
c© 2018 Adrian Ernesto Radillo

Sections 4.1 & 4.2 c© 2017 MIT, Neural Computation

Sections 4.1 & 4.2 of the present work are slight modifications of content appearing in the following

publication:

Adrian E. Radillo, Alan Veliz-Cuba, Zachary P. Kilpatrick, and Krešimir Josić. Evidence accumu-
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Dr. Krešimir Josić, Chairman

Dr. Zachary P. Kilpatrick
University of Colorado Boulder

Dr. William Ott

Dr. Andrew Török

Dean, College of Natural Sciences and Mathematics

ii



Acknowledgements

Special thanks ought to be given to the people who have been with me, supported

me, and had an unbreakable faith in me, all along the journey of my Ph.D. I am

thinking of both work and family relationships.
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Abstract

Mathematical decision making theory has been successfully applied to the neuro-

science of sensation, behavior, and cognition, for more than fifty years. Classical

models rely on the assumption that the environment doesn’t change during the pe-

riod of observation. This assumption has been relaxed in more recent studies of

adaptive decision making. We develop new ideal observer – Bayes-optimal – models

for this latter setting; and more specifically for the case in which temporal integration

of noisy evidence improves choice accuracy. The generative model of the stimulus

is a Hidden Markov Model that the ideal observer must filter, and more generally

learn. In a first part, we derive and study models tailored to pulsatile evidence with

Poisson-distributed timing. We characterize the model parameters that determine

choice accuracy, and compare the ideal observer to a finely tuned linear-leak model.

We show that the linear model is both more sensitive to parameter perturbation and

easier to fit to choice data. In a second part, we derive Bayes-optimal models that

learn the change rates of their environment. We do so in several configurations: in

discrete time, in continuous time, when more than one change rate must be learned,

and for both pulsatile and continuously arriving, drift-diffusion type evidence. We

find that such learning models may outperform wrongly tuned known-hazard rate

models, but are hard to implement computationally. We conclude that the mathe-

matical study of optimal decision making is crucial for at least three reasons. First,

it helps develop an intuition about the various computations required to perform a

task. Second, Bayes-optimal models allow benchmarking accuracy and other depen-

dent variables from experiments. Finally, from them, approximate schemes may be

built, hopefully taking us one step closer to understanding the human brain.
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Chapter 1

Introduction

All living beings must cope with changing environments to survive. From the regu-
latory mechanisms within a single cell to the stock brokers on Wall street who try
to maximize their return, Life is all about coping with uncertainty and changes in
the environment. A modern paradigm to think about animal1 behavior is that of
decision making. Every time a biological system selects an action among a set of
alternatives, we say that it makes a decision. Thus, the type of decision that we
study here is more general than the layman’s connotation for the term. A neuron
decides to fire or not, given its synaptic inputs [17]; a bee colony decides to move
its hive to one of N potential locations, based on the information collected by scout
bees [45]; and a teenager decides to apply to specific colleges at the end of Senior
year, based on a complex social and psychological context [9]. In the present work,
we are interested in uncovering the mechanisms and biological principles that allow
living organisms to make decisions in changing environments.

Decision making theory2 has met such scientific success in the past century that
it today pervades most branches of biology [5], finance [14] and engineering [28]. A
great example of its power is the invention, by Alan Turing and colleagues, of a de-
cision making algorithm that broke the code of the German Enigma machine during

1In this work, the word “animal” also refers to humans.
2Also simply called decision theory.
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Figure 1.1: Illustration of an ambiguous stimulus. Is this the picture of a sunset
or a sunrise?

World War II [24]. So, what exactly is decision making theory3? It is a mathemat-
ically principled way of using all available information to determine the
odds of different outcomes, and then using these odds to determine the
best choice. Closely related to game theory, it postulates and leverages a statistical
structure of the world in which each possible action is associated with some probabil-
ity of reward and cost. Importantly, the decision maker – interchangeably called the
agent or the observer for the remainder of this text – makes at least one observation
of the state of the world before deciding on an action. The observations are noisy
insofar as they only provide ambiguous information about the state of the world. It
is the pair (“state of the world”, “action taken”) which ultimately determines the
payoff. For example, I could ask you to decide whether the picture from figure 1.1
represents that of a sunset or a sunrise. I could further decide to reward/penalize
you4 in the following way:

3Some researchers might encompass a wider field than the one we are describing here with this
locution, reserving the qualifier “normative decision making theory” for our work [39]. We totally
agree with these further distinctions. Our present purpose is not to define the boundaries of the
field, but rather to introduce our topic in a simple way.

4To play this mental game, let’s assume that you want to play and trust me with the truth.
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• You pay me $10 if you miss a sunrise.

• You pay me $1 if you miss a sunset.

• You earn $5 if you correctly guess a sunrise.

• You earn $5 if you correctly guess a sunset.

Here, the state of the world is the truth, and the observation consists of you looking
at the picture. The decision is your answer. Clearly, with no prior information
about the picture, and unless you know of a way of distinguishing between pictures
of sunrise and sunset, you should answer “sunrise”, irrespective of what the truth is,
since you lose more money by missing a sunrise. But what if you knew where the
picture was taken? If, somehow, you found some clue that it was taken in France, you
could become much more confident that the coast is facing west, and therefore that
it is a sunset picture! Decision making theory formalizes this procedure of balancing
out the beliefs, the new information and the reward structure, in some “best possible
way”.

Two set-ups must be distinguished: In one, the environment – i.e., the state of
the world – is static during the observation period (as in our picture example); in the
other, it is dynamic. Signal Detection Theory (SDT) [26, 19] lays the mathematical
grounds for making optimal decisions in the former setting. We will present its main
results before introducing our work, which focuses on the latter setting.

In SDT, a presented stimulus x must be categorized as pertaining to one of two
classes of stimuli: “noise alone” (n) or “noise with added signal” (sn). Mathemat-
ically, these classes are represented by two conditional probability distributions for

x: Pr
(
x
∣∣ n
)

and Pr
(
x
∣∣ sn

)
. On a given trial, x is sampled from one of these

distributions and presented to a detector [19] whose task is to answer “Yes” if x

was generated from Pr
(
x
∣∣ sn

)
and “No” otherwise. This task becomes nontrivial

when the support of the two distributions overlap since any value of x lying in the
intersection of the supports may be generated by either class with nonzero probabil-
ity. We want to stress from the outset that this mathematical setting need not be
restricted to the SDT nomenclature. From a more general perspective, the stimulus

is an observation o, which is sampled from one of two distributions, Pr
(
o
∣∣ S = 0

)
and Pr

(
o
∣∣ S = 1

)
. We call the distribution that generates the sample – or, equiv-

alently, the random variable S – the state of the environment. This decision making
paradigm is referred to as a 2-Alternative Forced Choice (2AFC) task.

3



Since the observer’s answer Sans depends on the state and the stochastic obser-
vation, it is itself a random variable. Table 1.1 illustrates the four possible combina-

S = 0 S = 1
Sans = 0 correct incorrect
Sans = 1 incorrect correct

Table 1.1: The four combinations of answered class (Sans) and true class (S)
in a 2AFC task. The state of the environment S may take on one of two values,
0 or 1, and the observer must identify this state based on noisy evidence. The four
combinations may be classified into correct and incorrect trials.

tions of (Sans, S) on any given trial. Two of these combinations correspond to correct
trials, and the remaining two to incorrect trials. Typically, a reward structure as-
signs a payoff value V (Sans, S) to each combination, which defines a value function.
Equivalently, many authors change the sign of the value function to define a loss
function [39]. From there, three decision goals are commonly studied [19]:

1. Maximize the expected value (equivalently minimize the expected loss) across
trials.

2. Maximize the probability of being correct on any given trial.

3. Maximize the probability of correctly classifying one class for a given tolerance
level on the probability of wrongly classifying the other class5. For instance,

maximize Pr
(
Sans = 1

∣∣ S = 1
)

under the constraint that

Pr
(
Sans = 1

∣∣ S = 0
)
< α, for some tolerance level α > 0.

Once a goal has been set, an optimal decision making strategy, also called an optimal
policy, is a mapping x 7→ Sans that meets the goal. It has been known for a long time
that the goals presented above overlap under certain simplification assumptions [19].
For example, as long as

V (1, 1)− V (0, 1) = V (0, 0)− V (1, 0) (1.1)

the optimal strategies for goals 1 and 2 are the same. Also, there always is a tolerance
level α in goal 3 that renders the corresponding optimal strategy identical to that
from goal 2.

5This is the Neyman-Pearson criterion of optimality [31].
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In the present work, we almost exclusively study decision making models for
2AFC tasks in which equation (1.1) holds. Furthermore, we always assume goal
number 2 above. Given these assumptions, it is known (see equation (1.19) in [19]
for instance) that the optimal strategy is to base one’s decision on the comparison
of the so-called likelihood ratio,

Pr
(
o
∣∣ S = 1

)
Pr
(
o
∣∣ S = 0

)
to the decision threshold,

π (S = 0)

π (S = 1)

where π(S) represents the prior odds of each environmental state. If the likelihood
ratio is greater (resp. smaller) than the threshold, the observer should choose state 1
(resp. 0). In case of equality, a uniform sample from {0, 1} should be selected. This
decision rule is a direct application of Bayes’ rule in order to decide which of the two
alternatives {0, 1} has highest posterior probability :

Pr
(
o
∣∣ S = 1

)
Pr
(
o
∣∣ S = 0

) ≷
π (S = 0)

π (S = 1)
⇔ 1 ≶

Pr
(
o
∣∣ S = 1

)
π (S = 1)

Pr
(
o
∣∣ S = 0

)
π (S = 0)

=
Pr
(
S = 1

∣∣ o)
Pr
(
S = 0

∣∣ o)
As such, this decision strategy is sometimes called Bayes-optimal. For the remainder
of this work, we call ideal observer any decision making model implementing this
strategy.

In the SDT framework, nothing prevents the observation from being a vector of
n independent6 and identically distributed (i.i.d) random variables, o = (o1, . . . , on).
In this case, their joint likelihood factors into a product of n individual likelihoods,
and this is exactly the setting of the Sequential Probability Ratio Test (SPRT) that
we derive in chapter 2. Thus, evidence from multiple noisy samples can be combined
in order to improve the probability of a correct decision. In a physical system, these
observations can be spread across space or time. When spread across time, the cor-
responding theory of evidence integration is called sequential analysis [50, 24]. As
independent samples are gathered sequentially in time, the observer iteratively com-
bines the accumulated information into a time-dependent log posterior odds ratio,

6When conditioned on the environment.
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which is nothing else than the log likelihood ratio scaled by the log prior odds ratio:

yn := log
Pr
(
S = 1

∣∣ o)
Pr
(
S = 0

∣∣ o)
= log

Pr
(
o
∣∣ S = 1

)
Pr
(
o
∣∣ S = 0

) + log
π(S = 1)

π(S = 0)

= log
Pr
(
on
∣∣ S = 1

)
Pr
(
on
∣∣ S = 0

) + yn−1 + log
π(S = 1)

π(S = 0)

Two experimental paradigms are commonly used in neuroscience. In the interro-
gation protocol, the length of the observation time window is preset by the experi-
menter. In the free response protocol, the subject is free to respond at any time they
want. The Bayes-optimal strategy for performing the task, in both protocols, relies
on comparing the log posterior odds ratio to one or two decision thresholds. In the
interrogation protocol, the single threshold is y ≡ 0. Denoting interrogation time by
N , the ideal observer answers “0” if yN < 0, “1” if yN > 0, and selects either option
with equal probability if yN = 0. In the free response protocol, we assume prior
confidence thresholds, y ≡ ±ythreshold, such that a decision is made as soon as the
accumulated evidence reaches them. If ythreshold is reached first, the ideal observer
selects choice “1”, and if −ythreshold is reached first, it selects choice “0”.

In the natural world, the environment is seldom constant during the observation
period that leads to a decision. We study optimal evidence integration in dynamic
environments. Intuitively, one may reason that the older the gathered evidence gets,
the less relevant it becomes for identifying the present state of the environment. This
is indeed what normative theory prescribes: The differential equations that govern
the evolution of the log posterior odds ratio contain a leak term [17, 23, 49].

In behavioral and cognitive neuroscience, recent experiments have been designed
to study adaptive perceptual7 decision making. Our theoretical work is specifically
tailored to understand three of such experiments. In the last decade, the lab of Josh
Gold [2] at the University of Pennsylvania has been implementing several variants of
the triangles task and the dots reversal task [23, 22]. More recently, the lab of Carlos
Brody [1] at Princeton University has been studying the dynamic clicks task [34].
We briefly present these tasks in their standard form below.

7The adjective “perceptual” refers to the fact that the animal must base its decision on a
perceived sensory stimulus.
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In the triangles task [23], on each trial, a red star appears at a random location

Figure 1.2: Stimulus from the triangles task (image adapted from [23]). On
each trial, a red star appears at a random location on the screen. The location is
sampled from one of two 2-dimensional Gaussian densities with similar covariance
and means centered at the triangles’ locations. The color scale indicates to the
subject the height of each density (green = high density; blue = low density). The
task consists in choosing the distribution (i.e., the triangle) that generated the star.

on the screen (see figure 1.2). The location is sampled from one of two 2-dimensional
Gaussian densities with similar covariance and means centered at the triangles’ loca-
tions. The color scale indicates to the subject the height – and therefore the spread
– of each density (green = high density; blue = low density). The task consists
in choosing the distribution (i.e., the triangle) that generated the star. Trials are
presented in blocks of constant task parameters. Across any two consecutive trials
within a block, there is some probability h that the correct choice switches side. The
h-variable is termed the hazard rate. It is set by the experimenter to be constant
within blocks, and to change across blocks, spanning the range 0.05 − 0.95. Since
a single star and choice occur on each trial, this task is better modeled in discrete
time.

The dots reversal task [23] is both designed for humans and monkeys. It is an
extension of the traditional random moving dots task, the latter of which has lead
to a vast amount of research [44, 11, 42, 25]. In the dots reversal task, the subject
is presented with a cloud of randomly moving dots [3] during a period of time that
lasts between 5 and 10 seconds. A fraction of the dots moves coherently in one of two
directions (left or right), while the remaining dots move randomly and independently
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of each other. Importantly, a hazard rate h, expressed in Hz, controls the frequency
at which the coherent direction of motion switches within a trial. These switches
occur at random times according to a Poisson process with rate h. The task consists
in making an eye saccade8, at the end of the trial, in the direction in which the
coherent dots were last perceived to move. Each subject undergoes blocks of trials
with constant hazard rate. The two values of h tested in [23] were 0.1Hz and 2Hz.

The dynamic clicks task [34] is an extension of the Poisson clicks task [12], which
has been performed on humans and rats. In the auditory version of the dynamic clicks
task (see figure 1.3), two streams of auditory clicks are simulatneously delivered to
a subject’s ears during each trial (one stream per ear). Each click train, lasting

h

high rate
on left ear

high rate
on right ear

low-high high-low low-high
time

clicks

Figure 1.3: Schematic of the dynamic clicks task. On each trial, a rat is simul-
taneously presented with two distinct streams of clicks (one per ear). Each stream
has inhomogeneous Poisson statistics with two possible arrival rates, λlow, λhigh. The
transitions between arrival rates are synchronized across streams and are, themselves,
governed by an independent Poisson process with rate h, the so-called hazard rate.
In the figure, the color blue (resp. green) codes for the state S = 1 (resp. S = 0),
which corresponds to a high rate on the right ear and low rate on the left ear (resp.
high rate on the left ear and low rate on the right ear). The task is to turn towards
the side with higher rate at the end of the trial [34].

between 0.5 and 2 seconds, is generated by an inhomogeneous Poisson process with
stepwise constant arrival rate that is restricted to two values (λlow vs. λhigh). The
two streams are coupled in the sense that they have same transition times. That is,
whenever the arrival rate of one stream undergoes a sudden change λlow → λhigh, the
other stream undergoes the opposite change λhigh → λlow. Both ears always receive

8Eye-tracking devices allow the experimenter to record the subject’s choice.
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clicks at distinct arrival rates. The task consists in choosing the stream with highest
arrival rate at the end of the trial.

In all three experiments presented above, the true state of the environment (the
one that is rewarded) is in one of two states and alternates during the trial in a
history-independent way. The subject receives sequential noisy samples from the
hidden state until interrogation time, at which point they are required to identify
the state in which the trial ended.

In neuroscience, initial models of optimal decision making in changing environ-
ments assumed that the statistics of the changes were known to the observer. This
assumption was a reasonable first step, given that these statistics are key to maxi-
mizing accuracy: Knowing the average number of changes that will occur in a trial
allows, in a Markovian setting, to integrate evidence with the appropriate timescale.
In this work, we will both analyze existing models and derive new ones in an attempt
to relax this assumption.

In chapter 2, we re-derive established ideal observer models from the literature.
Their unifying characteristic is that they all assume the change rates of the envi-
ronment to be known. Their derivation is important for the present work, because
it involves key concepts and techniques that we use throughout the dissertation. In
particular, we introduce there the Sequential Probability Ratio Test (SPRT), from
which we derive the Drift-Diffusion Model (DDM) as its continuum limit.

In chapter 3, we study in detail the decision model from the previous chapter that
concerns pulsatile evidence – this is the model for the dynamic clicks task. We show
that, via an appropriate time rescaling, only two effective task parameters govern
the accuracy of the ideal observer on the dynamic clicks task. We then explore
how the best linear discounting model of evidence accumulation compares to the
ideal observer model. Our comparison operates in terms of sensitivity to parameter
perturbation, and of ease of model fitting.

Chapters 4 and 5 develop ideal observer models that learn the change rates of
their environment. Chapter 4 studies discrete time environments, and chapter 5,
continuous time ones. By learning models, we mean decision making models that
compute and iteratively update a posterior distribution over the change rates, as
observations are gathered. Because we assume that the goal of our model is to maxi-
mize choice accuracy, computing a posterior over change rates alone is not sufficient.
We therefore leverage the notion of joint posterior in two separate contexts. On the
one hand, we derive models that update a joint posterior over environmental state
and hazard rate. On the other hand, we focus on a joint posterior over environmental
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state and change-point count. All such models, and especially the ones in continuous
time, are hard to analyze. We hope that, in the future, approximate schemes can be
developed on their basis.
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Chapter 2

Decision making models when
change rates are known

This chapter lays down the theoretical foundations for modeling sequential decision
making. Although most of its content was already established prior to our work,
we present it here in a unified manner, as an introduction to the concepts and tech-
niques that will be used later. Throughout the chapter, the mathematical problem
of optimally deciding which of M decisions is the correct one, is framed as a filtering
problem on a Hidden Markov Model (HMM). The change rates of the hidden chain
are assumed known for now. The question of learning them will be addressed in
chapters 4 and 5.

A word on notation: In this work, we do not include 0 in the set of natural
integers N.

2.1 Discrete time decision making models

2.1.1 Filtering an N-state Hidden Markov Model

The experimental set-up in which decision making is studied lends itself particularly
well to the theoretical framework of HMMs. Two key concepts are at play: the fact
that a hidden signal must be used by the observer in order to solve the task, and the
fact that this signal is Markovian. Indeed, experimental tasks of perceptual decision
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making can be framed as a signal decoding problem. The variable that is relevant
to the task1 (the signal) is not directly observed. Instead, the observer must rely on
the conditional probabilities that relate the observed stimulus (the corrupted signal)
to the hidden variable.

Let {Sn}n∈N be a Markov chain with state space Λ := {1, . . . ,M} and transition
matrix

(
ηij
)

(i,j)∈Λ2 . Each transition rate ηij represents the probability of the chain

transitioning from state j to i in a single time step (here, time is discrete and starts
at n = 1). Let {on}n∈N be another discrete time process with state space Ξ ⊆ R,
representing partial observations of the state chain {Sn}n∈N. More precisely, the
following two conditions hold.

1. For each state i ∈ Λ, there is a probability density function2 fi : Ξ→ R, such

that for all n ∈ N, o ∈ Ξ, fi(o) := Pr
(
on = o

∣∣ Sn = i
)

.

