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Abstract

We investigate how the network topology of social networks impacts decision

making. First we look at sequential models of decision making with feedforward

network toplogies. We see how rational agent incorporate knowledge of the net-

work topology in order to make an optimal estimate of an unknown parameter.

We give a condition for making this optimal estimate in terms the row space of a

matrix which encodes the network topology. We then show what this condition

means for infinitely large networks. Then we extend a model of evidence accumu-

lation for a two-alternative task to general networks where agents are allowed to

communicate decisions. We detail the process rational agents must undergo and

give detailed computations of the process for basic network structures.
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Chapter 1
Introduction

When making decisions in natural or economic situations, agents typically rely

on the processing of information to choose whether and how to act. This infor-

mation may come from observations of the environment, or it may be shared by

other agents as they take actions or communicate information. Here we refer to

anything capable of using information to decide on an action as an agent. This

could be an animal in the wild or in a lab, a human deciding on whether to make

a particular purchase, or a robot deciding where to move to based on a goal and

the locations of its neighbors. We will frequently assume that the agents are ra-

tional: There is some measure of success or reward that depends on their actions,

and they use all available information to maximize this reward [41]. For instance,

agents trying to make an estimate of some real valued parameter, s, might want

to make an estimate ŝ which maximizes the expected value of

u(ŝ) = −(s− ŝ)2. (1.0.1)
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In many situations, an agent acting as part of a group will, on average, out-

perform an agent working alone. Agents in a network can share information, and

can thus be expected to do better than any individual agent relying solely on in-

formation it has gathered on its own. Typically not all agents can interact with

each other. This may be due to limited bandwidth or physical distances between

agents. Such constraints are modeled by specifying which pairs of agents interact,

and which do not. Formally, we identify agents with a set of vertices, V, of a graph

(network). The set of all possible pairwise, directed interactions defines the set of

edges, E, in this network [30] which we will also refer to as the network topol-

ogy. We will always consider directed graphs, where edges have an orientation

which indicate that one agent is a source of information that is communicated to

another agent. In Chapters 4, 5, and 6 we allow return edges, so that two agents

can provide information to each other. When two vertices are connected by an

edge, we will informally say that the agents are neighbors, but we will formally

define neighborhoods when we need to use them.

In the following we assume that agents can acquire two types of information:

private and social. We refer to the information an agent receives from its neighbors

as social information, and the information that is available through other sources,

such as observations or measurements of environmental variables, as private in-

formation. Private information can be shared, and thus become social. An agent

shares social information only with its neighbors, that is agents at the head of

edges pointing from the agent. Thus social information transmitted by one agent
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is not necessarily available to all agents in the network. However, social informa-

tion can propagate through a network, and reach all agents eventually.

As each agent only has access to the social information communicated by its

neighbors, different agents will typically have different information at any point

in time, and may reach different decisions. Moreover, it is not clear that agents

will make use of all information that is available to the totality of agents in the

network, especially when they are not connected to all of the agents. To evaluate

how well the agents are working together, one must compare their performance

to that of a global agent: an idealized actor who has access to all information in

the network and uses it to maximize its reward, or the probability of being correct.

This global agent has access to the private information of all individuals and can

use all this information unobstructed by the constraints of the network.

As an example, suppose that every agent has a private, i.i.d. signal about

which of two choices is better. Assume that none of the signals are completely

reliable, butmare independent. In this case, it would be better to poll all agents

about which choice they think is better and follow the majority than to select some

agent at random and go with its choice. Indeed, an early version of the Law of

Large numbers known as Condorcet’s Jury Theorem states that the majority will

choose the better option with probability 1, as the number of agents grows to

infinity, if all agents are equivalent and every agent has a better than even chance

of choosing the better option (see [17]). An agent who is able to poll all others

would thus be able to make the best use of the information from this collective. In

general, we will make no assumption that such an agent is part of the network,
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but will use a fictitious global agent for comparison.

