leads to trade-
offs between different phenotypic attributes of a species [34, [76]. Recent quantitative studies about
the relation between vision, hearing and olfaction based on anatomical sizes of sensory organs of
mammals suggest a correlation between vision and hearing [76]. Ontogenetic development of sensory
organs and their use are both metabolically expensive as sensory receptors and neuronal ganglia
require high adenosine triphosphate (ATP) consumption. This creates two contrasting evolutionary
pressures to either save energy by decreasing size and performances of sensory organs or demands
for higher energy cost in order to develop and maintain sensory organs with higher sensitivity [76].
Likewise high speed locomotion is metabolically costly [3, 40, 86] leading to similar evolutionary
pressures. Keeping in mind competition among organisms, limited resources and pressure to gain
and conserve metabolic energy, one must consider how changes in one phenotypic attribute will
affect others [7, 55, 56} 06].

Since the overall fitness of a species is in part determined by metabolic limitations, optimizing
all of its traits at once is highly unlikely [34] 55, [56, 02]. This is evident in nature since there

is no single creature that is superior to all others in every aspect. For instance humans, despite



being arguably the most intellectually-advanced species on earth, are nowhere close to having the
best eyesight or the highest speed of movement in the animal kingdom. Here, we investigate, both
theoretically and numerically, the correlation between the evolution of two separate attributes:
speed and sensory acuity. In addition, we explore the relationship between the variations in these
attributes and the resulting changes in dynamics these variations usher over time in a controlled
environment with limited resources and extreme competition.

We develop a simple, abstract model that describes the ability of an organism to sense, and
its ability to physically explore and traverse the environment. Most organisms interact with the
world using their senses and organs that allow them to move, and interact with objects in their
surroundings. They can sense different aspects of the environment including heat, chemical compo-
sition, as well as light and vibration. All organisms also interact with the environment physically,
and have specialized parts to do so: From the flagella in bacteria, and the arms of hydra, to the
appendages of mammals. To capture these characteristics of living beings using an abstract model
we define acuity as a measure of an organism’s ability to detect an item of interest, such as prey or
any other (exhaustible) source of nourishment, in its vicinity. We do not specify the exact sense,
or combination of senses the organism might use to detect such items. We also introduce speed to
quantify the rate at which an organism moves through and explores its environment. We again do
not specify how the animal performs such movements: It could be swimming, flying, walking or
somersaulting.

Central to our model is the idea that both high acuity and high speed are costly. Better senses
require a larger number of receptors, and, even more importantly, a more extensive and metabol-
ically expensive processing system (e.g. nervous system) to process and interpret the information
communicated by the senses [76]. Similarly, higher speed not only requires more energy to achieve,
and maintain (due to, for example, friction or the need to dissipate heat generated during loco-
motion), but can also be the result of larger bodies and stronger limbs which again come with a
higher metabolic cost [38],39]. There is also a trade-off between speed, maneuverability and motor

control which reduces the benefit of higher speed [21], 111} [114]. We develop a simple model to
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Figure 1: (A) An example of a potential trajectory of average attributes in phenotype space. In this
case the average speed and acuity do not converge to an equilibrium, but keep oscillating. (B) Under
some conditions a population starting with some random distribution of phenotypic attributes
converges under evolutionary pressure, and the final population can consist of individuals with
closely related phenotype. (C) Under different conditions, a population can consist of individuals
that exhibit a trade-off between the attributes, or (D) the population can split into two groups
with different pheontypes. Light blue dots represent random initial phenotypic attributes.

examine some fundamental questions (see Fig. : Under what environmental conditions can we
expect the evolution of specialized organisms that have acute senses, and/or travel at higher speed?
Do some environments lead to the evolution of one attribute at the expense of another? Under our
assumptions can some environments lead to speciation and support, for example, a few members
of a fast species with acute senses and high metabolism, and many slow, obtuse organisms with a

low metabolisms? We also explore the dynamics of populations and their attributes to see whether

they exhibit oscillations over generations, or whether they approach a stationary distribution.



1.1 Notations and Definitions

Our model describes how a group of agents (organisms) interact with the environment and each
other. The agents and the environment are described using several features that are abstractions
of different characteristics shared by most living beings, and parts of the environment they interact
with. In the model agents are confined to a two-dimensional domain, and expend metabolic energy
to locate resources and move towards them in order to consume them. Our model consists of the

following components and characteristics which we define precisely in the following chapters:

e Resources: We assume that resources that can be consumed by the agents are distributed
throughout the environment. These resources are renewable, and generally appear at random
points in the domain at a fixed rate per unit area. We assume that each resource, when
consumed, provides a fixed amount of metabolic energy (F) to an agent, energy that can be
used for movement or sensing. We assume that the value F' represents the metabolic energy
that can be used for sensing and movement, which will be lower than the total caloric value

of the resource.

e Speed: We define the Fuclidean Distance that an agent travels in a unit of time as the
agent’s speed. We assume that movement requires a speed—dependent amount of metabolic

energy.

e Acuity: We measure an agent’s ability to locate a resource using acuity, defined as the radius
of the disc around an agent throughout which the agent can sense (locate) a resource. In other
words, this is the maximal distance at which an agent can “see” a resource H Higher acuity

requires a higher rate of metabolic energy expenditure.

e Foraging: Foraging is the process of searching for resources which includes random motion in
the domain to find the resource and motion towards a detected resource in order to consume

it.

lalthough we will sometimes say that the agent “sees” a resource, the model is agnostic about the particular sense
or combination of senses that an agent uses to locate resources.