2. The random variables {on}n∈N are conditionally independent on the state. That
is, for any finite subset {n1, . . . , nN} ⊂ N,

Pr
(
on1 , . . . , onN

∣∣ Sn1 , . . . , SnN

)
=

N∏
k=1

fSnk
(onk

) (2.1)

With π : Λ→ [0, 1], a prior distribution over the states, the tuple,(
{Sn}n∈N, π, {on}n∈N, {fi}i∈Λ

)
constitutes a Hidden Markov Model3. Calling ON := {o1, . . . , oN} a particular re-
alization of the first N steps of the observation process, filtering the HMM at time

N means computing the conditional probabilities Pr
(
SN = i

∣∣ ON), for all i ∈ Λ.

In this section, we present the solution to this problem when the transition rates(
ηij
)

(i,j)∈Λ2 are known.

Disclaimer: Here, and throughout the dissertation, we make the assumption that
the conditional probabilities and density functions mentioned always exist. This
necessarily happens if we assume that the state chain {Sn}n∈N is ergodic – every state

1The one that determines the reward.
2If Ξ is discrete, then the fi’s are probability mass functions.
3See [37] for a tutorial on HMMs and [13] for an in-depth exposition.
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in Λ is positive recurrent and aperiodic – and that the observation noise densities
{fi}i∈Λ vanish nowhere.

As we will soon demonstrate, the posterior probability of state i at time step
n ∈ N obeys the recursive equation,

Pr
(
Sn = i

∣∣ On) ∝ fi(on)
M∑
j=1

ηij · Pr
(
Sn−1 = j

∣∣ On−1

)
∀n > 1 (2.2a)

Pr
(
S1 = i

∣∣ O1

)
=

1

Pr (O1)
fi(o1)π(S = i) (2.2b)

where the proportionality constant in (2.2a) only depends on the observation stream
On. With N representing the end of observation time in the interrogation protocol,
the ideal observer chooses the state ι̂ which displays highest posterior probability:

ι̂ := argmaxi∈Λ

{
Pr
(
SN = i

∣∣ On)} (2.3)

Because equation (2.2a) is recursive4, it is termed an on-line inference algorithm.
Alternative algorithms5 using parts or all of the observation history to compute the
posterior over the state variable are termed off-line algorithms. This latter type of
algorithm is useful to infer a state value that occurred before interrogation time6.

That is, an off-line algorithm is required to compute Pr
(
Sk = i

∣∣ ON) for k < N .

Filtering and smoothing HMMs represents a whole field of study of its own, with
numerous applications in engineering, finance and artificial intelligence [13].

However, as equation (2.2a) demonstrates, on-line inference is possible when the
goal is to infer the present state of the environment.

We now set out to derive equation (2.2). The initial conditions (2.2b) are a literal
application of Bayes’ rule. As for (2.2a), we start by using the law of total probability
as follows. For any n ∈ N≥2 and i ∈ Λ:

Pr
(
Sn = i

∣∣ On) =
∑
j∈Λ

Pr
(
Sn = i, Sn−1 = j

∣∣ On) (2.4)

4By this we mean that the posterior at time step n only depends on the current observation and
on the posterior at time step n− 1.

5Notable ones are the Forward-Backward algorithm [6] and the Expectation-Maximization al-
gorithm [16].

6This is referred to as smoothing in the signal processing literature.
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Next, Bayes’ rule applied to the summand of the right-hand side above yields,

Pr
(
Sn = i

∣∣ On) ∝∑
j∈Λ

Pr
(
On

∣∣ Sn = i, Sn−1 = j
)

Pr (Sn = i, Sn−1 = j) (2.5)

with proportionality constant 1/Pr (On). From here, we note two things. First, since
the observations are conditionally independent on the states7, the following holds:

Pr
(
On

∣∣ Sn = i, Sn−1 = j
)

= Pr
(
on
∣∣ Sn = i

)
Pr
(
On−1

∣∣ Sn−1 = j
)

Second, from basic probability theory, we have:

Pr (Sn = i, Sn−1 = j) = Pr
(
Sn = i

∣∣ Sn−1 = j
)

Pr (Sn−1 = j)

Combining these two manipulations on the summand of equation (2.4) gives the new
summand:

Pr
(
on
∣∣ Sn = i

)
Pr
(
On−1

∣∣ Sn−1 = j
)

Pr
(
Sn = i

∣∣ Sn−1 = j
)

Pr (Sn−1 = j)

Noting that,

Pr
(
On−1

∣∣ Sn−1 = j
)

Pr (Sn−1 = j) = Pr
(
Sn−1 = j

∣∣ On−1

)
Pr (On−1)

and remembering our notation,

fi(on) := Pr
(
on
∣∣ Sn = i

)
ηij := Pr

(
Sn = i

∣∣ Sn−1 = j
)

we are finally able to recover the posterior described by equation (2.2a), with pro-
portionality constant Pr (On−1) /Pr (On).

2.1.2 Optimal decision making in 2-state environments

Most experimental tasks investigating perceptual decision making constrain the en-
vironment to two states. Such tasks are termed Two-Alternative Forced Choice
(2AFC) tasks in the behavioral science literature. As we will see, the mathemat-
ical models for optimal decision making greatly simplify in this setting. The key
simplification point lies in the fact that when Λ = {0, 1}, knowing the posterior

7Recall equation (2.1).
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over one state automatically yields the posterior over the complementary state, as

Pr
(
Sn = i

∣∣ On)+ Pr
(
Sn = 1− i

∣∣ On) = 1. Furthermore, since an ideal observer

only needs to select the state with highest posterior (equation (2.3)), comparing the

ratio of posteriors Pr
(
Sn = i

∣∣ On) /Pr
(
Sn = 1− i

∣∣ On) to one is a sufficient strat-

egy. It is indeed the basis for the algorithms presented below. Since all the models
from this section are derived from equation (2.2), we made the choice of presenting
them in decreasing order of complexity.

Remark: for notational convenience, when the environment only admits two states,
we set Λ := {0, 1} instead of Λ = {1, 2}. As a consequence, the transition rate from
state 0 to 1 is written η10, and similarly for the remaining three rates.

Changing environment with asymmetric change rates

As explained above, the strategy of an ideal observer is to compare the ratio of
posterior odds to 1 at interrogation time. Without loss of generality8, we consider
the ratio at time n ∈ N to be:

Rn :=
Pr
(
Sn = 1

∣∣ On)
Pr
(
Sn = 0

∣∣ On)
If at interrogation time N , RN > 1, then state 1 is more probable than 0, given the
observer’s prior belief π and the specific history of observations ON .

Using equation (2.2), and writing R0 := π(S = 1)/π(S = 0) for the prior odds
ratio, we have:

Rn =
f1(on)

f0(on)
·
η10 · Pr

(
Sn−1 = 0

∣∣ On−1

)
+ η11 · Pr

(
Sn−1 = 1

∣∣ On−1

)
η01 · Pr

(
Sn−1 = 1

∣∣ On−1

)
+ η00 · Pr

(
Sn−1 = 0

∣∣ On−1

) ∀n > 1

R1 =
f1(on)

f0(on)
R0

8By this, we mean that equivalent decision making models can be based on the inverse of our
posterior odds ratio, 1/Rn.
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We may rearrange the right-hand side of the above equation to reveal the term Rn−1,
and replace ηii by 1− η1−i,i for i ∈ Λ, to obtain the new equation9:

Rn =
f1(on)

f0(on)
·
η10 +

(
1− η01

)
·Rn−1

η01 ·Rn−1 + (1− η10)
∀n > 1 (2.6a)

R1 =
f1(on)

f0(on)
R0 (2.6b)

At this point, it is common practice to study the log posterior odds ratio, which
is the natural logarithm of the previous ratio: yn := logRn. As we will show in later
sections, this transformation is useful when taking continuum limits and more stable
for numerical simulations. It is also more readily interpretable as neural population
activity [24]. The log posterior odds ratio is called the decision variable in decision
making theory as it is the variable that standard ideal observer models use to make
their decision.

Another quantity of importance needs to be explained, before pursuing our cal-
culations. The ratio f1(on)/f0(on) is termed the likelihood ratio. It quantifies the
relative way in which the current observation on favors each environmental state. If
an observer with no prior belief about the state of the environment were to use the
single observation on to decide which of the two states 0 or 1 were more likely, the
optimal procedure would be to compare the likelihood ratio to one. A ratio greater
than one favors state 1 insofar as it indicates that this state is more likely to give
rise to on than the opposite state. In a symmetric fashion, a ratio smaller than one
favors state 0. A ratio exactly equal to 1 indicates that the current observation is
equally likely to have come from either state. After taking the natural logarithm,
as we are about to do, the likelihood ratio becomes what is commonly called – and
with no surprise! – the log likelihood ratio. We denote it by:

In := log
f1(on)

f0(on)
∀n ∈ N (2.7)

The letter I is a reference to the word information as, informally, In represents a
piece of information provided by observation on about the correct decision.

Returning to our derivation of the ideal observer model, we use the relation

9This is equivalent to equation (3.2) in [49].
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Rn = exp(yn) to rewrite equation (2.6) as:

yn = In + log
η10 +

(
1− η01

)
· exp(yn−1)

η01 · exp(yn−1) + (1− η10)
∀n > 1

y1 = I1 + y0

Finally, adding and subtracting yn−1 = logRn−1 to the right-hand side gives us the
long sought-for recursive equation10 for the decision variable:

yn = In + yn−1 + log
η10 · exp(−yn−1) +

(
1− η01

)
η01 · exp(yn−1) + (1− η10)

∀n > 1 (2.8a)

y1 = I1 + y0 (2.8b)

As time evolves, the decision variable yn sequentially accrues pieces of evidence, In,
about the true state of the environment, while discounting old evidence in a change
rates dependent way (third term in the right-hand side of (2.8a)). The log prior odds
ratio, y0 = log

(
π(S = 1)/π(S = 0)

)
, represents the observer’s prior belief about the

relative likelihoods of each state. An a priori unbiased belief amounts to y0 = 0.
Lastly, instead of comparing RN to 1, the decision making algorithm now needs to
compare yN to 0; if yN > 0, the ideal observer chooses state 1, and 0 otherwise. In
the event that yN = 0, the ideal observer possesses equal evidence in favor of either
alternative. A probabilistic decision rule of the form, “choose 0 with probability 1/2;
and 1 otherwise”, is therefore the best strategy to maximize the probability of being
correct across independent trials, in this case.

Changing environment with symmetric change rates

When the change rates of the 2-state environment are symmetric, we write h :=
η10 = η01, and as a result, the optimal decision making algorithm from equation (2.8)
becomes11:

yn = In + yn−1 + log
h · exp(−yn−1) + (1− h)

h · exp(yn−1) + (1− h)
∀n > 1 (2.9a)

y1 = I1 + y0 (2.9b)

As h is increased from 0 to 0.5, more and more evidence is discounted. At h = 0.5,
yn = In. Then, for h > 0.5, yn will tend to switch sign on each observation.

10This last equation corresponds to equation (B.1) in [49].
11This last equation is equivalent to equation (2) in [23].
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Constant environment

The case of a constant environment can be seen as a HMM in which the hazard rate
is trivially 0. So, setting h = 0 in equation (2.9) yields the following ideal observer
model:

yn = In + yn−1 ∀n ∈ N (2.10)

Note how the discounting terms from equations (2.8) and (2.9) have vanished. The
reason is that perfect integration of evidence is the optimal decision making strategy
when one knows that the environment is constant.

In spite of our above presentation of the decision making models in decreasing
order of complexity, it must be noted that they were historically discovered and
studied in the reverse order. Thus, equation (2.10) was devised by Alan Turing
during the second World War to break the code of the German Enigma cryptography
machine [24]. Later, this algorithm was termed the Sequential Probability Ratio Test
by Abraham Wald [50] and spurred an abundance of research in behavioral and
cognitive psychology [40, 25].

2.2 Continuous time decision making models

The study of continuous time models of decision making poses the challenge of heav-
ier, more advanced, mathematical machinery than their discrete time counterparts.
On the other hand, techniques from the analysis of continuous time stochastic pro-
cesses are often much easier to apply in order to track the distribution of the decision
variable over time. It is ultimately up to the modeler to find their trade-off between
these two types of models.

2.2.1 Constant 2-state environment

The continuous time model presented in this section is the Drift-Diffusion Model [10,
8]. The decision variable yt is now a stochastic process that evolves in continuous time
(t ∈ [0,∞)) according to a Stochastic Differential Equation (SDE) of the following
form:

dyt = m · dt+D · dWt (2.11)

The initial condition of the above equation is usually deterministic: y0 = 0. The
constant terms m and D are called the drift and diffusion coefficients, respectively.

18



The general idea behind the DDM is similar as for the SPRT. Sensory evidence is
gathered incrementally into the decision variable yt. The true state of the environ-
ment, which is constant within a trial in the present setting, determines the drift
rate m. The noisy aspect of the evidence is reflected in the diffusion term.

Although the DDM can be used without any reference to the SPRT, drawing a
formal correspondence between the two enriches one’s understanding of both models.
As was shown in section 2.1.2, the SPRT is Bayes-optimal. Thus, deriving the DDM
as the continuum limit of the SPRT makes the DDM inherit this optimality property.

DDM as continuum limit of SPRT

The continuum limit makes use of Donsker’s invariance principle, so-called functional
central limit theorem, which we reproduce below from [30] for convenience. For the
theorem to make sense, we first need to construct a sequence12 {S∗n}n∈N of random
functions on the unit interval [0, 1]. Let {Xk}k∈N be a sequence of i.i.d random
variables with mean 0 and variance 1. Call their partial sums Sn :=

∑n
k=1Xk. The

sequence {Sn}n∈N now represents a random walk on N. If we embed N ↪→ [0,∞),
we may construct a function S : [0,∞) → R by interpolating linearly between the
points of the random walk:

S(t) := Sbtc + (t− btc)(Sbtc+1 − Sbtc), t ∈ [0,∞)

In layman’s terms, Donsker’s invariance principle states that any random walk with
normalized i.i.d. increments may be considered a standard Brownian motion13 if time
and space are infinitely ‘shrunk’ in the appropriate ratio. This ‘shrinking’ procedure
is reflected in the following sequence of random functions. For any t ∈ [0, 1] and
n ∈ N, define:

S∗n(t) :=
S(nt)√

n
(2.12)

The argument nt represents the time scaling and the denominator
√
n represents the

space scaling of the embedded random walk S.

Theorem 2.2.1 (Donsker’s invariance principle14). On the space C[0, 1] of contin-
uous functions on the unit interval with the metric induced by the sup-norm, the
sequence {S∗n : n ≥ 1} converges in distribution to a standard Brownian motion
{B(t) : t ∈ [0, 1]}.

12The letter S in this section is unrelated to our state variable from the rest of this work. We u
13This is the same as a standard Wiener process.
14Reproduced from [30]
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The result from the theorem states that B(t) is defined on [0, 1]. This is not a
real constraint since Brownian motion possesses a scaling invariance property. For
any a > 0, 1

a
B(a2t) is a standard Brownian motion if and only if B(t) is a standard

Brownian motion. This allows us to redefine the time interval of the resulting process.

Donsker’s invariance principle is relevant to our problem because the decision
variable from the SPRT (equation (2.10)) is exactly a random walk with i.i.d. incre-
ments {Ik}k∈N. However, these increments are not normalized. Calling m := E [Ik]
and D2 := Var (Ik) for all k ∈ N, we rewrite the evidence variable as:

yn = D ·
n∑
k=1

Ik −m
D

+
n∑
k=1

m (2.13)

Note how we have divided the accumulation process {yn}n∈N into two random walks.
The first sum represents the fluctuating nature of the sensory evidence and gives rise
to the D ·dWt term in the DDM (equation (2.11)). The second sum is not stochastic
at all and gives rise to the drift part of the DDM.

In equation (2.13), the summands from the first sum in the right-hand side now
have zero mean and unit variance. Donsker’s invariance principle therefore applies.
Nevertheless, a outstanding issue remains, which is that the deterministic term n ·m
resulting from the second sum in (2.13) does not behave well under the aforemen-
tioned space-time scaling procedure. This is not surprising, as it is a well-known
fact in stochastic calculus that Brownian motion and deterministic time don’t have
equivalent differentials. A common rule of thumb is that dWt is comparable to

√
dt.

Hence, Donsker’s invariance principle should not be invoked for this linear function
of n. Rather, a choice has to be made as to what this term becomes in continuous
time. If time is scaled in the same way as in (2.12), then m · n becomes m · n · t
and any space rescaling of order smaller than n would result in an exploding pro-
cess (reaching infinity in finite time with probability one). Similarly, a rescaling
of order greater than n will make the continuous process vanish with probability
one. The only remaining meaningful scaling is one of order O(n). Note, however,
that this specification leaves as class of candidate scalings any scalar multiple of n,
{α · n : α > 0}.

Interpretation of the decision variable in the DDM

An important point of interpretation must be stressed regarding the link between the
SPRT and the DDM. In the SPRT, the evidence variable yn is the log posterior odds

20



ratio. In the DDM, the notion of a particular realization of the sensory input {ot}t≥0

is lost. Rather, the continuous time evidence variable yt may only be interpreted
as having the distribution of an ensemble of ideal observers sampling independent
observations from the same environment. Note also that for Gaussian likelihoods
(fi) the decision variable from the DDM is a scaled version of the log posterior odds
ratio, as explained in [10] and [32].

2.2.2 Sampled-time approximation

When going from a discrete time to a continuous time setting, the mathematical
models for the environment and observations need to be adapted. From being a
discrete time Markov chain {Sn}n∈N with transition matrix

(
ηij
)

(i,j)∈Λ2 , the environ-

ment becomes a continuous time Markov chain {St}t≥0 with infinitesimal generator(
ηij
)

(i,j)∈Λ2 . In particular, the following two conditions hold:

• ηii = −
∑

j∈Λ\{i}

ηji for all i ∈ Λ

• ηij ∈ [0,∞) for all (i, j) ∈ Λ2 satisfying i 6= j

The correspondence between a discrete time and a continuous time conception of the
environment can be made precise via a sampled-time approximation scheme, which
we now describe.

Let {St}t≥0 be the continuous time Markov chain just described. For small
0 < ∆t� 1, we construct a discrete time chain

{
S∆t
n

}
n∈N with transition rates de-

fined as follows15,

pij∆t :=


∆t · ηij if i 6= j

1−∆t ·
∑

i∈Λ\{j}

ηij if i = j (2.14)

We then construct the continuous time process {Sapprox
t }t≥∆t as a sampled-time ap-

proximation of {St}t≥0 by setting,

Sapprox
t := S∆t

n

15Note that to avoid any confusion regarding the notation for the different transition rates and
probabilities involved, in the current derivation, we reserve the notation ηij for the transition rates
of the continuous time chain, and pij∆t for the transition probabilities of the discrete time chain.
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for every pair (t, n) ∈ (0,∞) × N satisfying n∆t ≤ t < (n + 1)∆t. In other words,
{Sapprox

t }t≥∆t is the embedding of
{
S∆t
n

}
n∈N in continuous time, with (potential)

jumps only occurring at integer multiples of ∆t. In-between these times, Sapprox
t

is constant. It is known that sampling {St}t≥0 at discrete time steps ∆t yields an
embedded discrete time chain {Sn∆t}n∈N whose transition rates only differ from (2.14)
by o(∆t). In all the continuum limit procedures performed in the remainder of this
work, the discrete time decision making algorithms from section 2.1 are applied to
the chain {S∆t

n }n∈N and embedded in continuous time via {Sapprox
t }t≥∆t. Taking the

limit ∆t → 0 then turns the discrete time recursive equations from section 2.1 into
SDEs (or ODEs for pulsatile evidence) that are applicable to {St}t≥0.

Remark: For the remainder of the dissertation, as n∆t proves cumbersome to read
in long derivations, we instantiate the following notation,

tn := n∆t, ∀∆t > 0,∀n ∈ N

The reader must therefore keep in mind that every symbol tn in this work implicitly
involves a choice of ∆t. Also, it will be customary for us to both let ∆t → 0 and
n→∞ under the constraint that n∆t→ t for some t ∈ [0, T ]. We will always only
write ∆t→ 0 instead, trusting that this will not hamper clarity.