Thus the social information available to an agent is typically weaker than the

information available to a global agent. Social information can be the result of an

inference or a decision. In the case of an inference, the agents infer the state of

some variable in the environment, and can communicate the inferred value (this

can be a vector). Thus if an agent receives the inferred value it can learn some-

thing about the variable it does not directly observe. However, the agent may

not learn as much as if it directly received all the information the communicat-

ing agent used to make the inference. In the case of a decision, the agents will

make a choice between different options based on the information that they have

received, and this choice is what is communicated to their neighbors. Here agents

learn something about the belief of other agents, but may not know how certain

the neighbors are that their choice is correct. In both cases, the information com-

municated (inferred value or decision) is not the same as the information that is

available to the communicating agent and is less informative than what a global

agent has access to.

The unifying theme of the work that follows is to identify structural obstacles

to the performance of rational agents in a network. We will do so by comparing

the performance of a global agent making use of all information in the network to

that of agents making the best use of their private information and the social infor-

mation communicated by their neighbors. How does the network topology (“who

talks to whom”) affect the computations and performance of rational agents, and

the group as a whole?

4



1.1. DECISION MAKING AGENTS

We will assume that each agent makes some or all of its private information

public (social) by communicating it to its neighbors on the network. Interestingly,

in some cases rational agents will discard their private information and only base

decisions on social information. This can happen even when agents optimally

use all available information, as we discuss below. As a result, the performance

of agents in the network can, on average, be much worse than if agents work

independently. Thus it is not always beneficial for a group of rational agents to

exchange information: The information generated by a small subset of agents can

dominate the decisions of the collective. In general the decisions based on a frac-

tion of the information available to the collective will not be as good as that based

on all the information.

In the remainder of this chapter, we give an overview of some of the main the-

oretical results and concepts in the literature. After going over the main assump-

tions of our models, we focus on sequential models of decision-making agents

where actions (choices which communicate some of an agent’s belief about cor-

rect decision to its neighbors) are done in a predefined order and next examine

models where agents are continuously integrating information. We conclude this

chapter by previewing the rest of the themes in this work.

1.1 Decision Making Agents

In the following, a set of agents is attempting to determine a true state, s, of the

world in order to choose an action. Initially we only model the process of inferring

5



1.1. DECISION MAKING AGENTS

this hidden state of the world. In practice, this state could be some aspect of the

environment that can be inferred from a stimulus (like which direction a sound is

emanating from) or more simply the presence or absence of something of interest

to the agent. Thus in some setups s can take a continuum of values, s ∈ R, while

in others s can be discrete. For instance, s ∈ {H−, H+}, when an agent is deciding

between two hypotheses.

To determine what s is, agents will gather both private and social information,

which we can generically denote by I. Private information could come from ob-

servations (measurements) of the state of the world. We will frequently assume

that private information is independent between agents conditioned on the state

of the world. Thus, any measurement errors are uncorrelated between the agents.

This assumption of independence is unlikely to hold in the real world, but makes

the models much more tractable. Even though we assume the private observa-

tions are independent, when an agent receives social information from multiple

neighbors this information will be dependent. How agents deal with such net-

work induced correlations is the topic of a major part of this work.

We consider Bayesian agents who compute the posterior of the distribution

over the parameter, s, given the information I. The goal of these agents is to

decide what state s best matches the given information. Such agents can use a

maximum likelihood estimate based on this posterior, maxs p(s|I), to obtain this

estimate. Agents will perform actions based on which state maximizes their pos-

terior distribution, and, in some instances, agents will not perform an action until

they have sufficient evidence; that is, until the posterior probability of some state

6



1.2. UNDERLYING ASSUMPTIONS AND AUMANN’S THEOREM

is sufficiently large.

1.2 Underlying Assumptions and Aumann’s Theorem

The decision-making processes we investigate all rely on a number of underlying

assumptions. Even though agents do not always have access to the private signals

of others they typically know how the signals are distributed, conditioned on the

possible true states of the world. That is, while agents are not aware of the private

measurements of the other agents unless these are communicated, they do know

the probability distribution of those measurements, given a private signal s. Thus

agents know each others’ measurement error distributions.