Run (flight) length: The distance covered by an agent in a straight line with constant
velocity before changing direction while exploring the environment. Agents move in straight
lines, but turn occasionally. The turns occur according to a Poisson process with a fixed

average distance, so that faster agents turn more frequently.

Cost of Motion: Agents use metabolic energy as they move and sense the environment.
Since we assume that agents always move in an effort to collect resources, the cost of motion

is the rate at which energy is expended both for sensing and movement.

Metabolic score of an agent (MS): The metabolic energy available to the foraging agent.
The score increases every time an agent collects a resource, and decreases during other times

at a rate determined by the agent’s speed and acuity.

Birth: In the full version of the model we will assume that each agent with a sufficiently

high metabolic score can reproduce asexually resulting in the birth of a new agent.

Phenotypic vector: A pair of attributes that determine the phenotype of each agent. Phe-
notypes are assigned at the beginning of the simulation, and at each birth. At the beginning
of the simulation phenotypic vectors may be identical for all agents or they can be sampled

from some distribution.

Dispersal distance: This is the displacement of individual agent from its natal location
(co-ordinate). When an agent is born, it takes the same location as the parent or disperses

to a new location in the vicinity of the parent.

Phenotypic variance: Phenotypic variance is the variance among phenotypic vectors which

measures the diversity across the population. Such variability is needed for evolution [16].

Mutation: A mutation results in a difference (usually very small) between an agents’ phe-
notypic attributes at birth and those of its parent. Mutations generate phenotypic variance

and can increase such variance in the population.



e Death: We also assume that agents die at a rate that is dependent on an agent’s metabolic

score. Agents with a low metabolic score die at a higher rate.

These features are not meant to capture the full diversity of foraging modes, and environmental
interactions that characterize even simple organisms. However, they allow us to define a somewhat
tractable model of foraging that captures essential features of the process, the basic attributes

necessary for foraging, and how these attributes can evolve over generations.

1.2 What Is Foraging?

Foraging or searching is one of the most ubiquitous behaviors in nature. Organisms must forage
for food and shelter as these are essential for survival and reproduction [98] 99]. Foraging consists
of learning, communication, statistical inference and decision making which provide opportunities
to optimize rewards under environmental and physiological constraints. Thus the ability to forage
is one of the determinants of fitness, and foraging is fundamental to natural selection [6§].

Births, deaths, immigration, and emigration are the elementary processes that determine pop-
ulation dynamics. When viewed from the perspective of the consumer, the resources it gathers
through foraging partly determine its fitness since they determine the probability that the organ-
ism will survive and proliferate. In turn, the survival and proliferation probabilities of individual
organisms determine changes in population size. Decisions to disperse or shift habitats also affect
population dynamics, and these factors may differ from one environment to the next (we will not
consider immigration and emigration here). The relationships between foraging decisions and de-
mographic rates thus link foraging theory and population dynamic theory [98]. It is possible that
several different species’ dynamics are closely related to the foraging choices made by one species.
For instance, predator foraging choices can have a significant impact on the mortality rates of prey
species. Such dynamics are often described and determined by Lotka-Volterra equations (Eq. )

for two interacting species as predator and prey [108].
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where, n is the number of predators, m is the number of prey, and «, 3, 7, § are parameters which
describe the growth rates and interactions between the two species.

The choices of competitors in foraging can also change the resource availability for competing
species that share a common resource. All of these indicate that foraging choices can influence and
drive population dynamics. Thus, foraging behavior impacts population dynamics and also has
complementary impacts on foraging behavior itself.

While population dynamics is strongly determined by foraging behavior, the evolution of such
behaviors themselves are directed by external factors like resource availability. The uncertainties
and variations of resource availability shape foraging strategies. Any fluctuations in resource ac-
cessibility or unstable prey population dynamics, which are spatial or temporal in nature, can
produce an unstable resource environment for the species which rely on these resources for food.
For instance, the effect of temporal variation in the abundance of preferred prey type on a forager’s
decision is to be selective or opportunistic [98]. Phenotypes with attributes that are able to support
effective foraging in an unpredictable environment can be better at surviving and reproducing, and
thus have higher fitness.

Effective foraging always comes with a question: What is the best strategy organisms should
follow to locate and exploit resources in an environment? This question becomes more relevant
when the organisms have limited sensory capacities and when resources are rare. Random search
models are typically used to describe animals foraging for food or other resources [24, 112]. In these
models, one or more agents (organisms) search a landscape to identify targets whose positions are
unknown at the outset. The agents’ movements are subject to other external or internal limitations,
such as the environmental context of the terrain or the individual’s physical condition, and are
characterized by a particular search strategy. The success of the strategy is also determined by
the distribution of resources in the environment: Rare and patchy resources will typically require
different search strategies than resources that are abundant and evenly distributed [9} [73] 106, [107].