2.2.3 Changing 2-state environment with asymmetric rates

In this section, we take the continuum limit of the recursive system (2.8), which is
the extension of the SPRT to a 2-state changing environment. Because the first two
terms in the right-hand side of equation (2.8) are the same as for the SPRT, their
continuum limit will be similar to the DDM just derived, with the exception that
drift and diffusion will now be time-dependent. Indeed, in a changing environment,
the sequential information Ik gathered at each time step has mean (and potentially
variance) that depend on the environmental state Sk. More precisely, consecutive
blocks of observations Ik, Ik+1, . . . , Ik+` are i.i.d only during epochs in which the
environment is constant: Sk = Sk+1 = · · · = Sk+`. Thus, the use of the DDM
derivation applies separately on each such epoch, and the resulting continuous time
evidence variable yt ultimately obeys a SDE of the form,

dyt = mt · dt+Dt · dWt + g(yt) · dt (2.15)

where mt and Dt are stepwise constant between change-points. Just as for the
DDM, we usually set the deterministic initial condition y0 = 0. The function g in the
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SDE (2.15) above, comes from the last term in the right-hand side of equation (2.8a).
We derive its explicit form below.

Because we have established that the term Ik in equation (2.8) gives rise to the
drift and diffusion coefficients from equation (2.15), it is sufficient to consider the
following difference equation to derive the explicit form of g.

ỹn − ỹn−1 = log
η10 · exp(−ỹn−1) +

(
1− η01

)
η01 · exp(ỹn−1) + (1− η10)

As per section 2.2.2, we embed this equation in continuous time:

ỹtn − ỹtn−1 = log
∆t · η10 · exp(−ỹtn−1) +

(
1−∆t · η01

)
∆t · η01 · exp(ỹtn−1) + (1−∆t · η10)

Rearranging and approximating the log terms linearly in time about 1 yields:

ỹtn − ỹtn−1 = log
[
∆t
(
η10 · exp(−ỹtn−1)− η01

)
+ 1
]

− log
[
∆t
(
η01 · exp(ỹtn−1)− η10

)
+ 1
]

= ∆t
(
η10 · exp(−ỹtn−1)− η01

)
−∆t

(
η01 · exp(ỹtn−1)− η10

)
+ o(∆t) (2.16)

Finally, we divide both sides of equation (2.16) by ∆t and let ∆t → 0. Assuming
that this noiseless evidence ỹt evolves continuously in time, we obtain the Ordinary
Differential Equation (ODE):

dỹt
dt

= η10
(
exp(−ỹt) + 1

)
− η01

(
exp(ỹt) + 1

)
=: g(ỹt) (2.17)

Note how this last equation gives us the explicit form of g, which may now be plugged
back into (2.15). An equivalent derivation as the one presented above can be found
in [49].

2.2.4 Changing 2-state environment with symmetric rates

Here, the environment St is a continuous time Markov chain with state space Λ =
{0, 1} and symmetric exit rate, h ∈ (0,∞), from each state. We proceed in very much
the same way as we did to derive the discrete time decision making algorithm for a
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symmetric environment (equation (2.9)) from the asymmetric case (equation (2.8)).
Setting h := η10 = η01, the function g from (2.17) becomes,

g(yt) = −h
(
exp(yt)− exp(−yt)

)
= −2h · sinh(yt)

and the SDE (2.15) simplifies to:

dyt = mtdt+DtdWt − 2h · sinh(yt)dt (2.18)

Again, a deterministic initial condition, y0 = 0, is usually enforced. This decision
making model was extensively studied in [49], and also used in [17, 23].

2.2.5 Ideal observer models with pulsatile evidence

We derive here the ideal observer models for the Poisson clicks task and the dynamic
clicks task presented in the introduction chapter.

Poisson clicks task (static environment)

Let us remind the set-up for the Poisson clicks task, while introducing our nota-
tion. An observer receives two independent streams of Poisson clicks during the time
interval [0, T ]. Calling λL and λR the arrival rates for the left and right streams,
respectively, the sets of left and right click times, {`i}i∈L and {ri}i∈R, satisfy the
following conditions.

• R := {1, . . . , nR} for some nR ∼ Poi(λR · T ). If nR = 0, then R := ∅.

• L := {1, . . . , nL} for some nL ∼ Poi(λL · T ). If nL = 0, then L := ∅.

• The inter-event times of each stream are i.i.d. exponential random variables.
More precisely, setting r0 = `0 = 0 and rnR+1 = `nL+1 = T , we have
ri+1 − ri ∼ Exp(1/λR) and `j+1 − `j ∼ Exp(1/λL) for all i ∈ R and j ∈ L.

On any given trial, either (λL, λR) =
(
λlow, λhigh

)
or (λL, λR) =

(
λhigh, λlow

)
, for some

constant rates λhigh > λlow > 0. The task consists in reporting “left” if (λL, λR) =(
λhigh, λlow

)
, and “right” otherwise, which is equivalent to identifying the stream

with highest click rate.

To cast this decision making problem into the SPRT framework, we let the binary
random variable S ∈ {0, 1} govern the assignment of each arrival rate to its side as
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follows. When S = 0, then (λL, λR) =
(
λhigh, λlow

)
, and when S = 1, the reverse

assignment holds. Furthermore, we discretize time into countably many contiguous
bins of width ∆t, applying the sampled-time approximation scheme from section 2.2.2
to the observation process {ot}t≥0 itself16. Observation otn in time bin n is defined
as the pair of click counts for each side during the time window [n∆t, (n + 1)∆t).
Denoting by 10, 01, 00, the events that, respectively, a left click, a right click and no
click occurs in the time bin, we define our observation space as Ξ := {10, 01, 00}.
Since the streams are independent and have Poisson statistics, for small 0 < ∆t� 1,
the probability that more than a single click, across both streams, fall within a time
bin has probability17 o(∆t). We are therefore justified in our above definition of Ξ.

We now derive the likelihoods of each observation, given the underlying state
of the environment. To emphasize the dependence of these functions on the time

step size, we write ∆t as a superscript. Thus, f∆t
i (o) := Pr

(
o
∣∣ S = i

)
, for all

(i, o) ∈ Λ× Ξ.

f∆t
1 (10) = [λL∆t+ o(∆t)][1− (λR∆t+ o(∆t))]

= λL∆t+ o(∆t)

= λlow∆t+ o(∆t)

f∆t
1 (01) = [1− (λL∆t+ o(∆t))][λR∆t+ o(∆t)]

= λR∆t+ o(∆t)

= λhigh∆t+ o(∆t)

f∆t
1 (00) = [1− λL∆t+ o(∆t)][1− λR∆t+ o(∆t)]

= 1− (λlow + λhigh)∆t+ o(∆t)

Similar derivations hold for the S = 0 condition. After dropping the o(∆t) terms as
per section 2.2.2, we obtain the following likelihood functions.

f∆t
1 (01) = f∆t

0 (10) = λhigh∆t (2.19a)

f∆t
1 (10) = f∆t

0 (01) = λlow∆t (2.19b)

f∆t
1 (00) = f∆t

0 (00) = 1− (λlow + λhigh)∆t (2.19c)

16Here, each stream is a Poisson process, and as such, a continuous time Markov chain.
17The reader might have noticed the slight ambiguity in our use of the symbol o. We apologize

for it and hope that this note will clarify any potential remaining doubt. Whenever this symbol is
used on its own, or with a time subscript, as in o and otn , it means an observation. Whenever it is
used with ∆t as an argument, as in o(∆t), it represents the Landau “little-oh” notation.
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The log likelihood ratio from equation (2.7) becomes (with n ∈ N),

Itn =



−κ := log
λlow

λhigh

if otn = 10

κ := log
λhigh

λlow

if otn = 01

0 = log
1− (λlow + λhigh)∆t

1− (λlow + λhigh)∆t
if otn = 00

(2.20)

where κ may be interpreted as the magnitude of the evidence gained at the occurrence
of each click. At this point, the SPRT equation (2.10) embedded in continuous time
takes the form:

ytn = Itn + ytn−1 ∀n ∈ N (2.21a)

y0 := yt0 := log
π(S = 1)

π(S = 0)
(2.21b)

Its continuum limit may finally be taken by subtracting off ytn−1 , dividing through
by ∆t, and letting ∆t→ 0, in (2.21a):

dyt
dt

= κ

∑
i∈R

δ (t− ri)−
∑
j∈L

δ
(
t− `j

) (2.22a)

y0 = log
π(S = 1)

π(S = 0)
(2.22b)

Equation (2.22) is a “jump” ODE for the decision variable of our ideal observer
model. The solution to this ODE has jump discontinuities at every click time. Every
right click provokes an upward jump of size κ in the decision variable, and every
left click generates a downward jump of similar size. In contrast with the decision
variable from the DDM, yt, here, is exactly the log posterior odds ratio of the two
alternatives S ∈ {0, 1}. This was achievable because the evidence arriving from the
observation stream is sparse enough: Only clicks carry additional information about
the state of the environment. This also illustrates a fundamental difference in the
type of noise from the two settings. With continuously arriving evidence, as in the
DDM, we assume that the noise occurrs in the observation space. In a sense, this
could be considered measurement noise in space. In the case of pulsatile evidence,
however, the noise is temporal. Brunton et al. [12] have studied models combining
these different types of noise. For instance, a click could be missed or mislocalized
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with some probability, and the decision variable itself could be subject to random
fluctuations. Although interesting, these models fall outside the scope of our present
dissertation.

Dynamic clicks task (dynamic environment)

In the dynamic clicks task, the underlying state St undergoes switches during the trial
according to the same Markovian dynamics as the ones described in section 2.2.4.
Using the same approach as for the Poisson clicks task, we embed equation (2.9) in
continuous time.

ytn = Itn + ytn−1 + log
h · exp(−ytn−1) + (1− h)

h · exp(ytn−1) + (1− h)
∀n > 1 (2.23a)

yt1 = It1 + log
π(S = 1)

π(S = 0)
(2.23b)

Notice that the first part of this equation is identical to equation (2.21), while the last
term is identical to the deterministic part of section 2.2.4. Therefore, the continuum
limit ultimately becomes:

dyt
dt

= κ

∑
i∈R

δ (t− ri)−
∑
j∈L

δ
(
t− `j

)− 2h · sinh(yt) ∀t ≥ 0 (2.24a)

y0 := log
π(S = 1)

π(S = 0)
(2.24b)

In the continuum limit above, as ∆t → 0, we have t1 → 0, It1 → 0, and yt1 →
y0, with y0 defined in equation (2.24b). It is also implicitly understood that the
transition probability h ∈ (0, 1) in (2.23a), converges to the hazard rate h ∈ (0,∞)
in (2.24a). Finally, each click stream, considered individually, is an inhomogeneous
Poisson process. Therefore, the cardinalities of the indexing sets R and L will not
be Poisson random variables anymore. Nevertheless, each set still indexes the click
times of the individual streams.

Equations (2.24) describe the evolution of the log posterior odds ratio of an
ideal observer during a trial of the dynamic clicks task. An example trajectory
for an artificial18 trial is illustrated in figure 2.1. At click times, the log posterior

18By this we mean that we artificially enforced a state transition at 0.5 seconds, in a 1-second
long trial, for illustration purposes.
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Figure 2.1: Single trajectory of the log likelihood ratio yt, during an artifi-
cial trial of the dynamic clicks task. The decision variable (blue trace) evolves
according to equations (2.24). Discontinuous jumps occur at click times in the direc-
tion corresponding to the side of the click, and a nonlinear decay to 0 characterizes
the periods in-between clicks. Poisson clicks for the right and left streams (black
ticks), and environmental state (background color), are depicted above the graph.

odds ratio jumps discontinuously in a direction prescribed by the click’s side. The
constant magnitude of the jumps is controlled by the log ratio of the click rates κ
(equation (2.20)). In-between clicks, the evidence decays nonlinearly to 0. Just as for
equation (2.22), the decision variable from equation (2.24) is a deterministic function
of the click times and model parameters. We wish to emphasize the similarity in the
leak term −2h · sinh(yt), with our previous ideal observer model for continuously
arriving evidence (equation (2.18)).

2.3 Summary

Important concepts and techniques from normative decision making theory were
introduced. In discrete time 2AFC tasks, classical models describe the evolution in
time of a decision variable, the accrued evidence, which represents the log posterior
odds ratio of the two choices, given the history of observations. A continuum limit of
such models yields SDEs in continuous time. For static environments, such models
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are often referred to as perfect integrators.

In dynamic environments undergoing Markovian dynamics, a fixed discounting
function may be applied, on-line, to the running evidence. This effectively imple-
ments a “forgetting” effect, by which old observations bear less on the present decision
than recent ones. In an ideal observer model, the sharpness of the evidence decay is
tuned to the environment’s volatility – the hazard rate – and the magnitude of the
evidence. That is, both a highly volatile environment or a large amount of evidence
will dampen integration. This behavior enables the ideal observer model to be more
sensitive to change-points than a traditional perfect integrator.

The continuous time decision variable from our SDE models is not, per se, a
log posterior odds ratio. The reason is that the stimulus itself becomes a diffusion
process. Conditioning on a single realization of it is meaningless (a single realization
has probability 0 for a stochastic process with continuous state space). The correct
way of thinking about these continuous time normative models is in terms of their
distribution. For a fixed realization of the hidden environmental chain, the distri-
bution of the dynamic variable from the SDE represents that of an ensemble of log
posterior odds ratios, coming from independent ideal observers. Continuous time
normative models, therefore, remain useful for investigating statistical properties of
the decision process, such as the accuracy of the response or the expected decision
time.

Finally, we showed how the normative framework above could be adapted to
the case of pulsatile evidence. This “sparseness” of the evidence, compared to the
diffusion process mentioned above, allows the continuum limit to faithfully represent
the log posterior odds ratio.
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Chapter 3

Decision making with pulsatile
evidence

In the past few years, the dynamic clicks task was developed in the lab of Carlos
Brody [34], as an extension of the Poisson clicks task [12] to changing environments.
These tasks have the particularity, together with a few other ones [33, 35, 18], to
deliver pulsatile evidence to the subject, with exponentially distributed inter-pulse
intervals. Such stimuli depart from the random dots tradition [44, 11, 46, 42, 23],
in which evidence arrives continuously in time. Although ideal observer models for
pulsatile evidence integration appear in the literature, their mathematical analysis
is still incomplete.

In section 2.2.5 we derived the ideal observer model for the dynamic clicks task.
In the present chapter, we analyze this model and a linear version of it, from the
perspective of their choice accuracy. Choice accuracy – percentage correct – is indeed
a common dependent variable in behavioral experiments, and as such, constitutes a
natural first step in the exploration of the models.

3.1 SNR in the Poisson clicks task

The Signal-to-Noise Ratio (SNR) mathematically captures the difficulty level of a
decision making task. It is, as such, a useful tool in the analysis of ideal observer
models [49]. Depending on the field of study and the problem at hand, several
definitions have been used for this quantity. It is commonly defined as the ratio of
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signal power to noise power [20], the ratio of signal variance to noise variance [15], and
the ratio of the mean stimulus to its standard deviation [29]. Following Veliz-Cuba
and colleagues [49], we use this latter definition.

In the Poisson clicks task, the stimulus is composed of two Poisson streams,(
{`i}i∈L , {ri}i∈R

)
. Taking the mean of such object may be done in several ways.

To define the SNR we first project the stimulus onto a one-dimensional space, by
defining it as the difference in click counts between the right and left streams. The
intuition behind this projection is that, with no prior bias on the most probable side
for the high-rate stream, the optimal strategy is to select the side with highest click
count. With the notation introduced in section 2.2.5, this means that ôT := nR−nL.
This projected stimulus is the difference of two Poisson random variables, and as
such, it is distributed according to the Skellam distribution [47]. In particular, the
ratio of its mean to standard deviation is given by,

SNR =
T
(
λhigh − λlow

)√
T
(
λhigh + λlow

) =
√
T

λhigh − λlow√
λhigh + λlow

=:
√
T · S, (3.1)

where we have defined the discriminability index S [19, 43]. As we will see in the
next few sections, both parameters T and S shape the accuracy on the dynamic
clicks task, provided an adequate time rescaling is applied.

3.2 Time rescaling in the dynamic clicks task

The ideal observer model for the dynamic clicks task (equation (2.24)) involves four
parameters: the two click rates λlow, λhigh, the hazard rate h, and the trial duration
T . In order to ease the analysis of this model, we rescale time in a way that the
hazard rate becomes 1. For simplicity of exposition, assume that the original time
unit1 in equation (2.24) is the second. A hazard rate of h Hz means that, on average,
the environment undergoes h change-points per second. Let’s call our time variable
τ in our new time unit, and t in the old one (so t is expressed in seconds). Because
we want, on average, one change-point per units of τ , the scaling must take the form,

τ =
t

h

Thus, one unit of τ equals 1/h seconds, and one second equals h units of τ . Table 3.1
summarizes the transformation that all our parameters undergo under this time

1In reality, any time unit works, it doesn’t have to be seconds.
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rescaling. We add the subscript τ to the parameter symbol when it is expressed in
units of τ . Finally, we point out that another perspective may be taken on this time

parameter name
param. symbol/value param. symbol/value

(time in sec.) (time in units of τ)

hazard rate h hτ = 1

low click rate λlow λτlow = λlow/h

high click rate λhigh λτhigh = λhigh/h

trial duration T T τ = h · T

left click times `i `τi = h · `i

right click times ri rτi = h · ri

discriminability index S Sτ = S/
√
h

SNR SNR SNRτ = SNR

jump size κ κτ = κ

Table 3.1: Parameters from the ideal observer model for the dynamic clicks
task, expressed in two different time units. The time variable t may represent
seconds, while the time variable τ is such that one unit of τ equals 1/h seconds. Note
that SNR and κ are not affected by this transformation.

rescaling procedure. Because T seconds correspond to h ·T units of τ , and h is itself
in units of 1/t, one may consider that τ is a unitless, i.e., non-dimensionalized, unit
of time. This is a common procedure in Physics2 to reduce the dimensionality of a
problem. The non-dimensionalized model now reads,

dyτ
dτ

= κ

∑
i∈R

δ (τ − rτi )−
∑
j∈L

δ
(
τ − `τj

)− 2 sinh(yτ ) (3.2)

with similar initial condition as (2.24b).

2A similar time rescaling appears in equation (3.5) from [49], for instance.
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3.3 Effective parameters in the dynamic clicks task

Accuracy is an evident dependent variable to measure in a decision making experi-
ment. By accuracy, we mean the fraction of trials (between 0 and 1, or in percentages)
on which the decision maker makes the correct choice. It is an overall measure of
performance and reflects the difficulty level of a task. Experimenters heavily rely
on this variable to calibrate their experiment to each individual. In sensory neu-
roscience, it is customary to tune task parameters so that each individual reaches
intermediate accuracy, in order to best reveal the cognitive or sensory processes at
stake.

The time rescaling procedure from section 3.2 has reduced the number of core
parameters to three: the rescaled click rates λτlow, λ

τ
high, and rescaled trial duration T τ .

The important question that remains is: what combination of parameters determines
the accuracy? Numerical exploration revealed that, for high enough values of λτhigh

and λτlow, keeping the two parameters T τ and Sτ constant was sufficient to keep
accuracy constant. In other words, in the non-dimensionalized model (3.2), and
for high enough click rates, only two parameters determine the model’s accuracy.
Figure 3.1 illustrates this result.