Agents also know who communicates with whom in the entire network. Thus

agents have knowledge of the entire network topology. Furthermore, agents as-

sume that other agents are rational, and are optimally incorporating all the private

and social information that reaches them. Thus all agents are aware of the deci-

sion making procedure of all other agents, or how each agent translates private to

shared information (and this procedure will be common to all agents on the net-

work). Moreover, each agent knows that the other agents know this, and so on, ad

infinitum.

This collection of assumptions, that agents know what other agents know

about them, etc., is an example of what is referred to as common knowledge [2].

Even though it strictly only applies to finite partition information spaces, where

7



1.3. HERDING

the true state, s, is only known to lie in one of finitely many disjoint sets com-

prising the total state space, the concept of common knowledge is useful for un-

derstanding how agents incorporate each other’s decisions and for formally stat-

ing how the decision process works. The main result in [2] shows that when two

agents start with the same prior, and the posteriors of two agents about the correct

state s are common knowledge, those posteriors have to be equal. This condition

is quite restricitve, but has been extended in [27] to show how agents who have

the same priors can sequentially announce posteriors and eventually converge to

a common posterior. This process of sharing information and eventually converg-

ing to a belief can be generalized using martingales [41, 22, 58].

1.3 Herding

Even networks of rational agents can be dominated by the social information of

a small subgroup. Banerjee presented a simple model of this phenomenon which

has since been termed herding behavior [5]. In Banerjee’s model, a sequence of

agents make and announce decisions sequentially about true value of some vari-

able s ∈ [0, 1], based on a private observation and the previously announced de-

cisions. Here each agent’s private observation will be a private signal that can be

correct, misleading, or uninformative. In the absence of other decisions, agents

will make a decision according to their private information. By design, no two

agents will have the same misleading private signal. Thus when two agents an-

nounce the same decision, either they both received the correct signal, or the first

8



1.3. HERDING

agent had a misleading signal and the second agent copied it because it received

an uninformative signal.

As a result agents will throw away their private information when two previ-

ous agents agree. In the worst case scenario, the first agent to announce can get

a misleading signal, and the second agent can get an uninformative signal and

thus copy the decision of the first agent. Then every other agent will act optimally

by discarding its private information and copying the first decision, causing the

entire network to be wrong.

In this model agents throw away their private information in favor of incor-

rect social information with nonzero probability. Moreover, the decisions of a

finite number of agents will almost always dominate the decisions of the entire

network even when it is infinitely large. Thus, after finitely many agents commu-

nicate their decisions all agents will throw away their private signal and go with

the rest of the group with probability equal to 1. This behavior, where all agents

make optimal decisions based on the available information, but infinitely many

agents discard private information for the social information communicated by a

finite subset is known as herding. In [26], Banerjee’s work was extended to more

general networks, and the dependence of herding behavior on network toplogy

was explained. In [50], herding is described more generally, along with the oc-

currence of different undesirable behaviors such as cases of social information

becoming uninformative forcing agents to rely only on their private information.

We will discuss the issues of herding. However, the herding model in [5] dif-

fers from the one we consider because of the structure of the private information.
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1.4. PROBABILISTIC NETWORK HERDING

Herding would not occur in a network that has the structure of that in the Banerjee

model, where each agent infers and communicates the value of a variable s based

on an unbiased measurement with normally distributed error. The difference here

is due to the fact that in the prior setup, the decisions are not sufficient statistics for

an agents’ belief: An agent’s decision does not always fully describe what private

information the agent had. The issue of herding is more relevant for Chapters 4-6

where there is a combination of social and private information, but we will see a

related example in Chapter 3, where the private observation of a single agent has

a disproportionate impact on the estimate of all agents in a network.