In response to such limits on the movements, and variations in resource distribution, evolu-

tion can lead to the emergence of a strategy or strategies that optimize search efficiency [20]. In



foraging theory, it has often been asserted or assumed that the flight lengths of a forager have a
characteristic scale with a well defined variance taken from Gaussian, Rayleigh and other classical
distributions [106], 107]. These distributions of flight lengths influence the efficiency of exploration,
impact the resource encounter rates, and can dominate the overall foraging efficiency. Therefore
foragers may adopt a strategy suited to their environment or may enhance their efficiency by em-
ploying flexible strategies to explore unpredictable environments. The following are some common
search strategies used in models and based on random walks with variations in the distribution of

flight lengths:

(a) Brownian motion and random walks.

Brownian motion is the movement of suspended particles in a fluid medium, which is caused
by collisions with the molecules of the medium and occurs in a random and continuous fashion.
The movement represented by an abstract mathematical model describing this phenomenon is
also known as Brownian motion [30]. A stochastic process that describe the path where each
step and directions are taken from some particular distributions, is known as a random walk.
Random walk processes can be used to model diffusion process as the expression of Brownian
motion [24]. It is common to model movement of biological systems using random walks.
This is a vast and expanding area of applied mathematics, particularly in ecology (animal
movements) and cell movements [67]. Animal movements in search of food, resources, shelter,
and population redistribution and dispersal are often modeled and simulated using random

walks.

When a forager selects a random direction and moves in a straight line in that direction until
it finds a resource, this type of movement is termed ballistic motion. In ballistic motion, a
forager changes the direction only when it finds a resource. The path between two successive
foraging successes is a straight line and the velocity is constant during that motion. Instead
of moving in a straight line until finding a resource, if a forager selects a distance from a fixed

probability distribution, moves up to that distance or until finds a resource, and selects a new



direction and new step length, the resulting search strategy constitutes a random walk. When
the direction of the current step is independent of the previous steps’ length and directions,
the random walks are called uncorrelated and unbiased random walk (UCRW). UCRWSs are
the first simple model of movement where each location depends only on the location at the
end of the previous step. The location of an agent at the end of each step thus satisfies
the Markov property. The motion is unbiased due to the absence of a favored direction; each
step’s movement is independent from previous directions. A UCRW on an infinite domain can
be rescaled appropriately, and by “zooming out” such a random walk converges to Brownian
motion [24]. On the other hand in correlated random walks (CRWs) successive steps have
correlated directions and/or lengths. This may create a bias towards a particular direction for
some time. However, unless correlation is perfect, this bias weakens over time to eventually
have a uniform distribution of directions. When there is a consistent bias in direction, the
probability of net displacement in that direction will be greater resulting in a drift-diffusion

model (See Appendix A).

Lévy walk.

Studies of foraging movement have shown that animals can exhibit unique patterns of foraging
when they have no or little prior knowledge of food location [9, 89 [106], [107]. The patterns do
not resemble Brownian motion or a random walk. Sometimes, foragers travel large distances
in a single direction followed by a sequence of much shorter excursions (see Fig. ) This
tactic can allow foragers to quickly obtain food in an unfamiliar area, particularly when the
food distribution is patchy. It has been analytically demonstrated that the best approach
for random searches is a model in which distance between two successive directions changes

follows inverse-square power law distribution [9, [106].

Studies have shown that the distances that animals travel can follow a power—law distribu-

tion. The flight lengths, 7;, associated with target searching are said to follow a power law
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Figure 2: Foraging strategies in an unknown resource distribution environment; (A) Brownian
motion, (B) Lévy walk, and (C) run-and-tumble motion.

distribution if

P(n;) ~n; ",

where 7; is the step length and 1 < p < 3 is a parameter [106]. Choosing 1 < 1 does not
give a probability distribution which can be normalized, unless it is truncated at some finite
value [23]. For p = 1, the resulting random walk becomes ballistic motion. Similarly, when

© > 3, asymptotically the resulting random walk approaches Brownian motion.

Lévy walk paths are self-similar, fractal and scale free. A forager following a Lévy walk
strategy does not have to adjust its range of motion to the environment under consideration.
Therefore, a Lévy walk describes animal movements in a flexible and concise manner. Re-
gardless of the value of p chosen, a Lévy walk leads to more efficient searches when target
sites are sparsely and randomly distributed because the probability of returning to a previ-
ously visited location is lower than for a Gaussian distribution. The foragers might follow
Lévy walks because N Levy walkers cover a larger areas, and overlap less in their searches

compared to N Brownian walkers [9, [106].

Although the theoretical research on Lévy walk search optimality has had a significant impact,

there are still a number of significant areas of ambiguity. Some authors believe that non-Lévy
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processes could be misidentified as Lévy process, and vice-versa, due to the limitations on
sampling of paths that do not reflect actual movements [6, 85]. Others claim that Lévy
walks with the parameter y =~ 2 can offer a foraging efficiency that is higher than other

exponents [84].