3.4 Best linear model and sensitivity analysis

Although equation (3.2) describes the accumulation process of an ideal observer, it is
possible that a non-optimal observer will perform with similar accuracy3 in practice.
So, we now compare the optimal model to a simpler model. Following [49] and [34],
we examine a linear model of evidence accumulation in which the nonlinear sinh-term
from equation (3.2) is replaced by a linear term, proportional to the accumulated
evidence:

dyτ
dτ

= κ

∑
i∈R

δ(τ − rτi )−
∑
j∈L

δ(τ − `τj )

− γyτ (3.3a)

y0 = log
π(S = 1)

π(S = 0)
(3.3b)

3Recall that accuracy is the percentage of correct trials.
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Figure 3.1: Two effective parameters determine accuracy. A: Choice accuracy
of the ideal observer model from equation (2.24) as a function of rescaled interro-
gation time T τ , for two distinct values of Sτ (see table 3.1). Two distinct pairs of
click rates were used in simulations (λτlow = 30 and 60 Hz and λτhigh picked to match
the appropriate Sτ level), yielding the overlaying solid and dashed lines. Keeping
T τ and Sτ fixed yields a match in performance for both pairs of click rates. As time
evolves during the trial, performance saturates to a maximal value less than 1. B:
Numerically computed maximal accuracy (color level) of the ideal observer model is
constant along the level curves (black lines) of Sτ (seen as a function of (λτlow, λ

τ
high)).

We only display the first octant of the λτhighλ
τ
low-plane because of the requirement,

0 < λτlow < λτhigh.

If γ = 2, this new system becomes the piecewise4 linearization of (3.2) at the origin.
However, both [49] and [34] have shown that this linearization is not the one that
yields maximal accuracy on the decision task at hand5. Instead, it is possible to
tune the discounting parameter in (3.3) to an accuracy-maximizing value γ∗. The
resulting accuracy closely matches the performance of the optimal model. This phe-
nomenon may be appreciated6 in figure 3.2A. Importantly, figure 3.2B shows how γ∗

increases with Sτ . This is not the case for the nonlinear model, in which the optimal
discounting parameter hτ is constantly 1.

4Meaning, in-between click times.
5We are considering here the dynamic clicks task under the interrogation protocol, just as [34].

Veliz-Cuba and colleagues [49] study the linearization of the SDE (2.18) in section 2.2.4.
6We assume that T τ is large enough so that accuracy has saturated, as in figure 3.1C.
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Figure 3.2: Accuracy of tuned linear model matches the one from the ideal
observer. A: Strong agreement in performance between the nonlinear and linear
model (with best γ∗) for a wide range of Sτ values. B: Best linear discounting rate
γ∗ for equation (3.3) as a function of Sτ (defined in table 3.1).

Remark: In this section, the expressions “nonlinear model”, “optimal model”, and
“ideal observer model”, all refer to the same system from equation (3.2). We consider
its discounting parameter to be hτ . The alternative system (3.3) will always be called
the “linear model”, and its discounting parameter is γ.

We now perturb the discounting parameter of both models around its maximal-
accuracy value. Our goal is to analyze the effects of such perturbation on choice
accuracy. We apply the perturbation relative to the magnitude of the optimal pa-
rameter value. For the nonlinear model, the optimal value is hτ = 1, and for the
linear model, it is γ = γ∗, which must be found numerically. So, a relative pertur-
bation of c ∈ R, means the following,

γ̃(c) := γ∗ + cγ∗ (3.4a)

h̃(c) := 1 + c (3.4b)

where γ̃ and h̃ are the perturbed parameters. We find that the linear model is more
sensitive to the perturbation than the nonlinear model (figure 3.3). We quantify the
sensitivity of both models by computing the curvature of their accuracy functions
for a range of Sτ values (figure 3.3B). The accuracy of the linear model has higher
curvature at the optimal parameter value γ∗, indicating higher sensitivity.
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Figure 3.3: Model’s sensitivity to discounting parameter perturbation. A:
Performance profile around the optimal discounting parameter for the nonlinear
(solid) and linear (dashed) models, presented at several Sτ -levels (see annotations
on curves, or color coding). The linear model is systematically more sensitive to pa-
rameter perturbation than its nonlinear counterpart. The relative perturbation c is
defined in equations (3.4). B: Curvature (absolute value of the second derivative) of
the curves from panel A, evaluated at their peak, as a function of Sτ . The curvature,
and hence the sensitivity, of the linear model clearly separates from the curvature of
the nonlinear model, for moderate to high Sτ -values.

Our analysis not only reveals the sensitivity of the linear model, but also the
relative insensitivity of both models at extreme values of Sτ . This result can be
understood intuitively. If Sτ is small, the observer will not be able to receive enough
evidence to make an informed decision. At high Sτ , the observer receives strong
evidence from a single click, and does not need to integrate or discount old evidence.
In either case, accuracy depends weakly on the assumed discounting parameter, and
the performances of the two models are close (bottom and top curves of figure 3.3A).
We also note that the insensitivity of the nonlinear model to changes in its discounting
parameter suggests that this is a more robust model: An observer who does not learn
the hazard rate hτ exactly can still perform well. The linear model requires finer
tuning to achieve best performance.

This points towards a key trade-off in using mathematical models of evidence
accumulation (or models in general). Optimal models may be more robust, but
more difficult to implement. At the same time, due to their robustness, it may
not be necessary to tune optimal models for nearly optimal performance. On the

36



other hand linear models are less robust, but might be easier to implement. In the
next section, we will explore these differences between models properties further, by
studying how quickly the linear and normative model’s discounting parameters can
be fitted to choice data.

3.5 Model fitting

Fitting models to experimental data is a practice of paramount importance in con-
temporary science. It is a central part of the scientific method through which a
coherent understanding of the natural world is built. When a model is well fit to
data, it gains predictive power over the studied phenomenon. From there, the model
becomes useful in several ways. In the first place, it functions as a source of inspira-
tion for the scientist. From it, one might infer fundamental principles at work in the
topic of study and generate new research hypotheses. In the second place, a well-fit
model may lead to the design of new technology.

Nevertheless, the methods to use to fit models to data and judge of the goodness-
of-fit are far from creating unanimity among the scientific community. Not only is
there debate on how to fit a model to data, but also on how to compare fits from
different models.

Our definition of accuracy is straightforward. It is the percentage of trials on
which an observer makes the correct choice. One may distinguish the empirical from
the theoretical accuracy. The empirical accuracy of an observer may be computed on
a specific (finite) set of trials. On the other hand, the theoretical accuracy may be
thought of as an expectation. For fixed model and task parameters, such accuracy
corresponds exactly to the probability of the observer to be correct on any given
trial. When the statistics of the task and the decision making model are known,
it is possible, in simple cases, to compute the theoretical accuracy analytically. For
instance, when the decision making model accrues sensory information into a decision
variable such as the log posterior odds ratio, the accuracy is the probability that
the decision variable ends the trial on the correct side of the decision boundary.
This is why, when the evolution of the decision variable is described by a stochastic
differential equation, solving the Fokker-Planck equation is a common method to
yield an analytical formula for the accuracy.

In most cases, however, an analytical expression is not within reach, and one
turns to numerical simulations to estimate it. Assuming that producing synthetic
trials and running the inference algorithm on these can be done, estimating accuracy
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is then as simple as recording the choices made by the algorithm on a large number
of i.i.d. trials, and dividing the number of correct choices by the total number of
trials.

In this section, we investigate the fit to choice data of the decision making models
for pulsatile evidence previously presented. Since the linear and nonlinear models
yield comparable accuracy on the dynamic clicks task, we wonder whether they differ
in some respect when it comes to fitting them to choice data7. Thus, our goal is to
present the fitting problem in the dynamic clicks task for these two models, and
to provide some numerical results regarding the speed of convergence of the fitted
discounting parameter.

3.5.1 The models

In this work, we fit a single parameter from each model to choice data; the leak rate
γ for the linear model, and the hazard rate h for the nonlinear one. The equations
for these two models, together with their noisy version, are presented below. For
simplicity, we drop the notation of time rescaling. However, we keep the hazard rate
of the stimulus to 1 in all our simulated data, so that all the interpretation may still
be done with time rescaling in mind. All initial conditions in the ODEs to come are
the same: y0 = 0 (with probability one in the noisy versions).

The deterministic linear model presented in section 3.4 is:

dyt
dt

= κ

∑
i∈R

δ(t− ri)−
∑
j∈L

δ(t− `j)

− γ · yt (3.5a)

The deterministic nonlinear model from section 2.2.5 is:

dyt
dt

= κ

∑
i∈R

δ (t− ri)−
∑
j∈L

δ
(
t− `j

)− 2h · sinh(yt) (3.5b)

There are several ways in which we can introduce noise into our models. Common
examples are additive or multiplicative noise on either of the clicks evidence or the
decision variable, mislocalization8 noise on clicks, and a lapse rate. However, every
noise type comes with its own additional free parameters regarding the fitting proce-
dure, and it is the modeler’s task to find the appropriate trade-off between a model’s

7Here, all the data used are produced synthetically via numerical simulation.
8In appendix B, we treat the case of mislocalization (or mis-attribution) noise on clicks.
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expressive power and its complexity. In this work, we make the choice of progressing
incrementally from the deterministic case. We believe that the issues at hand with
fitting our decision making models can already be revealed with simple models. We
consider the case of multiplicative Gaussian noise applied to clicks evidence, as it is
one of the noise sources that appears in the literature [12, 34]. The stochastic linear
model is,

dyt
dt

=
∑
i∈R

ξi · δ(t− ri)−
∑
j∈L

ξj · δ(t− `j)− γ · y, (3.6)

where ξi, ξj are all i.i.d. Gaussian random variables with mean κ and known standard
deviation σ. With noise similarly defined as for the linear model, the stochastic
nonlinear model is:

dyt
dt

=
∑
i∈R

ξiδ (t− ri)−
∑
j∈L

ξjδ
(
t− `j

)
− 2h · sinh(yt) (3.7)

For all models, at fixed interrogation time T , a decision is made according to the
following rule:

• if yT > 0, the right stream (S = 1) is chosen,

• if yT < 0, the left stream (S = 0) is chosen.

In section 2.1.2, we argued that the optimal strategy for the yT = 0 case was to choose
one of the two alternatives with probability 1/2. Here, however, we remark that
this case has a null probability of occurrence on trials containing at least one click.
Furthermore, trials containing no click at all cannot provide any information about
the evidence discounting parameter, because these trials are simply void of evidence.
Hence, although these trials are useful in experiments – to assess noise and response
bias for instance, or just as control trials – we dismiss them altogether from our data.
As a result, we assume for the remainder of this chapter that Pr(yT = 0) = 0 in all
models, and that the decision outputted is always a deterministic function of the
decision variable’s end-value.

3.5.2 Bayesian parameter estimation

All our fitting procedures may be interpreted under the same overarching theory of
Bayesian parameter estimation. Let θ denote the free parameter that we want to
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fit; i.e., θ represents γ for the linear model and h for the nonlinear one. During a
simulated experiment, we collect9 data from N i.i.d. trials,

D :=
{

(Tk, dk) : 1 ≤ k ≤ N
}

(3.8)

where Tk :=
(
{`i}i∈L , {ri}i∈R

)
is the clicks stimulus from trial k, and dk ∈ {0, 1}

is the decision (or choice) datum for this trial. Our goal is to compute or estimate

the posterior distribution Pr
(
θ
∣∣ D), which by Bayes’ rule is proportional to the

product of the likelihood of the data with the prior over the parameter10:

Pr
(
θ
∣∣ D) ∝ Pr

(
D
∣∣ θ) π(θ) (3.9)

Our method focuses on exploiting the likelihood function Pr
(
D
∣∣ θ). We have,

Pr
(
D
∣∣ θ) = Pr

(
T1:N , d1:N

∣∣ θ)
= Pr

(
d1:N

∣∣ T1:N , θ
)

Pr
(
T1:N

∣∣ θ)
= Pr

(
d1:N

∣∣ T1:N , θ
)

Pr (T1:N) ,

where the last step comes from the fact that the clicks trains are independent of the
discounting parameter θ used by the decision making model. From there, we remark
that the choice data are conditionally independent on the clicks stimulus and the
discounting parameter. Thus,

Pr
(
d1:N

∣∣ T1:N , θ
)

=
N∏
k=1

Pr
(
dk
∣∣ Tk, θ)

The above derivations enable us to rewrite equation (3.9) as:

Pr
(
θ
∣∣ D) ∝ π(θ)

N∏
k=1

Pr
(
dk
∣∣ Tk, θ) (3.10)

In the rest of the section, we will always use uniform priors for θ, over a finite interval
[0, a]. In this context, the problem of computing the posterior distribution of θ

9Meaning, “we generate”. We use the verb “collect” in an attempt to metaphorize an experi-
mental procedure.

10Since all the other task and model parameters are assumed known and fixed, we may omit
them from the equations.
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reduces to assessing the likelihoods of the decision data on each trial, Pr
(
dk
∣∣ Tk, θ)

(1 ≤ k ≤ N), for a range of θ-values spanning the interval [0, a]. Finally, note
that for numerical stability reasons, our algorithms will sum log-likelihood values, as
opposed to multiplying probability values. Relegating the θ-independent prior into
a normalization constant C, equation (3.10) becomes, in the log-domain:

log Pr
(
θ
∣∣ D) = C +

N∑
k=1

log Pr
(
dk
∣∣ Tk, θ) , θ ∈ [0, a] (3.11)

3.5.3 Error in parameter space

Working with synthetic data, we have perfect knowledge of the model used to produce
the data. Because we are fitting two models of decision making, we decided to
produce the data with these same models. More specifically, let mf ,md ∈ {L,NL}
represent the model that we fit and the model used to produce the decision data,
respectively – L for “linear” and NL for “nonlinear”. In the present work, we study
the four possible combinations of pairs (mf ,md).

To judge of the quality of our fit, we need to define an error function. We
define this function in parameter space as the relative mean posterior squared error,
averaged across experiments.

err (p1, . . . , pM , θtrue) =
1

θ2
trueM

M∑
i=1

∫ ∞
0

pi(θ)(θ − θtrue)
2dθ (3.12)

In equation (3.12), M is an arbitrary number of experiments, and pi denotes the
posterior density for our parameter θ, obtained under fitting procedure11 i. The
parameter θtrue may be defined in two separate ways. When mf = md, it is simply
the parameter that was used to produce the choice data. However, when mf 6= md,
a bijection h → γ between hazard rate and leak rate must be used. Setting h = 1
in all our simulations, we may use the numerically produced curve from figure 3.2B,
representing a bijection h → γ∗. When fitting the linear model to data produced
with the nonlinear model, we define θtrue as the best leak rate γ∗ for h = 1 and the
particular value of S chosen. Similarly, when fitting the nonlinear model to data
produced with the linear model, we define θtrue = 1 while producing the choice data
with γ∗. Finally, the factor 1/θ2

true in the equation explains why we call this error

11In this work, we use interchangeably the terms “experiment” and “fitting procedure”.
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“relative”. It ensures that the true parameter be 1, thereby allowing us to compare
the errors in both parameter spaces, hazard rate space and leak rate space.

Having defined an error function, we may now study its convergence properties
as a function of block size. The block size meta-parameter N is not apparent in
equation (3.12). It represents the number of trials used in each fitting procedure to
yield the posteriors pi (1 ≤ i ≤ M). Presumably, the error should be a decreasing
function of N , and we would like to know how the speed of convergence to 0 depends
on model pair (mf ,md).

3.5.4 Deterministic model fits

For the deterministic models (3.5), the evidence variable yt is a deterministic function
of the initial condition y0, the click reliability κ, time t, the click times T , and the
discounting parameter θ. The decision rule being itself deterministic (recall our
prior discussion of the yT = 0 case), the decision output of these models is also

deterministic. That is, Pr
(
dk
∣∣ Tk, θ) ∈ {0, 1} (1 ≤ k ≤ N). Thus, the likelihood of

a decision given the click times and the discounting parameter, seen as a function of
θ, is a linear combination of indicator functions. For the linear model, we will prove
that the support of such likelihood is a union of disjoint intervals.

Fitting the deterministic linear model

The solution to the initial value problem (3.5a) at interrogation time is:

yT = κ
∑
i∈R

exp
(
−γ (T − ri)

)
− κ

∑
j∈L

exp
(
−γ
(
T − `j

))
(3.13)

As explained above, given the stimulus and choice data from a single trial (T , d),
our goal is to find the set of γ’s that is compatible with d. We define the following
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decision function:

dec(γ; y0, T, T ) = sign(yT )

= sign

κ ·∑
i∈R

exp
(
−γ · (T − ri)

)
− κ ·

∑
j∈L

exp
(
−γ ·

(
T − `j

))
= sign

κ · exp (−γ · T )

∑
i∈R

exp (γ · ri)−
∑
j∈L

exp
(
γ · `j

)


= sign

∑
i∈R

exp (γ · ri)−
∑
j∈L

exp
(
γ · `j

)
Thus,

γ is compatible ⇐⇒ dec(γ; y0, T, T ) = d

The function
γ 7→

∑
i∈R

exp (γ · ri)−
∑
j∈L

exp
(
γ · `j

)
is continuous on [0,∞). Its sign may, therefore, be reached through a characteri-
zation of its roots. The general answer is not trivial. If we perform the change of
variables x := exp(γ), the problem is equivalent to finding the roots of the following
exponential polynomial [41],

P (x) =
∑
i∈R

xri −
∑
j∈L

x`j

In general, such polynomial may admit an arbitrary number of roots, which would
yield an arbitrary number of disjoint admissible intervals for γ. In practice, how-
ever, we impose a closed interval of the form [0, a] as support for the prior π(γ).
Thus, the ranges of a that we explore are small enough for us to directly assess
dec(γ; y0, T, T ) via equation (3.13), for an array of γ-values evenly spaced across the
support. Algorithm 1 below is the one we used to fit the deterministic linear model.

Fitting the deterministic nonlinear model

There is no equivalent of equation (3.13) for the nonlinear model (3.5b). However,
equation (3.5b) may still be solved explicitly in-between clicks. If t1, t2 denote the
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Algorithm 1 Deterministic fit

1: Generate/load D = (Tk, dk)Nk=1 . clicks and decision data
2: Initialize L ∈ N, a ∈ (0,∞)
3: samples list← (0, a/L, 2a/L, . . . , a) . candidate θ’s span [0, a]
4: compatible← (True, . . . , T rue)
5: for Tk ∈ D do
6: for θ ∈ samples list do
7: Compute dec(θ)
8: compatible(θ)← dec(θ) == dk
9: end for

10: backup list← samples list
11: Trim incompatible samples from samples list
12: if samples list == ∅ then
13: samples list← backup list
14: Refine samples list
15: end if
16: end for
17: Compute admissible intervals from samples list . disjoint union of intervals
18: return admissible intervals

click times of two consecutive clicks, we have:

yt2 = 2acoth

(
exp (2ht2) coth

yt1
2

)
(3.14)

This, or any numerical integration method for the ODE (3.5b), may be used itera-
tively between clicks to realize line 7 in algorithm 1.

3.5.5 Stochastic model fits

Fitting the linear model

Our noisy linear model of evidence integration was introduced in equation (3.6). In
a similar fashion as equation (3.13), the evidence variable at time T is given by,

yT =
∑
i∈R

ξi · exp
(
−γ · (T − ri)

)
−
∑
j∈L

ξj · exp
(
−γ ·

(
T − `j

))
(3.15)
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We notice that, conditioned on {y0, T, T }, the final evidence value y(T ) may be seen
as a sum of n+m i.i.d. Gaussian random variables (with n := |R| and m := |L|). It
is therefore, itself, a Gaussian random variable with mean and variance:

E
[
yT
∣∣y0, T, T

]
= κ

∑
i∈R

exp
(
−γ · (T − ri)

)
−
∑
j∈L

exp
(
−γ ·

(
T − `j

)) (3.16)

Var
(
yT
∣∣y0, T, T

)
= σ2

∑
i∈R

exp
(
−2γ · (T − ri)

)
+
∑
j∈L

exp
(
−2γ ·

(
T − `j

))
(3.17)

The integral of its density over the appropriate domain will, eventually, yield the
likelihood of a particular decision given the data from a single trial. That is, for d = 1,
one integrates the Gaussian density with mean and variance given by equations (3.16)
and (3.17), over the positive reals, and for d = 0, over the negative reals.