1.4 Probabilistic Network Herding

While the example of herding behavior described above has generated much in-

terest, it is fairly specific. In particular, the original study did not consider how

network structure can impact herding. In [26] the process is detailed for more

general topologies, including ones changing stochastically. This can be thought

of as allowing uncertainity about the communication structure: an agent receives

information from neighbors but does not know with certainty where this social

information originated. All agents are aware of the probabilistic structure of the

network topology, each agent gets a private signal, and each agent communicates

its decision according to the network structure.

This, and similar studies, examined the impact of network topology on asymp-

totic learning: Assume no signal (measurement) received by an agent is perfectly

10
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informative. This means that there is no signal ξ and state s such that P(s|ξ) = 1.

Then for a fixed finite network size, regardless of how information is exchanged

between agents, there is always some chance that the agents who decide last in

the process will make the incorrect decision, even if this is a global agent with

knowledge of all private signals. However, if the network size is allowed to grow

asymptotically, asymptotic learning means that agents later in the process con-

verge to the correct decision with probability approaching 1 as the network size

increases.

Hence asymptotic learning is related to herding. If all agents only rely on a

small subset of agents to base their decisions, then their probability of making

the correct decision is bounded below 1. The conditions for which asymptotic

learning occurs are dicussed in [26] and depend on whether private beliefs are

bounded and whether the network contains “expanding structures.”

The private beliefs of agents are bounded when anytime an agent receives a

signal ξ about the state s, then P(ξ |s) ∈ [ε, 1 − ε] for some 0 < ε < 1. One

way to think of expanding structures is to consider their complement: networks

where all agents only observe a small pockets of agents. Asymptotic learning will

typically occur with weak requirements on the structure when private beliefs are

not bounded. When they are bounded, then the network has to have expanding

structures, otherwise the beliefs of a small group of agents take over and prevent

asymptotic learning with high probability.

11
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1.5 Sequential Parameter Estimation in Feedforward

Networks

In Chapter 2 we look at information sharing in networks with no cycles, i.e., di-

rected networks where there are no paths from an agent back to itself, and all

agents have a path to a common final agent. Our goal is to investigate how ratio-

nal agents estimate the parameter s when the information they receive from other

agents is redundant.

Early models of information sharing relied on computationally tractable in-

teractions, such as the majority rule assumed in Condorcet’s Jury Theorem [17],

or local averaging assumed in the DeGroot model [19]. More recent models rely

on the assumption of rational (Bayesian) agents who use private signals, mea-

surements or observations of each other’s actions to maximize utility. Such mod-

els of information sharing are often used in the economics literature, sometimes

in combination with ideas from game theory. For instance, in a series of papers

Mossel, Tamuz, and collaborators considered the propagation of information on

an undirected network of rational agents, and showed that all agents on an ir-

reducible graph integrate information optimally in a finite number of steps [40].

A similar setup was used by Acemoglu et al. to examine herd behavior in a net-

work [1]. Mueller-Frank considered model social networks where private infor-

mation of each agent is represented by a finite partition of the state space [44], and

showed that in networks of non-Bayesian agents information is typically not ag-

gregated optimally, but optimality is achieved in the presence of a single Bayesian

12
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agent [45]. These, and related works [29], refer to such abstract models as “social

networks”, and we follow this convention for simplicity. However, we note that

this is at odds with the more traditional definition of this term [56].

Simplified models about how information is exchanged are also used in the po-

litical science literature to explain tendencies observed in social groups, and to fit

to data. For example, Ortoleva and Snowberg used dependent Gaussian random

variables to model the experimentally observed neglect of redundancies in infor-

mation received by human observers [24]. They used this model to show how

neglect of correlations can explain overconfidence in a sample of 3000 adults from

the 2010 Cooperative Congressional Election Study (CCES) [46]. On the other

hand, Levy and Razin show that similar correlation neglect can also lead to posi-

tive outcomes, as observers rely on actual information in forming opinions, rather

than political orientation [36].