Run—and—tumble motion

The motion of animals varies according to the shape and behavior of the organism, and
is shaped by their habitats. For instance, E. coli is one of several bacterial species that
propel themselves by alternating between ‘runs,” or periods of practically straight-line travel
at nearly constant speed, and ‘tumbles,” which are sudden and rapid changes in direction that
happen stochastically at an approximately constant rate [12], [102]. E. coli cells are shaped
like rods with hemispherical end caps and long, helical filaments called flagella. The direction
in which these flagella rotate is controlled by intra-cellular signals, and thus determines the
direction in which the cell can move, and the speed of movement [12]. Computational and
analytical models for such run—and—tumble motions have been derived on the basis of following

observations [12], 52} 109, [102]:

1. The runner moves in a straight line during a ‘run.’

2. Run velocity is approximately constant, and ‘tumble’ duration is negligible compared to

run times.
3. The position of the bacterium does not change during a ‘tumble.’
Such models often also assume that the duration of runs follow an exponential distribution [12].
Let s be the average linear speed of a cell during a run, f;,, the tumbling frequency or reciprocal

of the average run length time, £, then the average cell run distance, 7, (displacement between

two consecutive tumbles) is given by,
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and the measure of motion, also called the motility coefﬁcien‘ﬂ is given by

82

npfn(1 — cosf)

(2)

Ho =

where np is the dimensionality of the system and € is the average turn angle between succes-
sive runs [79, 82, 90, 109]. Eq. relates population and single-cell parameters. Even though
there are other parameters involved, the run and tumble motions can be well described by
two stochastic variables s(t) and 1(t) where s(t) is speed and ¥ (t) = cosf(t) is the direction
change during tumble. In such cases, the statistical properties of run and tumble motions can
be described by a Langevin equation for the variables (s, 1) with particular control parameters

as [31), 32];

d d
ch = Xo[s — ss(B8)] + (s(t)  and dif = p[1 —sind] + (y(t)

where Ao, 8,7,0 and p are control parameters, s is steady state speed, and (s and ¢y model

Gaussian noise.

There are many experimental findings that have been used to support theoretical investiga-
tions of run and tumble motion in self-propelled microorganisms [12} [32] [79]. Though we
do not restrict ourselves to the movement of any unicellular or self-propelled organisms, we

consider movements in our model as ‘run—and—tumble’ motion.

1.3 Energy Cost of Physiology and Locomotion

All organisms require energy to live. Metabolic processes in living organisms include the transfor-
mation of energy from one form to another. Different parts of the body go through these metabolic
processes at varying rates, and an animal’s activity also affects its metabolic rate. Metabolic ac-

tivity is also essential for the assimilation of food required for products like amino acid and other

Zthe ability of living systems to move and carry out mechanical work at the expense of their metabolic energy is
known as motility [5].
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nutrients necessary for life. The synthesis of significant amounts of biomass and energy is necessary
for cell division and reproduction, which are both metabolically costly processes. Thus, it is not
surprising that a cell’s decision to begin dividing is influenced by both its metabolic state and the
presence of nutrients [46]. Moreover, organisms which require less metabolic energy for maintenance
and have efficient metabolic process are likely to survive and proliferate [15] [100].

In mammals the metabolic energy used by sense organs, the transport of information and neural
processing of that information is high. The visual system, for instance, demands a high amount of
energy [51, [64] (75, 110]. A significant amount of energy is required to maintain the basic function
of the brain. The energy required by tissues other than brain, are highly variable. However, the
metabolic energy used by the brain varies much less and resting energy required in the brain is a
considerable part of total energy consumed [64]. Thus, use or nonuse of sensory systems does not
make a significant difference in metabolic energy cost. Hence, the metabolic energy cost related to
the acuity of the different senses can be a large proportion of an organism’s energy expenditure,
whether the organisms is actively engaged in sensing or not.

The minimal energy required per unit time when an animal is at rest is known as basal metabolic
rate (BMR). This means that it includes the energy required for proper cellular functions, neuronal
activity in animals with brains, and other processes that consume energy while the animal is at
rest. BMR is considered as a baseline to make comparison of energy expenditure during physical
activities, however one needs to consider conditions like thermoneutrality. The animal must be in a
complete rest state while measuring BMR. In one of the earliest attempts, Kleiber concluded that
BMR is proportional to the animal’s mass raised to the power 3/4 [49]. There have been many
refinements of Kleibler’s conclusion, but in all cases BMR was found to scale sublinearly with mass.

Regarding the energetics and mechanics of animals’ terrestrial locomotion, Heglund et al. (1981)
concluded that the mechanical power P expended by a bird or mammal per unit mass is given
by [29] 39, 103],

P
1 = 0478 s+5% 40.685 - s 4 0.072 (3)
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where s is average ground speed and M is the mass of the animal.