Fitting the nonlinear model

Our estimation of the choice likelihoods for the stochastic version of the nonlinear
model requires more work. Rather than attempting an analytical route, we turn to
Monte-Carlo sampling. For a given clicks stimulus, and a given realization of the
Gaussian multiplicative noise, equation (3.14) allows us to assess the end-value of the
model’s evidence yT . We call each such value a particle. To estimate the likelihood
of a decision, we generate Npart particles over independent realizations of the noise,
for fixed click times and θ-value. Figure 3.4 shows how the likelihood, estimated as
the fraction of particles landing on the side of the y-axis that is compatible with the
decision datum, stabilizes as a function of the number of particles. Based on these
results, we choose Npart = 800 as a trade-off between precision on the estimated
likelihood and computational time. As a second validation of our sampling method,
we tested it on the linear model and compared it against the analytical solution from
section 3.5.5. Figure 3.5 represents a superposition of the Gaussian density from
section 3.5.5 on the histogram of landing values of yT .
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Figure 3.4: Stabilization of the likelihood estimate yielded by our Monte-
Carlo sampling algorithm, as the number of particles increases. The esti-
mated likelihood (blue curves) is given by the fraction of particles that lands on the
correct side of the decision boundary (y ≡ 0), in evidence space. The algorithm is
applied to the stochastic nonlinear model (3.7), for two distinct trials (columns), two
noise values (rows), and two hazard rates (sub-divisions of rows). We used indepen-
dent particles for distinct points on the x-axis. The red vertical lines indicate the
number of particles that we settled on for the other simulations (figures 3.5 and 3.6).

46



-10 0 10 20 30
0

0.05

0.1

-1 0 1 2 3
0

0.5

-20 0 20 40
0

0.05

-4 -2 0 2 4 6 8
0

0.2

0.4

0 10 20 30
0

0.05

0.1

0 1 2
0

0.5
1

1.5

-20 0 20 40
0

0.05

-2 0 2 4
0

0.5

Landing heights of particles
               (evidence)

  
  

  
  

  
 D

e
n

si
ty

 
(h

is
to

g
ra

m
 +

 t
h

e
o
ry

)

Trial 1 Trial 2

n
o
is

e
 =

 1
n
o
is

e
 =

 2

Figure 3.5: Validation of our Monte-Carlo sampling algorithm. For two
random trials (columns), two noise values (rows), and two discounting parameter
values (sub-divisions of rows), we superimpose the theoretical Gaussian density from
section 3.5.5 on the histogram of landing heights of 800 particles. Each particle
samples the multiplicative noise applied to clicks height independently, and evolves
according to equation (3.6). We observe agreement between the theoretical densities
and the histograms. Note: we used our sampling algorithm on the linear model, here,
only to be able to compare its end-results to available theoretical densities.
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3.5.6 Results

The results of our simulated fitting procedures across the four models are summarized
in figure 3.6. The relative error defined in section 3.5.3 is plotted against block size
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Figure 3.6: Relative error of fitting procedures as a function of block size.
Each column (color-coded) corresponds to a specific pair mf -md, where L and NL
stand for “linear” and “nonlinear” respectively. Each row (coded by symbol shape)
refers to the version of the models used to, both, produce the data and perform the
fit. For instance, the panel containing the blue triangles means that we fitted the
stochastic linear model to choice data synthetically produced by the stochastic non-
linear model. Error is decreasing in every panel. It decreases faster for deterministic
models than for stochastic models, and also faster for the fits of the linear model
than for the fits of the nonlinear model.

N . Each point is computed across M = 500 independent blocks.

We see that the relative error in parameter space decreases consistently quicker
when fitting the linear model, compared to fitting the nonlinear model. Note that
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such result does not necessarily imply that the linear fits better predict choice data
than the nonlinear fits. Out-of-sample validations would be required for this, and we
suggest this path for further investigations.

3.6 Summary

In this chapter, we performed an in-depth analysis of several key aspects of the ideal
observer model for the dynamic clicks task. After suggesting a definition for the
SNR of the stimulus, we showed that it involved two important parameters: the
trial duration and the discriminability index of the two Poisson click rates. In a
changing environment, the analysis of the ideal observer model benefits from a time
nondimensionalization. With time units rescaled by the hazard rate, an effective
hazard rate of 1 reduces the number of parameters of the model. Importantly, we
found by numerical exploration that the rescaled trial duration and discriminability
index are the only two parameters that determine choice accuracy in high click rate
regimes.

Previous studies of normative decision making in changing environments have
noted that an appropriately tuned linear model can reach near-optimal accuracy in a
wide range of experimentally relevant parameter regimes [23, 49, 34]. We investigated
the question of how such linear model differs from the ideal observer model, in terms
of sensitivity to parameter perturbation. Using the drop from optimal accuracy as
our measure of sensitivity, we found that the linear model is more sensitive than
the nonlinear model. That is, for equal perturbation12 in the discounting parameter,
the drop in accuracy of the linear model is more pronounced than for the nonlinear
model.

Finally, we asked whether the two decision models differ when it comes to fitting
their discounting parameter to choice data. Our synthetic fitting procedures suggest
that the linear model is easier to fit than the nonlinear model. By “easier to fit”,
we mean that it takes fewer data trials for the linear model than for the nonlinear
model, to recover their discounting parameter with a given tolerance. These results
hold not only for the ODE models from chapter 2, but also when multiplicative
Gaussian noise is added to each click’s evidence.

12Measured in percentage of the best parameter value.
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Chapter 4

Learning the change rates in
discrete time

In the previous chapters, we saw how ideal observer models possessing full knowl-
edge of the generative model1 are able to use all the information contained in the
stimulus in order to maximize choice accuracy. Since experimental subjects are usu-
ally rewarded on the basis of this latter quantity, it would be ideal for the subjects
to use such models. However, assuming full knowledge of the generative model is
too strong an assumption to be realistic [39]. At least during the training period of
an experiment, for example, the subject has little knowledge of the latent temporal
statistics of the stimulus. It is thus crucial to understand how the generative model,
or at least parameters of it, may be learned. In the present chapter, we show how an
ideal observer can learn the change rates of a discrete time environment. This finds
direct applications for the triangles task [23] presented in chapter 1, and is closely
related to the learning model from [22].

1The generative model is the set of statistical rules by which the stimulus is generated.
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4.1 Learning a single hazard rate

4.1.1 In a 2-state environment

Joint inference on state and hazard rate

The mathematical strategy to perform a sequential 2AFC task optimally while learn-
ing the hazard rate is to compute the joint posterior over state and hazard rate:

Pr
(
Sn, h

∣∣ On). We will derive below a recursive formula (equation (4.4)) for com-

puting such posterior.

Our derivation does not depend on the domains of the hazard rate and observa-
tions. Thus, we only make the following minimal assumptions:

• h ∈ H and o ∈ Ξ, for some (H,Ξ) ⊆ [0, 1] × R. We are not imposing that H
nor Ξ be uncountable, nor infinite.

• The noise distributions {fi}i∈Λ are non- vanishing on Ξ.

• For all n ∈ N and all i ∈ Λ, Pr (Sn = i) > 0.

• Our ideal observer model uses a non-vanishing prior joint density over states
and hazard rates, π : Λ×H → (0,∞).

• The model further considers state and hazard rate to be independent, so that
the joint prior factors into the product of its marginals2: π(S, h) = π(S) ·π(h).

We may now start our derivation of the recursive formula for the joint posterior
over state and hazard rate. We start by the initial conditions of the iterative process.
After one observation o1 has been gathered, Bayes’ rule gives us:

Pr
(
S1, h

∣∣ O1

)
=

1

Pr (O1)
fS1(o1) · π(S1) · π(h) (4.1)

For n > 1, h ∈ H,Sn ∈ Λ and a stream On ∈ Ξn of n observations, the law of
total probability allows us to marginalize over the previous state value:

Pr
(
Sn, h

∣∣ On) =
∑
i∈Λ

Pr
(
Sn, Sn−1 = i, h

∣∣ On)
2We are aware of our abuse of notation in using π to denote both the joint distribution and its

marginals, but the context will always be sufficiently clear to avoid confusion in the next pages.
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Then, Bayes’ rule applied to the summand in the right-hand side of the previous
equation yields:

Pr
(
Sn, h

∣∣ On) =
∑
i∈Λ

Pr
(
On

∣∣ Sn, Sn−1 = i, h
)

Pr (Sn, Sn−1 = i, h)

Pr (On)
(4.2)

At this point, we encounter again two facts that will simplify the above summand,
just as it was the case in our previous derivation of equation (2.2a). The first fact is
that, by assumption, the observations are conditionally independent on the states,
and they are also independent from the hazard rate. Hence,

Pr
(
On

∣∣ Sn, Sn−1 = i, h
)

= fSn(on)Pr
(
On−1

∣∣ Sn−1 = i, h
)

The second fact is that,

Pr (Sn, Sn−1 = i, h) = Pr
(
Sn
∣∣ Sn−1 = i, h

)
Pr (Sn−1 = i, h)

So, noticing the convenient grouping of terms,

Pr
(
On−1

∣∣ Sn−1 = i, h
)

Pr (Sn−1 = i, h) = Pr (On−1) Pr
(
Sn−1 = i, h

∣∣ On−1

)
we may rewrite equation (4.2) as:

Pr
(
Sn, h

∣∣ On) =
Pr (On−1)

Pr (On)
fSn(on)×∑

i∈Λ

Pr
(
Sn
∣∣ Sn−1 = i, h

)
Pr
(
Sn−1 = i, h

∣∣ On−1

)
(4.3)

Our final step consists in replacing Pr
(
Sn
∣∣ Sn−1 = i, h

)
by the very definition of

the hazard rate:

Pr
(
Sn, h

∣∣ On) =
Pr (On−1)

Pr (On)
fSn(on)

[
(1− h) · Pr

(
Sn−1 = Sn, h

∣∣ On−1

)
+

h · Pr
(
Sn−1 = 1− Sn, h

∣∣ On−1

)]
(4.4)

Remark: In going from equation (4.3) to equation (4.4), we used the fact that
Λ = {0, 1}, which implies that Sn−1 6= Sn ⇔ Sn−1 = 1− Sn.
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Equation (4.4), together with its initial condition (4.1), express recursively the
posterior over state and hazard rate at time n as a function of the most recent
observation on and the joint posterior at time n− 1. An important feature of these
equations is that the value of h is the same on both sides of the equality sign. Despite
this decoupling in the hazard rate variable, the joint posterior meets the following
implicit condition at every time step n ∈ N:∑

i∈Λ

∫
H

Pr
(
Sn = i, h

∣∣ On) dh =

∫
H

∑
i∈Λ

Pr
(
Sn = i, h

∣∣ On) dh = 1 (4.5)

Thus, in our current set-up, the ideal observer performs joint on-line inference on
state and hazard rate by evolving recursively the family of equations (4.4), indexed
by (Sn, h) ∈ Λ×H, with initial conditions prescribed by (4.1).

Joint inference on state and change-point count

c© 2017 MIT, Neural Computation3

An alternative approach to on-line learning of the hazard rate is to carry a probability
distribution (belief) over change-point count. A change-point is a transition in the
hidden state. Whenever, Sn−1 6= Sn (n > 1), we say that a change-point occurs at
time step n. This approach was exposed in detail in another context by [51]. We
adapt it here to our problem.

Let an be the number of change-points, and bn = n − 1 − an the count of non-
change-points between times 1 and n (n = 1, 2, . . .) (see figure 4.1B). The process
{an}n≥1 is a pure birth process with birth rate h. The observer assumes no changes
prior to the start of observation, Pr (a1 = 0) = 1, and must make at least two obser-
vations, o1 and o2, to detect a change.

To develop an iterative equation for the joint conditional probability density,

Pr
(
Sn, an

∣∣ On), given the n observations On, we begin by marginalizing over these

quantities at the time of the previous observation, n− 1, for n > 1. Bayes’ rule and
the law of total probability first yield:

Pr
(
Sn, an

∣∣ On) =
1

Pr (On)

∑
Sn−1∈{0,1}

n−2∑
an−1=0

Pr
(
On

∣∣ Sn, Sn−1, an, an−1

)
× Pr (Sn, Sn−1, an, an−1)

3This section represents a slight modification of content appearing in [38].
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Figure 4.1: Online inference of the change rate in a dynamic environ-
ment (image adapted from [38]). A: The environment S alternates between
states 0 and 1 with transition probabilities η01, η10. We analyze the symmetric case
(h := η10 = η01) in section 4.1.1 and the asymmetric case

(
η01 6= η10

)
in section 4.2.

The state of the environment determines the sampling distribution of the observa-

tions, fi(on) := Pr
(
on
∣∣ S = i

)
, which we represent as a Gaussian density. B: A

sample path of the environment (color bar) together with the first ten values of the
actual change-point count (an) and non-change-point count (bn). C: Evolution of the

conditional probabilities, Pr
(
h
∣∣ an) (given by Beta distributions), corresponding to

the change-point count from panel B, until n = 100. The dashed red line indicates
the value of h in the simulation. The densities are scaled so that each equals 1 at
the mode.

Using the conditional independence of observations,

Pr
(
On

∣∣ Sn, Sn−1, an, an−1

)
= Pr

(
on
∣∣ Sn)Pr

(
On−1

∣∣ Sn−1, an−1

)
we find that,

Pr
(
Sn, an

∣∣ On) =
1

Pr (On)

∑
Sn−1∈{0,1}

n−2∑
an−1=0

Pr
(
on
∣∣ Sn)Pr

(
On−1

∣∣ Sn−1, an−1

)
× Pr (Sn, Sn−1, an, an−1)

Furthermore, we can use the definition of conditional probability to write,

Pr (Sn, Sn−1, an, an−1) = Pr
(
Sn, an

∣∣ Sn−1, an−1

)
Pr (Sn−1, an−1)

and Bayes’ rule also implies,

Pr
(
On−1

∣∣ Sn−1, an−1

)
Pr (Sn−1, an−1) = Pn−1(Sn−1, an−1)Pr (On−1)
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Hence,

Pr
(
Sn, an

∣∣ On) =
Pr (On−1)

Pr (On)
Pr
(
on
∣∣ Sn) ∑

Sn−1∈{0,1}

n−2∑
an−1=0

Pr
(
Sn, an

∣∣ Sn−1, an−1

)
× Pr

(
Sn−1, an−1

∣∣ On−1

)
(4.6)

With two choices we have the following relationships for all n > 1:

Sn = Sn−1 ⇔ an = an−1 and Sn 6= Sn−1 ⇔ an = an−1 + 1 (4.7)

The term Pr
(
Sn, an

∣∣ Sn−1, an−1

)
in equation (4.6) is therefore nonzero only if either,

Sn−1 = Sn, and an−1 = an, or Sn−1 6= Sn and an−1 = an − 1. As illustrated in
figure 4.2, if the system is in the joint state (Sn−1, an−1) at time step n− 1, then at
step n it can either, transition to,

(Sn 6= Sn−1, an = an−1 + 1)

or remain at,
(Sn = Sn−1, an = an−1)

This observation is central to the message-passing algorithm described in [4, 51],
with probability mass flowing from lower to higher values of a according to a pure
birth process (see figure 4.2). We can thus simplify equation (4.6), leaving only two
terms in the double sum. To ease notation, let us define the following notation:

Prn (i, a) := Pr
(
Sn = i, an = a

∣∣ On)
Thus, we have for n > 1:

Prn (i, a) =
Pr (On−1)

Pr (On)
fi(on)×[

Pr
(
Sn = i, an = a

∣∣ Sn−1 = i, an−1 = a
)
· Prn−1 (i, a) +

Pr
(
Sn = i, an = a

∣∣ Sn−1 = 1− i, an−1 = a− 1
)
· Prn−1 (1− i, a− 1)

]
(4.8)

We must also specify initial conditions at time 1, and boundary values when a ∈
{0, n − 1} for these equations. At the first time step, we have Pr (a1 = 0) = 1.
Therefore,

Pr1 (i, 0) =
1

Pr (o1)
fi(o1)π(S = i) (4.9)
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Figure 4.2: Graph underlying the transport of joint posterior probability
mass across time (image adapted from [38]). The joint posterior over state
and change-point count, Prn (i, a) := Pr(Sn = i, an = a

∣∣ On), is propagated along
a directed graph according to equation (4.19). A colored node in the graph repre-
sents a particular point (Sn, an) from the support of the joint posterior. The reader
should imagine some probability mass associated to each node in a column, during
a specific time of the on-line inference process. At the next time step, the mass
is transferred across the edges with the appropriate annotated weights (see equa-
tions (4.17) and (4.18) for the definition of these weights). For clarity, only paths
corresponding to the initial condition (S1, a1) = (1, 0) are shown.

and Pr1 (i, a) = 0 for a 6= 0. Here π(S = i) is the prior over the two choices, which
we typically take to be uniform so π(S = 0) = π(S = 1). The probability Pr (o1) is

unknown to the observer. However, similar to the ratio Pr(On−1)
Pr(On)

in equation (4.8),

Pr (o1) acts as a normalization constant and does not appear in the posterior odds
ratio, Rn (see equation (4.20) below). Finally, at all future times n > 1, we have
separate equations at the boundaries,

Prn (i, 0) =
Pr (On−1)

Pr (On)
fi(on)Pr

(
Sn = i, an = 0

∣∣ Sn−1 = i, an−1 = 0
)

Prn−1 (i, 0)

(4.10)
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and,

Prn (i, n− 1) =
Pr (On−1)

Pr (On)
fi(on)Pr

(
Sn = i, an = n− 1

∣∣ Sn−1 = 1− i, an−1 = n− 2
)

× Prn−1 (1− i, n− 2) (4.11)

We next compute Pr
(
Sn, an

∣∣ Sn−1, an−1

)
in equation (4.6), with n > 1, by

marginalizing over all possible transition rates h ∈ [0, 1]:

Pr
(
Sn, an

∣∣ Sn−1, an−1

)
=

∫ 1

0

Pr
(
Sn, an

∣∣ h, Sn−1, an−1

)
Pr
(
h
∣∣ Sn−1, an−1

)
dh

(4.12)

Note that Pr
(
h
∣∣ Sn−1, an−1

)
= Pr

(
h
∣∣ an−1

)
, so we need the distribution of h,

given an−1 change-points, for all n > 1. We assume that prior to any change-point
observations — that is at time n = 1 — the rates follow a Beta distribution with
hyper-parameters a0, b0 > 0 (see also sections 3.1 and 3.2 in [51]),

π(h) = β̃(h; a0, b0) :=
ha0−1(1− h)b0−1

B(a0, b0)

where β̃ denotes the probability density of the associated Beta distribution, and
B(x, y) :=

∫ 1

0
sx−1(1 − s)y−1ds is the Beta function. For any n > 1, the random

variable an|h follows a Binomial distribution with parameters (n − 1, h), for which
the Beta distribution is a conjugate prior. The posterior over the change rate when
the change-point count is known at time n > 1 is therefore:

h|an ∼ Beta(a0 + an, b0 + bn) (4.13)

For simplicity, we assume that prior to any observations, the probability over the
transition rates is uniform, π(h) = 1 for all h ∈ [0, 1], and therefore a0 = b0 = 1 (see
figure 4.1C).