Such social network models of information propagation are generally either

sequential or iterative. In sequential models, agents are ordered and act in turn

based on a private signal and the observed action of their predecessors [5, 9]. In

iterative models, agents make a single or a sequence of measurements, and itera-

tively exchange information with their neighbors [26, 40]. Sequential models have

been used to illustrate information cascades [10], while iterative models have been

used to illustrate agreement and learning [42].

In Chapter 2, we use a sequential model of information propagation and we

identify conditions on the connection matrix (a subset of the adjacency matrix,

which encodes the network topology) that hinder information propagation. and

13
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relate this to graphical conditions on the network. We then identify which net-

works display the worst performance and, along with the simulations described

in Chapter 3, we investigate performance as the size of the network grows.

1.6 Evidence Accumulation in Networks

In the last chapters, we review a model of evidence integration that has been com-

monly used to describe how a rational agent chooses between two options, and

generalize it do describe a network of decision makers. Here, each agent is as-

sumed to accumulate information through a sequence of measurements in order

to choose one of two options when it has acquired a sufficient amount of evidence.

These measurements are conditionally independent samples from one of two pos-

sible evidence distributions which the agent integrates to obtain the log likelihood

ratio between the posterior probabilities of the two options. The agent then uses

the classical Sequential Probability Ratio Test to make a decision ([20, 55]. This

process is defined for measurements occurring in discrete time, but can be approx-

imated by a continuous, drift–diffusion process [13]. The continuous approxima-

tions has been used to describe the activity of single neurons [28] and populations

of neurons [37] that perform a similar computation.

In Chapter 4, we discuss this Drift Diffusion Model (DDM) of evidence accu-

mulation in more detail. We then extend the DDM to the case of agents communi-

cating their choices, but not individual observations, to their neighbors. We next

describe the behavior of a pair of agents interacting unidirectionally, that is, when

14
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only one agent in the pair is sharing its actions. In Chapter 5 we describe the inter-

action when the pair of agents are bidirectionally coupled so that both are sharing

their actions. Then in Chapter 6, we consider larger networks, and investigate two

important contrasting network structures: a fully connected clique and agents ar-

ranged in a line. Finally, we look at results of simulations and use them to provide

seveval conjectures.
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Chapter 2
Feedforward Networks

While there are billions of people on the planet, we exchange information with

only a small fraction of them. How does information propagate through such

social networks, shape our opinions, and influence our decisions? How do our in-

teractions impact our choice of career or candidate in an election? More generally,

how do we as agents in a network aggregate noisy signals to infer the state of the

world?

These questions have a long history. The general problem is not easy to de-

scribe using a tractable mathematical model, as it is difficult to provide a rea-

sonable probabilistic description of the state of the world. We also lack a full

understanding of how perception [15, 6], and the information we exchange [3]

shapes our decisions. Progress has therefore relied on tractable idealized models

that mimic some of the main features of information exchange in social networks,

some of which we described in Section 1.5.
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In this chapter, we consider social networks in which information propagates

directionally across layers of rational agents. We assume that agents want to es-

timate the true value of some parameter. Thus their utility function could be the

negative square-difference seen in (1.0.1). To do so they use measurements (pri-

vate information), as well as estimates communicated by their neighbors (social

information). We assume that each agent makes a locally optimal estimate of the

parameter based on this information, and communicates this estimate to agents

downstream.

However, when agents receive information from a common source their es-

timates are correlated. We show that the resulting redundancy can lead to the

loss of information about the parameter across layers of the network, even when

all agents have full knowledge of the network’s structure and make optimal use

of all available information. A simple algebraic condition identifies networks in

which information loss occurs, and we show that all such networks must contain

a particular network motif.

2.1 Setup

Here we consider a sequential model in which information propagates direction-

ally through layers of rational agents. The agents are part of a structured network,

rather than a simple chain. As in the sequential model, we assume that informa-

tion transfer is directional, and the recipient does not communicate information

back to its source or sources. This assumption could describe the propagation of
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information via print or any other fixed medium.