This equation is independent of mass on the right hand side and hence, can be applied equally
to a small or a large animal [39].This equation also shows that total mechanical work performed per
gram of muscle increases with increase in speed. Experiments based on the oxygen consumption by
different animals show that metabolic cost of transport is also proportional to a power of animal’s
mass so that the metabolic power required for walking, running or swimming is proportional to
(body mass)® x (speed)ﬁ depending on the environment. Alexander, et al. concluded that the
powers in this expression satisfy a < 1 and € (2, 2.8) [2, 8l [4]. However, for animals moving in a
similar environment in similar ways, mechanical cost of transport, that is {power/(mass x speed)},
is independent of body mass for specific modes of walking and running [2} 3] [4].

Since, animals don’t often spend a lot of time at their BMR, the field metabolic rate (FMR),
which measures how much energy an animal uses while roaming around in its natural habitat,
is a more useful metric of energy consumption during exploration and foraging [71]. The FMR
measures an animal’s overall energy expenditure, sheds light on its energetic strategies and hence
includes the implicit energy costs of other sensory activities. For example, animals not only expend
energy while in motion but also expend energy on the sensory mechanisms that allow them to
extract relevant information from their environment. From the sensors of unicellular organisms’
used to sense nutrient substrates, heat, light etc. to the sensory systems of mammals composed of
million of neurons, all use a significant portion of an organism’s energy budget [110, 51}, [75]. Hence
a general model of energy cost for foraging must account for all such implicit energy expenditures.

In motile unicellular organisms, metabolic cost for motion is also a significant part of their
total metabolic cost. For instance, in the absence of flagella, soil bacteria P. putida adapt faster
and are more resistant to oxidative stress, presumably because of the negative metabolic impact
of the flagella [61]. As a result, flagellar motility serves as an example for the classic trade-off
that occurs when gaining environmental benefits comes at a high metabolic cost. The average
metabolic cost for run—and—-tumble motion of flagellated bacteria is proportional to the square of

speed [66]. Flagellar size and number can impact drag, and determine the resources required to
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maintain them. However, they also determine speed and stability of the direction of motion. Thus
both the metabolic cost and the benefit to a bacterium is a function of flagellar length and number,
as well as the properties of the environment [66]. With these available methods and applications
to scale the metabolic cost of locomotion, we, in our model, devise cost of motion as the function

of square of speed.

1.4 Optimal Foraging Theory

Organisms forage for food in order to gain sufficient energy and resources to survive and reproduce.
The study of how organisms can best use food resources to optimize their chances of survival and
reproduction is known as optimal foraging theory. Spatially implicit patch-use models that highlight
the impact of various patch-leaving criteria on foraging effectiveness have historically dominated
this research. Optimal foraging theory was introduced to the field of ecology in order to determine
which types of food should make up a species’ diet and which patches it should feed on to function
in the most economical way [28, [57]. The assumption is that animals have to strike a balance
between two opposing strategies: investing a lot of time and energy into finding highly rewarding
food sources, or investing little time and energy and rely on more common but potentially less
rewarding food sources. Animals whose behavioral strategies increase their net energy intake per
unit time spent on foraging are favored by natural selection [28, [57]. Optimal foraging theory
also uses the marginal value theorem, that explains the process of exploitation of discrete resource
patches [19, [87], however the process of finding such patches is often ignored.

Some classical models of optimal foraging theory [19] 28, [57] consider foragers in environments
of resource patches. These patches can differ in resource density and quality. The average time
required to travel between patches is often fixed and the probability of revisiting the same patch is
zero in a short period of time. The proportion of a particular patch type present in the environment
determines the probability of visiting that patch. Since resource availability and consumption
decrease as resources are exhausted continuously from the patch, a forager acts in accordance with

the marginal value theorem to maximize its rate of overall resource intake. The ‘marginal value
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theorem’ states that “the forager should leave the current patch when its rate of resource intake in
that patch is equal to the expected rate of resource intake, calculated as the average rate throughout
the foraging area” [19]. The second rate depends on the probability that the organism will find
another patch upon leaving, and the resources available in the new patch.

Most optimal foraging theory based studies demonstrate their effectiveness through quantitative
evidence. However there have been some criticisms of these models’ validity and limitations. Since
the optimal model represents foraging as a deterministic process and some theoretical approaches
ignore the inherent stochasticity of the foraging environment, information on patch quality and
expected resource uptake rates as deterministic parameters is circular and even incomplete [T, 87].
Optimal foraging theory assumes that the organisms’ foraging strategies is improved via natural
selection [28], [57], however natural selection is a passive process that selects for genetically based
features that improve an organisms’ reproductive success rather than an all-powerful force that
creates ideal designs [83] 87]. Similarly, the assumption that foraging behaviors are independent
from other traits may not hold as organisms are integrated systems as opposed to associations
of non-interaction pieces [83]. Simple stochastic models can be used to solve complex foraging
problems. Optimal foraging theories based on stochasticity and random walk approaches in general
should enhance biologically precise modeling by highlighting congruity in search strategy design [10),
77, 107).