We now return to equation (4.12) and use the definition of the transition rate, h,
(see figure 4.1) to find:

Pr
(
Sn, an

∣∣ h, Sn−1, an−1

)
=


1− h Sn = Sn−1 & an = an−1

h Sn 6= Sn−1 & an = an−1 + 1
0 otherwise

(4.14)
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equation (4.12) can therefore be rewritten using two integrals, depending on the
values of (Sn, an) and (Sn−1, an−1),

Pr
(
Sn = i, an = a

∣∣ Sn−1 = i, an−1 = a
)

=

∫ 1

0

(1− h)β̃(h; an−1 + 1, bn−1 + 1)dh

(4.15)

and similarly for Pr
(
Sn = i, an = a

∣∣ Sn−1 = 1− i, an−1 = a− 1
)

. The mean of the

Beta distribution, for n > 1, can be expressed in terms of its two parameters:

ĥn−1(an−1) := E
[
h|an−1

]
=

an−1 + 1

an−1 + bn−1 + 2
(4.16)

We denote this expected value by ĥn−1(an−1) as it represents a point estimate of
the change rate h at time n − 1 when the change-point count is an−1, n > 1. Since
an−1 + bn−1 = n− 2, we have:

ĥn−1(an−1) =
an−1 + 1

n
(4.17)

The expected transition rate, ĥn−1(an−1), is thus determined by the ratio between
the previous change-point count and the number of time steps, n. Leaving a0 and b0

as parameters in the prior gives ĥn−1(an−1) = (an−1 + a0)/(n − 2 + a0 + b0). Using
the definition in equation (4.17), it follows from equation (4.15) that:

Pr
(
Sn = i, an = a

∣∣ Sn−1 = i, an−1 = a
)

= 1− ĥn−1(a) (4.18a)

Pr
(
Sn = i, an = a

∣∣ Sn−1 = 1− i, an−1 = a− 1
)

= ĥn−1(a− 1) (4.18b)

Equations (4.18), which are illustrated in figure 4.2, can in turn be substituted into
equation (4.8) to yield, for all n > 1:

Prn (i, a) =
Pr (On−1)

Pr (On)
fi(on)

[(
1− ĥn−1(a)

)
· Prn−1 (i, a)

+ĥn−1(a− 1) · Prn−1 (1− i, a− 1)
]

(4.19)

The initial conditions and boundary equations for this recursive probability update
have already been described in equations (4.9–4.11). Equation (4.19) is the equivalent
of equation (3) in [4], and equation (3.7) in [51]. However, here the observer does
not need to estimate the length of the interval since the last change-point.
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The observer can compute the posterior odds ratio by marginalizing over the
change-point count:

Rn : =
Pr
(
Sn = 1

∣∣ On)
Pr
(
Sn = 0

∣∣ On) =

∑n−1
a=0 Prn (1, a)∑n−1
a=0 Prn (0, a)

(4.20)

Here log(Rn) = yn > 0 implies that Sn = 1 is more likely than Sn = 0. Note that
Pr (On−1) /Pr (On) and 1/Pr (o1) need not be known to the observer to obtain the
most likely choice.

A posterior distribution of the transition rate h can also be derived from equa-
tion (4.19) by marginalizing over (Sn, an),

Pr
(
h
∣∣ On) =

1∑
i=0

n−1∑
a=0

Pr
(
h
∣∣ an = a

)
Prn (i, a) , (4.21)

where Pr
(
h
∣∣ an) is given by the Beta distribution prior equation (4.13). The ex-

pected rate is therefore:

h̄ :=

∫ 1

0

hPr
(
h
∣∣ On) dh =

1∑
i=0

n−1∑
an=0

∫ 1

0

hPr
(
h
∣∣ an)Prn (i, an) dh

=
1∑
i=0

n−1∑
an=0

an + 1

n+ 1
Prn (i, an) (4.22)

Explicit knowledge of the transition rate, h, is not used in the inference process
described by equation (4.19). However, computing it allows us to evaluate how the
observer’s estimate converges to the true transition rate (see figure 4.3B).
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A

B

Figure 4.3: Learning the hazard rate (image adapted from [38]). A: Evolu-
tion of the posterior over an (gray scale). The posterior mean (red) converges to the
expected number of change-points h(n− 1) (dashed line). B: Evolution of the pos-
terior over the change rate h (gray scale). The posterior mean (red) converges to the
true value (dashed line) and the variance diminishes with the number of observations.
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Accuracy of the change-point learning model In figure 4.4, we compare the
accuracy of the learning model (black curves) to that of a family of known-rate models
from section 2.1.2 (green curves). Note that the learning model (4.19) reduces to the

A B C

Figure 4.4: Performance of the inference algorithm (image adapted from
[38]). A: Accuracy under the interrogation paradigm measured as the percentage of
correct responses at the interrogation time. Here and in the next panel h = 0.05, and
SNR= 1. The black curve represents the performance of an ideal observer who infers
the change rate from measurements. The green curves represent the performance of
observers that assume a fixed change rate (0.3, 0.15, 0.05, 0.03 from darker to lighter,
see equation (2.9)). The solid green line corresponds to an observer who assumes
the true rate, dashed lines to erroneous rates. B: The green curve represents the
performance at interrogation time n = 300 of an observer that assumes a fixed
change rate (x-axis). The red star marks the maximum of this curve, corresponding
to the true change rate h = 0.05. The horizontal black lines represent the accuracy
at times n ∈ {40, 100, 200, 300} (from bottom to top) of the observer that learns the
change rate. C: The accuracy as a function of the average threshold hitting time in
the free response protocol. Here h = 0.1, and SNR=0.75. See appendix A for details
on numerical simulations. See also figure 3 in [49].

known-rate model (2.9) when a delta-mass prior is used over the hazard rate. Thus,
figure 4.4 encompasses three cases:

1. when the observer knows the true rate (delta-mass prior over the true rate h);

2. when the observer assumes a wrong rate (delta-mass prior over an erroneous
h);
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3. and when the observer learns the rate from measurements (flat prior over h).

Under the interrogation protocol, the observer infers the state of the environment
at a fixed time. As expected, performance increases with interrogation time, and
is highest if the observer uses the true rate (see figure 4.4A, also equation (2.9)
above). Performance plateaus quickly when the observer assumes a fixed rate, and
more slowly if the rate is learned. The performance of observers that learn the
rate slowly increases toward that of observers who know the true rate. In figure
4.4B, we present the performance of the unknown-rate algorithm at 4 different times
(n ∈ {40, 100, 200, 300}) and compare it to the asymptotic values with different
assumed rates (green curves).

Note, an observer that assumes an incorrect change rate can still perform near
optimally (e.g., curve for 0.03 in figure 4.4A), especially when the signal-to-noise
ratio (SNR) is quite high. The SNR in the present context is the difference in means
of the likelihoods divided by their common standard deviation [49]. Although this
cannot be seen on the figure, the benefit of inferring the change rate is at its highest
for intermediate SNR values, in which case multiple observations are needed for an
accurate estimate of the present state. At very low SNR values the learning observer
will not be able to substantially reduce uncertainty about the change rate, resulting
in high uncertainty about the state.

In the free response protocol, the observer makes a decision when the log posterior
odds ratio reaches a predefined threshold. In figure 4.4C, we present simulation
results for this protocol in a format similar to figure 4.4A, with empirical performance
as a function of average hitting time. Each performance level corresponds to unique
log-odds threshold. Similar to the interrogation protocol (figure 4.4A), performance
of the free response protocol saturates much more quickly for an observer that fixes
their change rate estimate than one that infers this rate over time.

4.1.2 In an N-state environment

c© 2017 MIT, Neural Computation4

We next consider evidence accumulation in an environment with an arbitrary num-
ber of states, {1, 2, ...,M}, with symmetric transition probabilities, ηij ≡ constant,
whenever i 6= j. We define h := (N − 1)ηij for any i 6= j, so that the probability of
remaining in the same state becomes ηii = 1− h, for all i = 1, ...,M . The symmetry

4This section represents a slight modification of content appearing in [38].
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in transition rates means that an observer still only needs to track the total number
of change-points , an, as in section 4.1.1.

Equations (4.6-4.7) remain valid with N possible choices, {1, . . . ,M}. When
n > 1, the double sum in equation (4.6) simplifies to:

Prn (i, a) =
Pr (On−1)

Pr (On)
fi(on)

[
Pr
(
i, a

∣∣ Sn−1 = i, an−1 = a
)
· Prn−1 (i, a)

+
∑

j∈Λ\{i}

Pr
(
i, a

∣∣ Sn−1 = j, an−1 = a− 1
)
· Prn−1 (j, a− 1)


As in section 4.1.1, we have Pr1 (i, 0) = fi(o1)π(S = i)/Pr (o1) and Pr1 (i, a1) = 0 for
a1 6= 0, where π(S = i) describes the observer’s belief prior to any observations. At
all future times, n > 1, we have at the boundaries for all i ∈ Λ:

Prn (i, 0) =
Pr (On−1)

Pr (On)
fi(on)Pr

(
Sn = i, an = 0

∣∣ Sn−1 = i, an−1 = 0
)

Prn−1 (i, 0)

and,

Prn (i, n− 1) =
Pr (On−1)

Pr (On)
f i(on)

∑
j 6=i

Pr
(
i, n− 1

∣∣ Sn−1 = j, an−1 = n− 2
)

× Prn−1 (j, n− 2)

Equation (4.12) remains unchanged and we still have Pr
(
h
∣∣ Sn−1, an−1

)
=

Pr
(
h
∣∣ an−1

)
. Furthermore, assuming a Beta prior on the change rate, equation (4.13)

remains valid, and equation (4.14) is replaced by:

Pr
(
Sn, an

∣∣ h, Sn−1, an−1

)
=


1− h Sn = Sn−1 & an = an−1

h/(N − 1) Sn 6= Sn−1 & an = an−1 + 1
0 otherwise

The integral from equation (4.12) gives, once again, the mean of the Beta distribu-
tion, ĥn−1(a), defined in equations (4.16-4.17). As in section 4.1.1, ĥn−1(an−1) is a
point estimate of the change rate h at time n− 1 when the change-point count is
an−1. We have,

Pr
(
Sn, an

∣∣ Sn−1, an−1

)
=


1− ĥn−1(an) Sn = Sn−1 & an = an−1

ĥn−1(an − 1)/(N − 1) Sn 6= Sn−1 & an = an−1 + 1
0 otherwise

(4.23)
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and the main probability update equation is now:

Prn (i, a) =
Pr (On−1)

Pr (On)
fi(on)

[(
1− ĥn−1(an)

)
· Prn−1 (i, a)

+
ĥn−1(an − 1)

N − 1

∑
j∈Λ\{i}

Prn−1 (j, a− 1)


The observer can infer the most likely state of the environment, by computing the

index that maximizes the posterior probability, marginalizing over all change-point
counts,

ı̂ = argmaxiPr
(
Sn = i

∣∣ On) = argmaxi

n−1∑
a=0

Prn (i, a)


The observer can also compute the posterior probability Pr

(
h
∣∣ On) of the tran-

sition rate h by marginalizing over all states Sn and change-point counts an, as in
equation (4.21). Furthermore, a point estimate of h is given by the mean of the
posterior after marginalizing, as in equation (4.22).

4.2 Learning all transition rates

c© 2017 MIT, Neural Computation5

In this section, we depart from the framework of [4] and [51], and consider un-
equal transition rates between states6. The environment therefore behaves as in
section 2.1.1. Let us briefly remind the set-up and assumptions. We consider an
arbitrary number of states, N , with unknown transition rates ηij between them.
The switching process between the states is memoryless, so that Sn is a stationary,
discrete-time Markov chain with finite state space, Λ := {1, . . . ,M}. We write the
(unknown) transition matrix for this chain as a left stochastic matrix,

h :=

η11 . . . η1N

...
. . .

...
ηN1 . . . ηNN


5This section represents a slight modification of content appearing in [38].
6This includes the possibility that some transitions are not allowed.
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where ηij = Pr
(
Sn = i|Sn−1 = j

)
, with i, j ∈ Λ. We denote by h·i the i-th column

of the matrix h, and similarly for other matrices. Each such column sums to 1. We
define the change-point counts matrix at time n as,

an :=

a11
n . . . a1N

n
...

. . .
...

aN1
n . . . aNNn


where aijn is the number of transitions from state j to state i up to time n. There
can be a maximum of n − 1 transitions at time n. For a fixed n ≥ 1, all entries in
an are nonnegative and sum to n− 1, i.e.

∑
i

∑
j a

ij
n = n− 1. As in the symmetric

case, the change-point matrix at time 1 must be the zero matrix, a1 = 0.

We will show that our inference algorithm assigns positive probability only to
change-point matrices that correspond to possible transition paths between the states
{1, . . . ,M}. Many nonnegative integer matrices with entries that sum to n − 1 are
not possible change-point matrices an. A combinatorial argument shows that when
N = 2, the number of possible pairs, (Sn,an), grows quadratically with the number
of steps, n, to leading order. It can also be shown that the growth is polynomial
for N > 2, although we do not know the growth rate in general (see figure 4.5B).
An ideal observer has to assign a probability of each of these states which is much
more demanding than in the symmetric rate case where the number of possible states
grows linearly in n.

We next derive an iterative equation for Pr
(
Sn,an

∣∣ On), the joint probability

of the state Sn, and an allowable combination of the N(N − 1) change-point counts
(off-diagonal terms of an), and N non-change-point counts (diagonal terms of an).
The derivation is similar to the symmetric case. For n > 1, we first marginalize over
Sn−1 and an−1,

Pr
(
Sn,an

∣∣ On) =
1

Pr (On)

∑
Sn−1,an−1

Pr
(
On

∣∣ Sn, Sn−1,an,an−1

)
×

Pr (Sn, Sn−1,an,an−1)

where the sum is over all Sn−1 ∈ {1, ...,M} and possible values of the change-point
matrix, an−1.

Using Pr (Sn, Sn−1,an,an−1) = Pr
(
Sn,an

∣∣ Sn−1,an−1

)
Pr (Sn−1,an−1) , and ap-

plying Bayes’ rule to write

Pr
(
On−1

∣∣ Sn−1,an−1

)
Pr (Sn−1,an−1) = Pr

(
Sn−1,an−1

∣∣ On−1

)
Pr (On−1)
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gives

Pr
(
Sn,an

∣∣ On) =
Pr (On−1)

Pr (On)
Pr
(
on
∣∣ Sn) ∑

Sn−1,an−1

Pr
(
Sn−1,an−1

∣∣ on−1

)
× Pr

(
Sn,an

∣∣ Sn−1,an−1

)
(4.24)

We compute the conditional probability Pr
(
Sn,an

∣∣ Sn−1,an−1

)
by marginaliz-

ing over all possible transition matrices, h. To do so, we relate the probabilities of h
and a. Note that if the observer assumes the columns h·j are independent prior to
any observations, then the exit rates conditioned on the change-point counts, h·j|a·jn ,
are independent for all states, j ∈ Λ.

To motivate the derivation we first consider a single state, j = 1, and assume that
the environmental state has been observed perfectly over N > 1 time steps, but the
transition rates are unknown. Therefore, all a·1n are known to the observer (1 ≤ n ≤
N), but the h·1 are not. The state of the system at time n+ 1, given that it was in

state 1 at time n, is a categorical random variable, and Pr
(
Sn+1 = i

∣∣ Sn = 1
)

= hi1,

for 1 ≤ n ≤ N − 1. The observed transitions 1 7→ i are independent samples from a
categorical distribution with unknown parameters h·1.

The conjugate prior to the categorical distribution is the Dirichlet distribution,
and we therefore use it as a prior on the change-point probabilities. For simplicity

we again assume a flat prior over h·1, that is Pr
(
h·1
)

= χL

(
h·1
)

, where χL is the

indicator function on the standard (M − 1)-simplex, L.

Denote by D the sequence of states that the environment transitioned to at time
n+ 1 whenever it was in state 1 at time n, for all 1 ≤ n ≤ N − 1. Therefore, D is a
sequence of states from the set Λ. By definition,

Pr
(
D
∣∣ h·1) =

M∏
i=1

(
hi1
)∑N−1

n=1 χ(Sn+1=i,Sn=1)

where χ (Sn+1 = i, Sn = 1) is the indicator function, which is unity only when Sn+1 =
i and Sn = 1 and zero otherwise. Equivalently, we can write

Pr
(
a·1N

∣∣ h·1) =
M∏
i=1

(
hi1
)ai1

N
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since ai1N =
∑N−1

n=1 χ(Sn+1 = i, Sn = 1). For general n > 1, the posterior distribution
for the transition probabilities h·1 given the change-point vector a·1n is then

Pr
(
h·1|a·1n

)
=

Γ
(∑M

i=1

(
ai1n + 1

))
∏M

i=1 Γ (ai1n + 1)

M∏
i=1

(
ηi1
)ai1n

= dir
(
h·1;a·1n + 1

)
Here 1 = (1, ..., 1)T , so a·1n + 1 should be interpreted as the vector with entries(
ai1n + 1

)M
i=1

, Γ(x) is the gamma function, and dir
(
h·1;a·1n + 1

)
the probability den-

sity function of the N -dimensional Dirichlet distribution, Dir
(
a·1n + 1

)
.

The same argument applies to all initial states, j, j ∈ {1, . . . ,M}. We assume
that the transition rates are conditionally independent, so that

Pr
(
h|an

)
=

M∏
j=1

dir(h·j;a·jn + 1) =
M∏
j=1

Γ
(∑M

i=1(aijn + 1)
)

∏M
i=1 Γ((aijn + 1))

M∏
k=1

(
hkj
)akjn

(4.25)

Using this observation, the transition probability between two states can be com-
puted by marginalizing over all possible transition matrices, h, conditioned on an−1,

P(Sn,an|Sn−1,an−1) =

∫
M

P(Sn,an|h, Sn−1,an−1)P(h|Sn−1,an−1)dh

=

∫
L

· · ·
∫
L

P(Sn,an|h·1, . . . ,h·M , Sn−1,an−1) (4.26)

× dir(h·1;a·1n−1 + 1)× · · · × dir(h·M ;a·Mn−1 + 1)dh·1 · · · dh·M

where M represents the space of all M ×M left stochastic matrices and L is the
M − 1 dimensional simplex of h·j ∈ [0, 1]M such that

∑M
i=1 h

ij = 1.

Let δij be the M ×M matrix containing a 1 as its ij-th entry, and 0 everywhere
else. For all i, j ∈ Λ we have

Pr
(
Sn = i,an|h, Sn−1 = j,an−1

)
=

{
ηij if an = an−1 + δij

0 otherwise
(4.27)

Implicit in equation (4.27) is the requirement that the environment must have been
in the state Sn−1 = j in order for the transition j 7→ i to have occurred between
n − 1 and n. This will ensure that the change-point matrices an that are assigned
nonzero probability correspond to admissible paths through the states {1, ...,M}.
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Applying equation (4.27), we can compute the integrals in equation (4.26) for all

pairs (i, j). We let ĥijn−1(an−1) := Pr
(
Sn = i,an = an−1 + δij|Sn−1 = j,an−1

)
to

simplify notation, and find

ĥijn−1(an−1) =

∫
L

· · ·
∫
L

ηij
M∏
k=1

dir(h·k;a·kn−1 + 1)dh·1 · · · dh·M

=

∫
L

ηijdir(h·j;a·jn−1 + 1)dh·j
∏
k 6=j

∫
L

dir(h·k;a·kn−1 + 1)dh·k

=

∫
L

ηijdir(h·j;a·jn−1 + 1)dh·j =
aijn−1 + 1

M +
∑M

k=1 a
kj
n−1

(4.28)

As in the point estimate of the rate ĥn−1(an−1) in equation (4.17), each ĥijn−1(an−1)
is a ratio containing the number of j 7→ i transitions in the numerator, and the total
number of transitions out of the jth state in the denominator. Thus, the estimated
transition rate ĥijn−1(an−1) increases with the number of transitions j 7→ i in a given
interval {1, ..., n}. Furthermore, each column sums to unity:

M∑
i=1

ĥijn−1(an−1) =

∑M
i=1

(
aijn−1 + 1

)
N +

∑M
k=1 a

kj
n−1

=
M +

∑M
i=1 a

ij
n−1

M +
∑M

k=1 a
kj
n−1

= 1

so the point estimates ĥijn−1(an−1) for the transition rates out of each state j do
provide an empirical probability mass function along each column. However, as in
the symmetric case, these estimates are biased toward the interior of the domain.
This is a consequence of the hyper-parameters we have chosen for our prior density,
dir(h;a0 + 1).

Therefore, for n > 1, the probability update equation in the case of asymmetric
transition rates (equation (4.24)) is given by,

Pr
(
Sn = i,an

∣∣ On) =
Pr (On−1)

Pr (On)
fi(on)

M∑
j=1

ĥijn−1(an − δij)×

Pr
(
Sn−1 = j,an − δij

∣∣ On−1

)
(4.29)

The point estimates of the transition rates, ĥijn−1(an−1 = an − δij), are defined in

equation (4.28). As before, Pr
(
S1 = i,a1 = 0

∣∣ o1

)
= fi(o1)P0(S = i)/Pr (o1) and
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Pr
(
S1 = i,a1

∣∣ o1

)
= 0 for any a1 6= 0. At future times, it is only possible to obtain

change-point matrices an whose entries sum to
∑

i

∑
j a

ij
n = n− 1, the change-point

matrices an and an−1 must be related as an = an−1 +δij, as noted in equation (4.27).
This considerably reduces the number of terms in the sum in equation (4.29).