We assume that at each step, a layer of agents receive information from those in

a previous layer. This is different from previous sequential models where agents

received information in turn from all their predecessors as in [5, 23, 57] and [7].

Importantly, the same information can reach an agent via multiple paths. There-

fore, information received from agents in the previous layer can be redundant.

Unlike in models of information neglect [46], we assume that agents take into

account these redundancies in making decisions. We show that, depending on

the network structure, even rational agents with full knowledge of the network

structure cannot always resolve these redundancies. As a result, an estimate of

the state of the world can degrade over layers. We also show that network archi-

tectures that lead to information loss can amplify an agent’s bias in subsequent

layers.

As an example, consider the network in Fig. 2.1.1(a). We assume that the first-

layer agents make measurements x1, x2, and x3 of the state of the world, s, and that

these measurements are unbiased, normally distributed, and have equal variance.

This assumption means that minimum-variance unbiased estimators for these pa-

rameters are always linear combinations of individual measurements [32]. Each

agent makes an estimate, ŝ(1)1 , ŝ(1)2 , and ŝ(1)3 , of s. The superscript and subscript

refer to the layer and agent number, respectively. An agent with global access to

all first-layer estimates would be able to make the optimal (minimum-variance)

estimate ŝideal =
1
3

(
ŝ(1)1 + ŝ(1)2 + ŝ(1)3

)
of s.

All agents in the first layer then communicate their estimates to one or both of
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a
(1)

1

(1)

2

(1)

3a a Layer 1

Layer 2

(a) (b)

Fig. 2.1.1: Illustration of the general setup. Agents in the first layer (top layer in
the figure) make measurements, x1, x2, and x3, of a parameter s. In each layer
agents make an estimate of this parameter, and communicate it to agents in the
subsequent layer. Arrows indicate the direction in which information is propa-
gated. We show that information about s degrades across layers in the network in
panel (a), but not in the network in (b).

the second-layer agents. These in turn use the received information to make their

own estimates, ŝ(2)1 = 1
2(ŝ

(1)
1 + ŝ(1)2 ) and ŝ(2)2 = 1

2(ŝ
(1)
2 + ŝ(1)3 ). An agent receiv-

ing the two estimates from the second layer then takes their linear combination

to estimate s. However, in this network no linear combination of the locally op-

timal estimates, ŝ(2)1 and ŝ(2)2 , equals the best estimate, ŝideal, obtainable from all

measurements in the first layer. Indeed,

ŝ = β1 ŝ(2)1 +β2 ŝ(2)2 = β1

(
ŝ(1)1 + ŝ(1)2

)
+β2

(
ŝ(1)2 + ŝ(1)3

)
6= ŝideal =

1
3

(
ŝ(1)1 + ŝ(1)2 + ŝ(1)3

)
,

with the inequality holding for any choice of β1,β2. Moreover, assume the esti-

mates of first-layer agents are biased, and ŝ(1)i = xi + bi. If the the other agents

are unaware of this bias, then, as we will show, the final estimate is ŝ = ( 1
4 , 1

2 , 1
4) ·

(ŝ(1)1 + b1, ŝ(1)2 + b2, ŝ(1)3 + b3) = ( 1
4 , 1

2 , 1
4) · ŝ(1) + ( 1

4 , 1
2 , 1

4) · (b1, b2, b3). Thus the bias
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of the second agent in the first layer, a(1)2 , has disproportionate weight in the final

estimate.

In this example the information about the state of the world (parameter), s,

available from second-layer agents is less than that available from first-layer agents.

In the preceding example the measurement x2 is used by both agents in the sec-

ond layer. The estimates of the two second-layer agents are therefore correlated,

and the final agent cannot disentangle them to recover the ideal estimate. We will

show that the type of subgraph shown in Fig. 2.1.1(a), which we call a W-motif,

provides the main obstruction to obtaining the best estimate in subsequent layers.