In patchy resource environments, a hybrid foraging model which uses both random search and
informed motion based on the memory can appropriately predict the process of searching for food.
In such a mixture model, a forager can estimate patch locations incrementally and store positional
target information with few parameters. In some cases, a hybrid model can result in motion
that resembles Lévy walks. Depending on the strength of the memory effects, foragers optimize
search efficiencies by continuous re-visitation of non—destructiwﬂ targets [73]. To understand the
mechanisms behind the general rules for patch leaving decisions given by optimal foraging theory, a

Bayesian approach has been used which treats patch leaving behavior as a statistical inference and

3forager may visit and collect the resource from the same target site many times.
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decision problem. This recent approach uses probabilistic sequential updating and derives stochastic
differential equations about expected resource replenishment rate in the current patch and thus
generates analytically tractable models associated with optimal patch leaving strategies [47].

As we examine the changes in population and attributes over time, we also consider a resource
environment on which resources are distributed in patches within the foraging space. However,
we’re not trying to determine the best strategy for staying on any particular patch. Instead, since
the patches in our model change over time, we’re focusing on the agents’ capacity to locate and
exploit these patches, how this affects their fitness, and how it ultimately impacts the evolution of

their attributes.

1.5 Stochastic Birth-Death Processes and Evolution

Evolutionary dynamics is determined by the probabilities of births and deaths in a population.
Only populations of reproducing individuals can undergo evolution. Since changes in population
due to birth and deaths describe who survives and who does not, such changes affect which traits
evolve over time. However, some ecologists who study population dynamics ignore the prospect of
evolutionary change affecting the creatures they are investigating due to the challenges to grasp
the effects of continuously changing interactions between populations [104]. Population dynamics
models often assume that evolutionary processes move too slowly compared to ecological scales.
However recent studies have challenged these assumption and claim that population and evolu-
tionary dynamics may progress on similar time scales [65, [104]. These studies assert that the
relationship and interactions between population and evolutionary dynamics are important and
hence any population or evolutionary dynamics model must include the interplay between them.

Simplified population growth models are often described using non-linear population models.
The best known is captured by the logistic growth equation:

%:ax<1—£> (4)
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where « is the intrinsic growth rate, x is the population density, and K is the carrying capacity
of the environment. This equation which accounts for competition among the member of similar
species, has been extensively employed to describe and predict a wide range of growth process.
The parameter K in Eq. is due to environmental factors and can be experimentally determined.
The logistic equation describes how a stable population is reached after exponential growth in an
environment with limited resources and other constraints.

Two (or more ) competing species can be modeled by extensions of the logistic growth equa-
tion, of which the Lotka—Volterra equation (Eq. ) is a special case. In addition to describing
intraspecies competition, Lotka—Volterra equations also describe how the presence of competitive

species affects the growth of both species. A more general form of Eq. can be written as;

dx
S = x1 (10 — a1171 — a1272)

()

dx
TE = w2 (—ag0 + ag171 — a2212) .

where x1 and xo are prey and predator densities respectively. The parameter a1g > 0 is the prey
growth rate, ay1 and a9 are intraspecies competition rates, and aog is the death rate of predators.

Using the Lotka—Volterra system to model the population dynamics driving evolutionary pro-
cesses requires addressing several challenges. First, the dynamics of Lotka—Volterra systems are
not stable and often display divergent extinction of one species or cyclic oscillation. This diver-
gent extinction of one species is also seen in the stochastic version of the Lotka—Volterra equa-
tions [63]. Contrary to most natural predator-prey interactions, which occasionally display stable
and sustained coexistence, we do not have a solution for asymptotic stability in Lotka—Volterra sys-
tems [63, 10I]. Secondly, to solve these models (Eqgs. and ) the parameters and interaction
rates due to ambient features must be known. The utility of both models depend on the reliability
of experimentally determined parameters and rates. In a population, individual characteristics
like phenotypes, genotypes and other physical states determine birth-death and interaction rates,
however such rates also depend on a variety of other factors, including their own characteristics,

those of competing individuals from similar or different species, and the environment. Therefore,
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as populations and the environment change through time, birth—death and interaction rates often
fluctuate as well. Hence, knowing how these rate changes as the environment changes is essential
to understand the evolutionary dynamics that is driven by the underlying birth and death process
in the populations.

The evolutionary dynamics driven by a birth—death process depends on birth and death rates
which are in turn determined by a combination of phenotype, environment and interactions with
other organisms. These rates are not experimentally derived, constant parameters but rather
dynamically changing functions of current states and hence they need to be updated after every
event. Sequences of births and deaths describe a stochastic process in which the configuration of
population changes with every birth or death. A mechanistic approach based on the fundamental
events of births and deaths occurring in individual organisms has been proposed in order to build
a generic model of evolution [27]. This approach consists of a population of typeﬁ of individuals
T1, T2, ..., Tp(), where z; is the type of i-th individual, n(t) is population size at current time
t. If b;(t) and d;(t) are the birth and death rates of individual ¢ at time ¢, then these become
complicated functions of ‘internal’ and ‘external’ states at time ¢, given by:

bi(t) = bi (i, E(1)) (©)
di(t) = d; (x;, E(t)).
where E(t) consists of external(environmental) factors like competing species, resource environment
and other abiotic factors.