The observer can find the most likely state of the environment by maximizing
the posterior probability after marginalizing over the change-point counts an,

ı̂ = argmaxiPr
(
Sn = i

∣∣ On) = argmaxi

∑
an

Pr
(
Sn = i,an

∣∣ On)


The transition rate matrix can also be computed by marginalizing across all possible
states, Sn, and change-point count matrices, an,

Pr
(
h
∣∣ On) =

M∑
s=1

∑
an

Pr
(
h
∣∣ an)Pr

(
Sn = s,an

∣∣ On)
where Pr

(
h|an

)
is the product of probability density functions, dir(h·j;a·jn + 1),

given in equation (4.25). The mean of this distribution is given by

h̄ =

∫
M
hPr

(
h
∣∣ On) dh =

M∑
s=1

∑
an

Pr
(
Sn = s,an

∣∣ On)∫
M
hPr

(
h|an

)
dh

=
M∑
s=1

∑
an

Pr
(
Sn = s,an

∣∣ On)E(an) (4.30)

where E(an)ij = ĥijn (an) = E
[
ηij|an

]
defined in equation (4.28), is a conditional

expectation over each possible change-point matrix an.

Equation (4.29) is easier to interpret when N = 2. Using equation (4.28), we find

ĥ21
n−1(an−1) =

a21
n−1 + 1

2 + a21
n−1 + a11

n−1

, ĥ12
n−1(an−1) =

a12
n−1 + 1

2 + a12
n−1 + a22

n−1

and we can express ĥ11
n−1(an−1) = 1− ĥ21

n−1(an−1) and ĥ22
n−1(an−1) = 1− ĥ12

n−1(an−1).
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Expanding the sum in equation (4.29), we have

Pr
(
Sn = 1,an

∣∣ On) =

Pr (On−1)

Pr (On)
f1(on)

[
ĥ11
n−1(an − δ11)Pr

(
Sn−1 = 1,an − δ11

∣∣ On−1

)
+ĥ12

n−1(an − δ12)Pr
(
Sn−1 = 2,an − δ12

∣∣ On−1

)]
(4.31a)

Pr
(
Sn = 2,an

∣∣ On) =

Pr (On−1)

Pr (On)
f2(on)

[
ĥ22
n−1(an − δ22)Pr

(
Sn−1 = 2,an − δ22

∣∣ On−1

)
+ĥ21

n−1(an − δ21)Pr
(
Sn−1 = 1,an − δ21

∣∣ On−1

)]
(4.31b)

The boundary and initial conditions will be given as above, and the mean inferred
transition matrix is given by equation (4.30). Importantly, the inference process
described by Eqs. (4.31) allows for both asymmetric change-point matrices, an, and
inferred transition rate matrices E(an), unlike the process in equation (4.19). How-
ever, the variance of the posteriors over the rates will decrease more slowly, as fewer
transitions out of each particular state will be observed.

This algorithm can be used to infer unequal transition rates as shown in fig-
ure 4.5: Panels C through E show that the mode of the joint posterior distribution,

Pr
(
η21, η12

∣∣ On), approaches the correct rates, while its variance decreases. As in

section 4.1.1 we conjecture that this joint density does not converge to a point mass
at the true rate values unless the SNR is infinite.
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BA

C D E

Figure 4.5: Evidence accumulation and change rates inference in a 2-state
asymmetric system (image adapted from [38]). A: Sample path (color bar,
top) of the environment between time steps 70 and 80 (same simulation as in panels
C-E) with corresponding observations (blue dots), and log posterior odds ratio (black
step function). Here and in panels C-E,

(
η01, η10

)
= (0.2, 0.1), SNR= 1.4. B: The

number of allowable change-point count matrices as a function of observation number,
n, for M = 2 (blue circles), and M = 3 (blue triangles). C-E: Color plots (gray

scale) of the joint density, Pr
(
η01, η10

∣∣ On), with mean value (red star) approaching

the true transition rates (green circle), as number of observations increases.
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4.3 Summary

We discovered two ways of expressing an ideal observer model of decision making in
symmetrically changing environments. One possibility is to evolve the joint posterior
probability over the state and the hazard rate. The other is to consider the joint
posterior over the state and change-point count. Focusing on the latter strategy, we
observed that the hazard rate could be learned in the appropriate parameter regimes,
and that this learning was accompanied by an increase in choice accuracy. Thus, as
the number of observations increases, the learning model outperforms more and more
ideal observer models who use a wrong hazard rate value. Finally, we extended the
change-point count strategy to asymmetrically changing environments and found the
optimal inference algorithm heavy to implement. More specifically, the support of
the joint posterior over state and change-point counts in the case of asymmetric
change rates becomes too big too quickly. This is due to the combinatorial explosion
in the number of possible change-point counts matrices as time progresses.
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Chapter 5

Learning the hazard rate in
continuous time

Some tasks are more naturally modeled in continuous time. This is the case, for in-
stance, of the dots reversal tasks and the dynamic clicks task, described in chapter 1.
In the present chapter, we derive the continuum limits of the ideal observer models
from chapter 4. Thus, the environment is now a continuous time 2-state Markov
chain with symmetric exit rate from each state, h.

5.1 Joint inference on state and hazard rate

Our discrete time equations (4.4) describing joint inference on state and hazard
rate are equivalent to a family of filtering equations like (2.2a) indexed by h ∈
H, with the additional normalization constraint (4.5). This implies that all the
developments leading to the extended SPRT equation (2.9) are valid. Thus, with the
normalization (4.5) enforced, we get,

yhn = In + yhn−1 + log
h · exp

(
−yhn−1

)
+ (1− h)

h · exp
(
yhn−1

)
+ (1− h)

∀(h, n) ∈ H × N>1 (5.1a)

yh1 = I1 + yh0 ∀h ∈ H (5.1b)

where the superscript h is just an indexing symbol. Note how the observational input
In and the initial condition yh0 := log

(
π(S = 1)/π(S = 0)

)
are the same for all h.

The analogy with section 2.1.2 follows through the continuum limit (2.18) as well.
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Hence, the evidence accumulated by an ideal observer who jointly infers the state
and hazard rate may be characterized by the following family of SDEs indexed by
h ∈ H,

dyht = mtdt+DtdWt − 2h · sinh
(
yht

)
dt (5.2)

with deterministic initial conditions yh0 = 0, ∀h ∈ H. Importantly, in the above
equation, the realization of the noise, DtdWt, is the same across the whole family.

5.2 Joint inference on state and change-point count

In the continuous time setting, the change-point counting process {at}t≥0 associated
with the environment is now a Poisson process with birth rate h. We will derive here
the continuum limit of the inference process (4.19), using the same sampled-time
approximation method presented in section 2.2.2.

Some care must be taken regarding the correspondence between the discrete time
and continuous time versions of the hazard rate. For the sake of clarity, let us denote
by h ∈ [0,∞) the hazard rate in continuous time, and by h∆t ∈ [0, 1] its discrete
time counterpart. In section 4.1.1, we used a Beta prior on h∆t with shape hyper-
parameters a0, b0 > 0,

π
(
h∆t
)

= β̃
(
h∆t; a0, b0

)
:=

(
h∆t
)a0−1 (

1− h∆t
)b0−1

B(a0, b0)
(5.3)

where the Beta function B is defined in equation (5.5a) below. Here, in order to
select the conjugate prior to the Poisson likelihood (because of the change-point
counting process), we assume a Gamma prior on h with respective shape and rate
hyper-parameters α, β > 0,

π(h) = γ̃(h;α, β) :=
βαhα−1 exp(−βh)

Γ(α)
(5.4)

with the Gamma function Γ defined in equation (5.5b) below. In the sampled-time
approximation, we set,

h∆t := h∆t

The question is, how should (a0, b0) relate to (α, β) in order for the limit ∆t→ 0 to
make sense? Thanks to the following lemma, the answer is:

a0 := α

b0 := β/∆t
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Lemma 5.2.1. Let h ∼ Gamma(α, β) for some α, β > 0, and define the following
family of Beta-distributed random variables: hn ∼ Beta(α, nβ). Then, the sequence
{nhn}n∈N converges to h in distribution, as n→∞.

Proof. We build up on the online proof from [36]. We start by establishing some
notation. The symbols B and Γ will represent, respectively, the Beta and Gamma
functions, restricted to the positive reals:

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1dt ∀x, y > 0 (5.5a)

Γ(z) :=

∫ ∞
0

xz−1 exp(−x)dx ∀z > 0 (5.5b)

For fixed positive reals α, β > 0, define the two sequences of independent random
variables {Xn}n∈N, {Yn}n∈N, by Xn ∼ Beta(α, βn), and Yn := βnXn. For any s ∈ N,
standard probability theory tells us that, for all n ∈ N:

E [Xs
n] =

s−1∏
r=0

α + r

α + βn+ r
=
B(α + s, βn)

B(α, βn)
=

Γ(α + s)Γ(α + βn)

Γ(α + s+ βn)Γ(α)
(5.6)

Using the identity zΓ(z) = Γ(z + 1) for any positive real z > 0, induction yields,
Γ(z +m) = (z +m− 1) · · · (z + 1)zΓ(z), for all m ∈ N. Thus, with z := α + βn, we
get:

Γ(α + βn)

Γ(α + s+ βn)
=

1

(α + βn)(α + βn+ 1) · · · (α + βn+ s− 1)

= (βn)−s

[(
1 +

α

βn

)(
1 +

α + 1

βn

)
· · ·
(

1 +
α + s− 1

βn

)]−1

(5.7)

Since E [Y s
n ] = (βn)sE [Xs

n] by construction, we can use equations (5.6) and (5.7) to
conclude that:

lim
n→∞

E [Y s
n ] = lim

n→∞
(βn)sE [Xs

n] = Γ(α + s)/Γ(α) (5.8)

On the other hand, if Z is a Gamma-distributed random variabe with hyper-parameters
α, 1 > 0, then E [Zs] = (α+ s− 1) · · ·α = Γ(α+ s)/Γ(α), for all s ∈ N. So, we have
proven that all the moments of the sequence {Yn}n∈N converge to the corresponding
moments of Z. This implies that Yn converges to Z ∼ Gamma(α, 1) in distribution.
By the scaling property of the Gamma distribution, this implies, in turn, that the
limiting distribution of Yn/β is Gamma(α, β), which proves our lemma.
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Thus, the expectation ĥn(a) from equation (4.16) with general hyper-parameters
α, β must be adapted to:

ĥ∆t
tn (a) :=

a+ α

n− 1 + α + β/∆t
= ∆t

a+ α

tn−1 + α∆t+ β
(5.9)

The domains of each variable in equation (5.9) are as follows:

α, β > 0 0 ≤ a ≤ n− 1 tn−1 := (n− 1)∆t (5.10a)

(∆t, n) ∈
{

(x, y) ∈ (0,∞)× N
∣∣ xy ∈ [0, T ]

}
(5.10b)

Equipped with the correspondence (5.9), we may now embed equation (4.19) in
continuous time:

Prtn (i, a) =
Pr
(
Otn−1

)
Pr (Otn)

f∆t
i (otn)

[(
1− ĥ∆t

tn−1
(a)
)

Prtn−1 (i, a)

+ĥ∆t
tn−1

(a− 1)Prtn−1 (1− i, a− 1)
]

(5.11a)

Equation (5.11) is only valid for i ∈ Λ, n > 1, and 0 < a < n − 1. Just as in
equations (4.9)-(4.11), the following initial and boundary conditions hold for all
i ∈ Λ. At n = 1,

Prt1 (i, 0) =
1

Pr (Ot1)
f∆t
i (ot1)π(S = i)

a > 0 =⇒ Prt1 (i, a) = 0
(5.11b)

and for n > 1, the boundary values for a ∈ {0, n− 1} yield:

Prtn (i, 0) =
Pr
(
Otn−1

)
Pr (Otn)

f∆t
i (otn)

(
1− ĥ∆t

tn−1
(0)
)

Prtn−1 (i, 0) (5.11c)

Prtn (i, n− 1) =
Pr
(
Otn−1

)
Pr (Otn)

f∆t
i (otn)ĥ∆t

tn−1
(n− 2)Prtn−1 (1− i, n− 2) (5.11d)

The process of deriving a SDE for the log posterior odds ratio, as we did in the pre-
vious continuum limit procedures, is now hampered by the fact that equations (5.11)
are coupled along the a-dimension. Instead, we derive a system of SDEs for the
log-posteriors themselves. As a first step, we divide both sides of equation (5.11a)
by Prtn−1 (i, a), yielding,

Prtn (i, a)

Prtn−1 (i, a)
=

Pr
(
Otn−1

)
Pr (Otn)

f∆t
i (otn)

[(
1− ĥ∆t

tn−1
(a)
)

+ĥ∆t
tn−1

(a− 1) ·
Prtn−1 (1− i, a− 1)

Prtn−1 (i, a)

]
(5.12a)
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for i ∈ Λ, n > 1, and 0 < a < n − 1. If we set Prt0 (i, 0) := π(S = i) for all i ∈ Λ,
equation (5.11b) becomes:

Prt1 (i, 0)

π(S = i)
=

1

Pr (Ot1)
f∆t
i (ot1)

a > 0 =⇒ Prt1 (i, a) = 0
(5.12b)

Equation (5.11c) becomes, for n > 1:

Prtn (i, 0)

Prtn−1 (i, 0)
=

Pr
(
Otn−1

)
Pr (Otn)

f∆t
i (otn)

(
1− ĥ∆t

tn−1
(0)
)

(5.12c)

As for equation (5.11d), we must have:

Prtn (i, n− 1)

Prtn−1 (i, n− 1)
=∞ (5.12d)

For the ranges made explicit in (5.10), we define,

xi,a(tn) := log Prtn (i, a)

∆xi,a(tn) := xi,a(tn)− xi,a(tn−1)

so that equations (5.12) become,

∆xi,a(tn) = C + log f∆t
i (otn) + log

[(
1− ĥ∆t

tn−1
(a)
)

+ĥ∆t
tn−1

(a− 1) ·
exp

(
x1−i,a−1(tn−1)

)
exp

(
xi,a(tn−1)

) ]
(5.13a)

∆xi,0(t1) = C + log f∆t
i (ot1) (xi,a(t1) undefined for a > 0) (5.13b)

∆xi,0(tn) = C + log f∆t
i (otn) + log

(
1− ĥ∆t

tn−1
(0)
)

(5.13c)

∆xi,n−1(tn) =∞ (5.13d)

with C = log
(
1/Pr (Otn)

)
in (5.13b) and C = log

(
Pr
(
Otn−1

)
/Pr (Otn)

)
in (5.13a)

and (5.13c). Our next step is to add two assumptions:

1. The number of change-points is bounded above, irrespective of the time step
∆t. So, there is an upper bound A ∈ N such that for all ∆t > 0 and all n ∈ N,
a < A.
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2. The ratio of exponentials in (5.13a) is bounded above, irrespective of the time
step ∆t.

The first assumption amounts to truncating the tail of the poisson distribution with
mean hT , since this is the distribution of the change-point count variable aT . Note
that this, in turn, will prevent the system of SDEs (5.15a) from being infinite-
dimensional. Finally, this first assumption is necessary to ensure that,

ĥ∆t
tn (a) = O(∆t)

The second assumption amounts to assuming that the ratio of posterior probabil-
ities Prtn−1 (1− i, a− 1) /Prtn−1 (i, a) doesn’t become too big. This is a reasonable
assumption in low-to-intermediate SNR regimes1, as the observer never totally dis-
cards any of the (St, at) combinations2. Both assumptions above then allow us to
Taylor-expand the logarithm term in equations (5.13a) and (5.13c) about 1. Equa-
tion (5.13a) becomes,

∆xi,a(tn) = C + log f∆t
i (otn) + ∆t

− ĥ∆t
tn−1

(a)

∆t

+
ĥ∆t
tn−1

(a− 1)

∆t
·

exp
(
x1−i,a−1(tn−1)

)
exp

(
xi,a(tn−1)

)
+ o(∆t) (5.14a)

and equation (5.13c) becomes:

∆xi,0(tn) = C + log f∆t
i (otn)−∆t

ĥ∆t
tn−1

(0)

∆t
+ o(∆t) (5.14b)

The final step of our continuum limit derivation comprises three parts. First, at any
given time tn ∈ [0, T ], the constant C is independent of both the state and change-
point count. Thus, it is not required to infer the most probable state at interrogation
time, and we dismiss it from our upcoming SDEs. Second, the log f∆t

i (otn)-term from
all equations above may be treated as Ik in section 2.2.1. Namely, it produces the
drift and diffusion terms in equation (5.15a) below. Third, the remaining terms of
equation (5.14) yield an ODE upon dividing through by ∆t and letting ∆t→ 0. As

1Note that this assumption also requires a prior π close to uniform.
2Except for large at > A, as per assumption 1, of course.

78



final result, we obtain the following system of SDEs,

dxi,a(t) = mi,tdt+Di,tdWi,t

+

(
a+ α− 1

t+ β
·

exp
(
x1−i,a−1(t)

)
exp

(
xi,a(t)

) − a+ α

t+ β

)
dt (5.15a)

where mi,t = lim∆t→0
1

∆t
Eo[ln f

∆t
i (o)|St] and Di,t satisfies 〈Di,tWi,tDj,tWj,t〉 = Σij

t · t,
with Σij

t = lim∆t→0
1

∆t
Covo[ln f

∆t
i (o), ln f∆t

j (o)|St] for i, j ∈ Λ. The system (5.15a) is
valid for i ∈ Λ, t ∈ [0, T ], and 0 < a < A. When t > 0 and a = 0, equation (5.14b)
gives us instead:

dxi,0(t) = mi,tdt+Di,tdWi,t −
a+ α

t+ β
dt (5.15b)

Equation (5.13d) doesn’t cause any problem because of the truncation at < A. Fi-
nally, at t = 0, the prior belief over the states prevails, with all the probability mass
allocated to the 0-change-point nodes: xi,0(0) = log π(S = i).

Lastly, it is possible to implement the change of variables, Prt (i, a) := exp
(
xi,a(t)

)
,

in order to derive evolution equations for the approximate3 posteriors, Prt (i, a). Itô’s
formula [21] applied to equations (5.15) thus gives:

dPrt (i, a) = Prt (i, a)

[(
mi,t +

1

2

)
dt+Di,tdWi,t

]

+

[
a+ α− 1

t+ β
Prt (1− i, a− 1)− a+ α

t+ β
Prt (i, a)

]
dt (5.16a)

dPrt (i, a) = Prt (i, a)

[(
mi,t +

1

2
− a+ α

t+ β

)
dt+Di,tdWi,t

]
(5.16b)

5.3 Learning in the dynamic clicks task

We derive below, the equivalent of the system of SDEs (5.15) for an ideal observer
model in the dynamic clicks task. Just as in section 2.2.5, since the evidence is
pulsatile, the continuum limit will give rise to a system of jump ODEs. However, as
we will see, great care must be taken in this limiting procedure.

3Recall from section 2.2.1 how these continuum limits only represent ensemble statistics of the
log posterior odds ratio.
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Let us first remind our reader that with pulsatile evidence, tn denotes the time
bin

[
n∆t, (n + 1)∆t

)
, for some (n,∆t) ∈ N × (0,∞) satisfying (n + 1)∆t ≤ T .

Observation otn ∈ Ξ = {10, 01, 00}, is then the click count for each stream over time
bin tn, while the state Stn ∈ Λ = {0, 1} is defined as the n-th step of a discrete
time Markov chain with symmetric cross-state transition probability h∆t. Every
time we mention the limit ∆t → 0, it is understood that we simultaneously let
n → ∞ in such a way that n∆t → t for some t ∈ [0, T ]. Using such sampled-time
approximation of the continuous processes {St}t≥0, {ot}t≥0, all the derivations from
section 5.2 leading to equations (5.13) and (5.14) remain valid, with the caveat that
the likelihood functions should now be interpreted according to equations (2.19).

The two recurring terms in equations (5.13),

C + log f∆t
i (otn) (5.17)

are problematic when trying to divide through by ∆t and let ∆t→ 0. More specifi-
cally, the difficulty appears when otn ∈ {10, 01} is a single-click observation, at which
point the likelihoods f∆t

i (otn) scale linearly with ∆t (i = 0, 1). Dividing through by
∆t generates a singular term of the form log(∆t)/∆t. We distinguish two cases for
a fixed time bin tn:

Case 1: otn = 00 is a no-click observation

Case 2: otn ∈ {10, 01} is a single-click observation

In section 5.3.1 we explain why (C + log f∆t
i (otn))/∆t→ 0 as ∆t→ 0 for case 1. In

section 5.3.2, we show how the singularity problem from case 2 can be circumvented.

5.3.1 No-click time window (Case 1)

Our program is to show that that when otn = 00, the following equation holds for
any ∆t > 0, n > 1:

log
Pr
(
Otn−1

)
Pr (Otn)

+ log f∆t
i (otn) = 0 (5.18)

It is clear how this implies:

lim
∆t→0

C + log f∆t
i (otn)

∆t
= 0
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Our strategy is to show that,

Pr
(
Otn−1

)
Pr (Otn)

=
1

f∆t
i (otn)

(5.19)

To ease notation, we will equate n with the time index tn ∈ (0, T ), and denote by
S1:n := (S1, . . . , Sn), a realization of the first n steps of the environment. It will
also prove useful to define the set S i

n−1 (i ∈ Λ, n > 1) as the set of all paths S1:n−1

ending in state Sn−1 = i. Thus,
{
S i
n−1

}
i∈{0,1} is a 2-element partition of the set of

all environmental paths of length n− 1.

Using the law of total probability and the conditional independence of the obser-
vations on the states, we have,

Pr (On−1)

Pr (On)
=

∑
S1:n−1

Pr (S1:n−1)
∏n−1

j=1 f
∆t
Sj

(oj)∑
S1:n

Pr (S1:n)
∏n

j=1 f
∆t
Sj

(oj)
(5.20)

where the sums are over all corresponding finite paths of the environment chain.
Observe that the Markov property gives us,

P (S1:n) = P (Sn|S1:n−1)P (S1:n−1) = P (Sn|Sn−1)P (S1:n−1), ∀n > 1

Hence, we may rewrite (5.20) as:

P (On−1)

P (On)
=

∑
S1:n−1

P (S1:n−1)
∏n−1

j=1 f
∆t
Sj

(oj)∑
S1:n

f∆t
Sn

(on)P (Sn|Sn−1)P (S1:n−1)
∏n−1

j=1 f
∆t
Sj

(oj)
(5.21)

We now introduce yet another piece of notation to keep the equations as light as
possible:

F in−1 :=
∑

S1:n−1∈S i
n−1

P (S1:n−1)
n−1∏
j=1

f∆t
Sj

(oj). (5.22)

Our next step is to rewrite the right-hand side of equation (5.21) as:

F1
n−1 + F0

n−1∑
Sn∈Λ

[
f∆t
Sn

(on)P (Sn|Sn−1 = 1)F1
n−1 + f∆t

Sn
(on)P (Sn|Sn−1 = 0)F0

n−1

] (5.23)

Since the probability of a transition (Sn 6= Sn−1) within a single time step is4 h ·∆t,
expression (5.23) simplifies to,

P (On−1)

P (On)
=

F1
n−1 + F0

n−1

f∆t
1 (on)F1

n−1 + f∆t
o (on)F0

n−1 +K
, (5.24)

4We are aware that h is unknown in our current learning model. However, only the “notion” of
a transition rate will be used below, never the value of h by itself.
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with K defined by,

K := h ·∆t ·
[
f∆t

1 (on)F0
n + f∆t

0 (on)F1
n − f∆t

1 (on)F1
n − f∆t

0 (on)F0
n

]
(5.25)

When on = 00, equation (2.19) tells us that:

f∆t
1 (00) = f∆t

0 (00)

This has several important consequences. The first one is that K vanishes as the
likelihood terms appearing in its definition are equal. The second consequence is that
the likelihoods in the denominator of equation (5.24) may be factored out, thereby
proving equation (5.19). Equation (5.18) follows naturally from this.

5.3.2 One-click time window (Case 2)

In this second case, we separate the likelihood term into a singular and non-singular
part:

log f∆t
i (otn) = log(∆t) + log(λcase)

This suggests the following piecewise definitions of the new functions w and F i, for
i ∈ Λ, n > 1, and 0 < a < min{n− 1, A} (A ∈ N large):

w(tn) :=

 0 if otn = 00

log
P (Otn−1)

P (Otn)
+ log(∆t) if otn ∈ {01, 10}

(5.26)

and,

F 1 (tn, a,D) :=


ĥ∆t
tn−1

(a− 1) · exp(D)− ĥ∆t
tn−1

(a) if otn = 00

log λhigh + ĥ∆t
tn−1

(a− 1) · exp(D)− ĥ∆t
tn−1

(a) if otn = 01

log λlow + ĥ∆t
tn−1

(a− 1) · exp(D)− ĥ∆t
tn−1

(a) if otn = 10

(5.27)

The function F 0 only differs from F 1 by swapping the places of λlow and λhigh in
equation (5.27). We are now able to rewrite (5.14) as follows:

∆xi,a(tn) = w(tn) + F i
(
tn, a, x1−i,a−1(tn−1)− xi,a(tn−1)

)
(5.28)

Our strategy is to take the continuum limit of an auxiliary process, yi,a(tn), with
simpler update equations,

∆yi,a(tn) = F i
(
tn, a, y1−i,a−1(tn−1)− yi,a(tn−1)

)
. (5.29)

We now prove how knowledge of the system (5.29) is sufficient for recovering the
continuum limit of xi,a(tn) in equation (5.28).
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Recovering original system

We prove three points in this section, regarding the processes xi,a(tn), yi,a(tn), defined
above, and their respective continuum limits. Note that our results hold as long as
the initial conditions for both systems are identical, that is, xi,a(0) = yi,a(0), for all
i ∈ Λ, a < A.

Claim 1. For all a1, a2 ∈ N, for all s1, s2 ∈ Λ, and for all tn in the partition points,

xs1,a1(tn)− xs2,a2(tn) = ys1,a1(tn)− ys2,a2(tn). (5.30)

Proof. We first prove Eq. (5.30) for a1 = a − 1 and a2 = a by induction on tn. It
is true for t0 = 0 by assumption of the initial conditions. Next, if it is true for time
point tn−1, we have:

∆
(
xs1,a−1(tn)− xs2,a(tn)

)
:=
[
xs1,a−1(tn)− xs2,a(tn)

]
−
[
xs1,a−1(tn−1)− xs2,a(tn−1)

]
= ∆xs1,a−1(tn)−∆xs2,a(tn)

= F s1
(
tn, a− 1, x1−s1,a−2(tn−1)− xs1,a−1(tn−1)

)
− F s2

(
tn, a, x1−s2,a−1(tn−1)− xs2,a(tn−1)

)
= F s1

(
tn, a− 1, y1−s1,a−2(tn−1)− ys1,a−1(tn−1)

)
− F s2

(
tn, a, y1−s2,a−1(tn−1)− ys2,a(tn−1)

)
= ∆(ys1,a−1(tn)− ys2,a(tn)),

which entails that it is true for tn. By induction on a, the general result follows.

We will show in section 5.3.3 how the continuum limit of yi,a(tn) may be taken.
Claim 1 implies both that the continuum of xi,a(tn) exists and that equations (5.30)
hold for all continuous time point t ∈ [0, T ]. The next claim shows us how the
original system might be recovered from the auxiliary process via a normalization
procedure.

Claim 2. Whether t corresponds to a time point of the discrete or the continuous
time system, xi,a(t) may be recovered from yi,a(t) via the following equations:

xi,a(t) = yi,a(t)−Kt, (5.31)

where,

Kt = log
∑
a

(
exp

(
y1,a(t)

)
+ exp

(
y0,a(t)

))
.
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Proof. From results 1 and 2, we obtain xs,a(t)− xs0,a0(t) = ys,a(t)− ys0,a0(t) for any
fixed a0 and s0. Then, xs,a(t) = ys,a(t) + xs0,a0(t) − ys0,a0(t) for all a and all s. So,
we have that xs,a(t) = ys,a(t)−Kt, where Kt = ys0,a0(t)− xs0,a0(t) does not depend
on a nor on s.

Now, to find Kt in xs,a(t) = ys,a(t)−Kt we take

exp
(
xs,a(t)

)
=

exp
(
ys,a(t)

)
exp (Kt)

. (5.32)

Then, since exp
(
xi,a(t)

)
is encoding probabilities, we obtain

1 =

∑
a

[
exp

(
y1,a(t)

)
+ exp

(
y0,a(t)

)]
exp (Kt)

. (5.33)

Then,

Kt = log
∑
a

(
exp

(
y1,a(t)

)
+ exp

(
y0,a(t)

))
.

5.3.3 Continuum limit

Let t ∈ [0, T ] be any non-click time, and (tn)n∈N the sequence of times that converges
to t as ∆t → 0. Then, we have already established how equations (5.29) yield the
following system of ODEs, indexed by (i, a) ∈ Λ× N<A:

dyi,a(t)

dt
=
a+ α− 1

t+ β
exp

(
y1−i,a−1(t)− yi,a(t)

)
− a+ α

t+ β

When t is a 01-click time, and (tn)n∈N is defined as before, the continuum limits
become:

dy1,a(t)

dt
= log(λhigh) +

a+ α− 1

t+ β
exp

(
y0,a−1(t)− y1,a(t)

)
− a+ α

t+ β
,

dy0,a(t)

dt
= log(λlow) +

a+ α− 1

t+ β
exp

(
y1,a−1(t)− y0,a(t)

)
− a+ α

t+ β

The 10-click time case is similar, exchanging the places of λlow and λhigh in the
equations.
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If we denote by {ri}i∈R and {`i}i∈L the times of the 01 and 10 observations
respectively, we may combine the previous equations as follows:

dyi,a(t)

dt
=
∑
j∈R

Ci
01δ
(
t− rj

)
+
∑
k∈L

Ci
10δ (t− `k)

+
a+ α− 1

t+ β
exp

(
y1−i,a−1(t)− yi,a(t)

)
− a+ α

t+ β
, (5.34)

where C1
01 = C0

10 = log λhigh and C1
10 = C0

01 = log λlow as given by table 5.1. We

observation C1 C0

01 log λhigh log λlow

10 log λlow log λhigh

Table 5.1: Definition of the constants in front of the delta-jumps in equa-
tion (5.34).

finally implement the following simplifications to the model. When t is a 01-click
time, we can consider:

dy1,a(t)

dt
= log

(
λhigh

λlow

)
+
a+ α− 1

t+ β
exp

(
y0,a−1(t)− y1,a(t)

)
− a+ α

t+ β

dy0,a(t)

dt
=
a+ α− 1

t+ β
exp

(
y1,a−1(t)− y0,a(t)

)
− a+ α

t+ β

When t is a 10-click time, we can consider:

dy1,a(t)

dt
=
a+ α− 1

t+ β
exp

(
y0,a−1(t)− y1,a(t)

)
− a+ α

t+ β

dy0,a(t)

dt
= log

(
λhigh

λlow

)
+
a+ α− 1

t+ β
exp

(
y1,a−1(t)− y0,a(t)

)
− a+ α

t+ β

So, for i ∈ Λ, we obtain5:

dyi,a(t)

dt
= κ

∑
j∈R

iδ
(
t− rj

)
+ κ

∑
k∈L

(1− i)δ (t− `k)

+
a+ α− 1

t+ β
exp

(
y1−i,a−1(t)− yi,a(t)

)
− a+ α

t+ β
5With the convention that 0δ(0) = 0.
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5.4 Summary

The recursive equations for the evolution of the joint posterior over the state and
change-point count may be transformed, via a limiting procedure, into a system of
continuous time differential equations. For continuously arriving evidence, the re-
sulting equations are SDEs. Just as in the known hazard rate case, the interpretation
of these decision variables requires some care. Their distribution approximates that
of the log posterior of an ideal observer, for a fixed realization of the environment.
For the case of pulsatile evidence, however, such limitations don’t apply. The deci-
sion variables from the jump ODEs are exactly6 the log posterior values of an ideal
observer.

The systems of equations obtained in this section, albeit truncated, remain in-
tractable as such. This calls for approximation methods. Of course, the question of
what algorithm and mechanisms the animal brain uses remains open.

6Up to a normalization constant.
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Chapter 6

Conclusions

In this work, we have developed and studied mathematical models of sequential
decision making that find applications in contemporary neuroscience experiments.

One such experiment is the dynamic clicks task [34] in which rats must identify
which of two inhomogeneous Poisson streams possesses the highest click rate, at the
end of a trial. We derived two classes of ideal observer models for this task. The
first model is one that assumes the hazard rate known. Although already present
in [34], we hope to have established, in section 2.2.5, a solid mathematical formalism
to explain why this model is Bayes-optimal. The second model is one that learns the
hazard rate. We showed in section 5.3 how this latter model shares great similarity
with a learning model for continuously arriving evidence.

Concerning the known hazard rate model, we could establish some numerical
results in chapter 3. Firstly, we found that, with the correct time rescaling, only two
effective task parameters determine the accuracy of the model’s decisions. Secondly,
we designed methods to fit, both the ideal observer model and an approximate linear
model, to choice data. Our fitting method also encompasses a noisy version of each
model, in which multiplicative Gaussian noise is applied to the evidence gained on
each click.

Another task which falls within our scope is the triangles task [23]. Here, a human
subject is presented with a star, which is randomly sampled on every trial from one
of two potential spatial distributions. The task consists in identifying the source
distribution. This task lends itself well to discrete time modeling. In spite of the
fact that ideal observer models assuming the hazard rate known already existed, no
algorithm, to our knowledge, solved the decision making task in a Bayes-optimal way
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by learning the hazard rate on-line. This is exactly the solution that we developed
in chapter 4.

The third task at which our models are directly targeted is the dots reversal
task [23]. On each trial, a cloud of moving dots appears, a fraction of which moves
coherently in one of two directions. This direction of motion alternates back and forth
during the trial at unpredictable times, while the remaining dots move in random
directions. The task is to identify the direction in which the coherent dots were
moving at the end of the trial. For this task, a continuous time Bayes-optimal model
may be derived as a continuum limit of the discrete time model from the triangles
task. The case of a known hazard rate was published in [23] and [49]. In chapter 5,
we extended these models to the case of an unknown hazard rate.

An overarching question of theoretical neuroscience is: What computations does
the brain perform? One may also ask whether some algorithmic principles exist, to
help understand such computations. A fruitful hypothesis is that Bayesian inference
is a candidate such principle [25, 7]. At the same time, there are countless ways
in which such hypothesis may be challenged [39]. The main reason is that it is ex-
tremely hard to probe what representations an animal brain possesses of a likelihood
function, a prior, and a reward structure. Aside from these almost neurophysiological
questions, we believe that sutdying Bayesian models of sequential decision making
is useful for at least three reasons.

First, even considering the animal brain as a black box, the experimenter still
has the freedom to impose the mathematical structure of their choice on the task.
Bayesian inference can be seen as a mathematical exploitation of such structure.
As scientists, deriving and analyzing Bayes-optimal models provides us, at the very
least, with an intuition on what task components are relevant to maximizing the re-
ward. Our determination of the effective parameters in the dynamic clicks task is a
good example of this. Second, ideal observer models allow a quantitative benchmark-
ing of accuracy and other dependent task variables. For each combination of task
parameters, they provide an upper bound on the animal performance that we can
expect. Last but not least, Bayes-optimal models are often a stepping stone towards
approximation schemes that may be more realistic for the brain to implement [27, 48].
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Appendix A

Numerical methods for free
response protocol

The free response protocol is simulated by evolving the update equation (4.19) and
subsequently computing the log likelihood ratio yn := logRn using equation. (4.20) at
each timestep n. Each point along the curves in figure 4.4C corresponds to an average
waiting time and average performance corresponding to a threshold value θ over
100,000 simulations. For each value of θ, the simulation is terminated when |yn| > θ
and the choice is given by the sign of yn. To avoid excessively long simulations, we
removed any that lasted longer than n = 5000, but we found changing this upper
bound did not affect averages considerably. There were 400 values of θ chosen,
discretizing the interval from θ = 0 to θ = 3.89.
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Appendix B

Misattribution noise for pulsatile
evidence

We now repeat the derivations from section 2.2.5, with the relaxed assumption that
the location of each click may be miss-attributed with fixed probability q. We do
not model the possibilities of a ‘Miss’ nor of a ‘False Alarm’ for perceiving a click.
We start by introducing a new piece of notation:

• Given a true stimulus otrue at a single time point, we denote by o the perceived
stimulus.

• Hence, q := Pr (o 6= otrue) for o, otrue ∈ {01, 10}, and Pr (o 6= otrue) = 0 other-
wise.

• The likelihood for the perceived stimulus is written f̃ , as opposed to f in
section 2.2.5.

The full likelihoods in a small interval ∆t are:

f̃∆t
1 (01) = Pr

(
otrue = 01|+

)
Pr
(
o = 01|otrue = 01,+

)
+ Pr

(
otrue = 10|+

)
Pr
(
o = 01|otrue = 10,+

)
(B.1)

= qf∆t
1 (10) + (1− q)f∆t

1 (01) (B.2)

= q(λlow∆t+ o(∆t)) + (1− q)(λhigh∆t+ o(∆t)) (B.3)

=
[
qλlow + (1− q)λhigh

]
·∆t+ o(∆t) (B.4)
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And similarly,

f̃∆t
1 (10) =

[
qλhigh + (1− q)λlow

]
·∆t+ o(∆t) (B.5)

f̃∆t
0 (01) =

[
qλhigh + (1− q)λlow

]
·∆t+ o(∆t) (B.6)

f̃∆t
0 (10) =

[
qλlow + (1− q)λhigh

]
·∆t+ o(∆t) (B.7)

In all other cases, f̃∆t = f∆t and equations (2.19) still hold. Equation (2.7) now
becomes:

log
f̃∆t

1 (o)

f̃∆t
0 (o)

=



log

[
qλhigh + (1− q)λlow

]
·∆t+ o(∆t)[

qλlow + (1− q)λhigh

]
·∆t+ o(∆t)

, if o = 10

log

[
qλlow + (1− q)λhigh

]
·∆t+ o(∆t)[

qλhigh + (1− q)λlow

]
·∆t+ o(∆t)

, if o = 01

log
o(∆t)

o(∆t)
, if o = 11

log
1− (λlow + λhigh)∆t+ o(∆t)

1− (λlow + λhigh)∆t+ o(∆t)
, if o = 00

(B.8)

The SPRT still holds with the new likelihoods. Equation (2.20) becomes:

log
f̃+(o)

f̃−(o)
=



log
qλhigh + (1− q)λlow

qλlow + (1− q)λhigh

= −κq, if o = 10

log
qλlow + (1− q)λhigh

qλhigh + (1− q)λlow

=: κq, if o = 01

0, if o = 11
0, if o = 00

(B.9)

Since q ∈ [0, 1], the numerator and denominator in f̃+(o)/f̃−(o) are convex linear
combinations of λlow and λhigh. We deduce the following: |κq| ≤ |κ| and:

• κ · κq > 0 if q < 1/2

• κ · κq < 0 if q > 1/2

• κq = 0 if q = 1/2

• κq = κ if q = 0 and κq = −κ if q = 1

In this setting, the new proxy for the SNR would be κq, and we can observe that for
0 ≤ q ≤ 1/2, κq is a decreasing function of q. Values of q > 1/2, when q is known
to the ideal-observer, is equivalent to inverting the favored states of the right- and
left-perceived clicks.
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