After each birth or death event, the configuration of the population changes. When an individual
is added to the population through a birth, the offspring type is determined by several factors like
the parents’ type, mutation/recombination, environmental factors EI, etc. In a simple birth process,
the newborns have the same phenotype as their parents. The effect of mutations can be modeled

by selecting the phenotype of the descendants from a distribution that is centered around at the

“here ‘type’ characterizes individuals by phenotypic or genotypic differences.
Sfor example, the sex of some reptiles at birth is influenced by the ambient temperature.
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parents’ phenotype. In this way variability is introduced into the population. Phenotypes that
provide a reproductive advantage will be more likely to take over the population, and dominate,
unless variability is too high. Thus births, deaths and phenotypic variability in the population
drive evolution. The resulting dynamics can be shown as a cloud of points that moves around in
‘phenotype’ space [27]. Individuals are represented by the points in this cloud, which moves as
some of the points vanish and new ones appear in other places (see Fig. . Hence, the evolutionary

dynamics are represented by the cloud’s collective movement.

1.6 Evolutionary Constraints and Trade-offs

An evolutionary trade-off occurs when evolutionary processes advance one characteristic of an
organism at the determent of another. Trade-offs are the process by which one feature is improved
at the expense of another trait [34, 02, [93]. There is broad agreement that resource constraints
(such as those related to energy, habitat/space, or time) prevent the simultaneous optimization of
multiple features. Rather the process can be viewed as optimization under constraints. As a result
improvement of one attribute which increases fitness may impact another attribute whose impact
on the animal’s fitness may be smaller than that of the first attribute [34].

In evolutionary biology, predicting traits always requires discussions of trade-offs. Fitness trade-
offs limit and influence the evolution of traits to maximize survival and fertility. Statistical cor-
relations and functional relationships are often included in the trade-off, and have been observed
in many examples of life historyﬂ traits [92, [113]. The impacts of trade-offs on organisms can be
proximate or ultimate. These have been examined at various levels, including the population level
to understand how trade-offs affect ultimate evolutionary trajectories, and the mechanistic level to
understand proximate causes. Some important categories of trade-offs that are frequently discussed
in the literature to classify and study it are allocation constraints, functional conflicts as well as
physiological and ecological circumstances [34].

There are allocation constraints when the overall amount of a resource is limited, making it

Sthe general characteristics of the life cycle, such as the rate of growth, the age of maturity, the length of life, and
the frequency of reproduction, are included in the life history.
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necessary to reduce allocation to one attribute or trait in order to increase allocation to another.
In biological system, the case is more complicated and multiple hierarchical constraints exist. Con-
straints relating to resources, however, may not result in trade-offs unless the organism is fully
utilizing these resources. Trade-offs can result from functional conflicts when features improve the
performance of one task while degrading the performance of another [42]. For example, higher
speeds are beneficial to flee from predator yet detrimental to manoeuvrability and motor con-
trol [IT1]. Similarly integrator molecules, which simultaneously influence several attributes through
numerous biochemical and physiological pathways, can have both positive and negative effects on
fitness-related traits [34].

The trade-off between costs and benefits is created also by selective pressured’} and this trade-
off eventually affects the fitness of the organism. Like other systems, the nervous system too is
under selective pressure to produce adaptive behavior, but it also has costs associated with how
much energy it uses. For instance, the total energy budget of an animal as well as the way energy
costs are distributed throughout the nervous system both serve as constraints on the amount of
energy that can be used for sensory processing. This affects the evolution of sensory systems,
causing trade-offs between sensory systems encoding different modalities [75]. However in some
cases, the sensory systems are interconnected in such a way that there is a correlation, and possible
cooperation between different senses [76]. Indeed, when a model is defined by only two traits,
then the ecological and evolutionary dynamics are influenced by possible co-operation or trade-off
between these two traits. In the absence of other infringing factors, a simple bivariate correlation
between two traits can be used to measure the trade-off between them. Although such an analysis
can be easily expanded to trade-offs involving three or more traits, we only address a trade-off
involving two traits for the sake of simplicity.

Based on the phenotypic variances and covariances, we can characterize the trade-off function

"selective pressure is any external or internal factor for certain phenotypes that result in survival benefit or
disadvantages.
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as follows [92] 93]:

O-PS(Z UPSG,
a= (Ma— > u5> + ot (7)

P Ps
where us and p, are mean values of traits speed (s) and acuity (a) respectively; op,, is the pheno-
typic covariance between s and a, and O'ZPS is the phenotypic variance of trait s.

This dissertation deals with constraints and trade-offs between attributes. For example, mod-
eling foraging with ‘run and tumble’ search requires the agents to be equipped with attributes like
speed and acuity. Due to competition, limitation of resources and expense of energy for traits,
there is a constraint on the total energy available to carry out the functions of these attributes.
We will examine the extent of these trade-offs, their impacts on fitness of agents and the direction
of the evolutionary trajectory. Moreover, we argue that constraints and trade-offs between traits
are important to the study of evolutionary dynamics and this dissertation will attempt to further
these studies by providing an another approach to mechanistic model of population dynamics and

evolution.

1.7 Agent-based Modeling

The applications of ‘conventional’ differential equation (ordinary differential equation and partial
differential equation) and statistical (regression and extrapolation) modeling to establish and test
evolutionary dynamics have limitations. Firstly, we need to have sufficient evidence, data over
long period of time, to generate and validate these models. Secondly, differential equations and
statistical modeling are thought to have restrictive assumptions that hinder their application in
certain examples [8, [I3]. In many such cases, the control parameters and interaction rates are pre-
determined, and used in the equations and statistical models as constants. However such parameters
are changing due to ever changing interactions between agents. In theory, everything can be
accomplished by the use of equations, but the complexity of differential equations rises exponentially
with the complexity of behavior and the number of interacting species. To overcome such limitations

and to provide a design and implementation of system composed of many individuals whose local
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interaction produce an aggregate behavior, agent—based models have been used [8, [13] [112].

The purpose of agent—based modeling (ABM) is to identify the emergent behavior of ‘agents’
that can not be readily predicted by analytical treatment of rules themselves. In ABMs, an agent
describes an autonomous decision making entity which interacts with the environment and make
decision on the basic of sets rules. Such agents have the capacity to evolve, allowing unexpected
behaviors to appear. The following characteristics show why ABM is superior to other modeling
techniques: ABMs are flexible, captures emergent phenomena, and offer a natural description of
many complex system composed of interacting units. These benefits are largely driven by ABM’s
capacity to describe emergent phenomena [13].

In this dissertation, we apply ABMs to understand several perspectives of agents’ foraging be-
haviors and their evolution. Since foraging is one of the most important tasks organisms perform
and different behaviors evolve as the consequences of advantages and fitness of adapted organisms
over changing environment, it is important to understand the effect of interactions between in-
dividuals and emergent behaviors. Foraging consists of many steps like searching, collecting and
communication. It has become an active research area due to the ready application of foraging
models to real world problems [I12]. ABMs are convenient when agent’s individual behavior is
non-linear; is characterized by threshold, or exhibits memory, and path-dependency. Often differ-
ential equation models smooth any variations however ABMs do not, so that the deviation from
predicted aggregate behaviors can also be captured [I3]. We propose and simulate some ABM
models to understand foraging, probabilistic transition by birth-death and evolution of behaviors.
We also discuss the effects of foraging on agents’ ‘fitness’ to the evolution of attributes by the means

of ABM with plausible challenges to fit it to observational data.

1.8 Motivation and Outline of this Dissertation

Living organisms have the ability to sense their environment and respond to numerous chemical and
physical stimuli. Such senses and responses are carried out as the function of what we call different

attributes of the organism. An attribute characterizes, for example, an organism’s sense of smell,
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hearing, its ability to move, or its ability to resist infection, or heal from an injury ﬂ Each attribute
has its own role in survival and impacts the ‘fitness’ of the organism. These attributes sometime
function independently and sometime work together to help the organism perform certain task. As
we discussed in Subsection the increase in ‘fitness’ due to changes in one attribute can cause
corresponding changes in other attributes leading to trade-offs between the two attributes. These
trade-offs partly determine the phenotypes of organisms and can direct evolutionary trajectories.

The question that motivate this dissertation is: Up to what extent are these attributes respon-
sible for the survival and ‘fitness’ of an organism, and how do the trade-offs and constraints impact
the evolution of the attributes? If agent ‘A’ and ‘B’ are foraging in a certain environment where
they have to collect resources. ‘A’ can sense resources up to distance a4 in all directions and moves
$4 units every unit of time. However, ‘B’ can sense resources up to ap units (say smaller than ay)
in all directions, but can move s units with sg > s4 in unit of time. There are two main questions:
On average, does one agent collect more resources over time than the other? Which agent will have
more progeny, and whose progeny will constitute the population in the future?

This study aims to discover the evolutionary dynamics inspired from the organisms’ foraging
behaviors. We simulate multi-agent foraging to understand different structures of foraging, to
discover the relative importance of attributes for the foraging success and ultimately to understand
evolution of these attributes. Our goal here is to capture some well known foraging strategies,
present a simple but tractable model of foraging in a typical environment, and show how foraging
success drives the evolution of a population towards an improved ‘fitness’ regime. We discuss the
challenges and issues understanding the evolution of foraging behaviors.

This dissertation is organized as follows:

e In Chapter 2, we present the ABM of foraging and derive an expression to estimate resource
collection rate for foraging agents. We also discuss the metabolic cost function, changing

metabolic scores, and evolutionary and non-evolutionary birth—death processes.

8here, we will focus on the senses, and ability to move, and will not model an organisms response to pathogens or
injury. However, a similar approach could be used to examine trade-offs between a wider range of attributes.
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e In Chapter 3, we develop a system of non-linear differential equations whose solution deter-
mines the population size and average metabolic energy equilibria and their local stability.
We numerically solve this system and discuss the stability of different fixed points under

various initial conditions.

e In Chapter 4, we summarize the results about how different phenotypes are able to collect
resources in competitive environment. We show that there is a fixed carrying capacity in a
given environment and certain behavioral rules which is independent of the initial number