2.2 The Model

We consider feedforward networks having n layers and identify each node of a

network with an agent. The structure of the network is thus given by a directed

graph with agents occupying the vertices. Agents in each layer only communicate

with those in the next layer. For convenience, we will assume that layer n consists

of a single agent that receives information from all agents in layer n − 1 . This

final agent in the last layer therefore makes the best estimate based on all the

estimates in the next-to-last layer. We will use this last agent’s estimate to quantify

information loss in the network. Two example networks are given in Fig. 2.1.1,

with the single agent in the final, third layer not shown.

We assume that all agents are Bayesian, and know the structure of the network.
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Every agent estimates an unknown parameter, s ∈ R, but only the agents in the

first layer make a measurement of this parameter. Each agent makes the best pos-

sible estimate given the information it receives and communicates this estimate

to a subset of agents in the next layer. We also assume that measurements, xi,

made by agents in the first layer are independent and normally distributed with

mean s, and variance σ2
i , that is xi ∼ N (s,σ2

i ). Furthermore, every agent in the

network knows the variance of each measurement in the first layer, σ2
i . Also, for

simplicity, we will assume that all agents share an improper, flat prior over s. This

assumption does not affect the main results.

An agent with access to all of the measurements, {xi}i, has access to all the

information available about s in the network. This agent can make an ideal es-

timate, ŝideal = argmaxs p(s|x1, ..., xn). We assume that the actual agents in the

network are making locally optimal, maximum-likelihood estimates of s, and ask

when the estimate of the final agent equals the ideal estimate, ŝideal.

Individual Estimate Calculations Each agent in the first layer only has access

to its own measurement, and makes an estimate equal to this measurement. We

therefore write ŝ(1)i = xi. We denote the jth agent in layer k by a(k)j . Each of

these agents makes an estimate, ŝ(k)j of s, using the estimates communicated by its

neighbors in the previous layer. Under our assumptions, the posterior computed

by any agent is normal and the vector of estimates in a layer follows a multivari-

ate Gaussian distribution. As agents in the second layer and beyond can share

upstream neighbors, the covariance between their estimates is typically nonzero.
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We show that under the assumption that the variance of the initial measurements

and the structure of the network are known to all agents, each agent knows the

full joint posterior distribution over s for all agents it receives information from.

Weight Matrices We define the connectivity matrix C(k) for 1 ≤ k ≤ n− 1 as,

C(k)
i j =


1, if a(k)j communicates with a(k+1)

i

0, otherwise.
(2.2.1)

An agent receives a subset of estimates from the previous layer determined by

this connectivity matrix. The agent then uses this information to make its own,

maximum-likelihood estimate of s. By our assumptions, this estimate will be a

linear combination of the communicated estimates [32]. Denoting by ŝ(k) the vec-

tor of estimates in the kth layer, we can therefore write ŝ(k+1)
i = w(k+1)

i · ŝ(k), and

ŝ(k+1) = W(k+1)ŝ(k).

Here W(k+1) is a matrix of weights applied to the estimates in the kth layer.

Weighting by Precision We can write ŝ(1) = W(1)x where W(1) is the identity

matrix and x is the vector of measurements made in the first layer. We assume

that all measurements have finite, nonzero variance. Using standard estimation

theory results [32], we can compute the optimal estimates for agents in the second

layer. Defining wi := 1
σ2

i
, we can calculate W(2) entrywise: w(2)

i j is 0 if agent a(2)i

does not communicate with a(1)j . Otherwise w(2)
i j =

w(1)
j

∑k→i w(1)
k

, where the sum is
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taken over all agents in the first layer that communicate with agent a(2)i . Therefore,

ŝ(2) = W(2) ŝ(1) = W(2)W(1)x . (2.2.2)

Covariance Matrices The estimates in the second layer and beyond can be cor-

related. Let Lk be the number of agents in the kth layer and for 2 ≤ k ≤ n − 1

define Ω(k) = (ξ
(k)
i j ) as the Lk × Lk covariance matrix of estimates in the kth layer,

ξ
(k)
i j = Cov(ŝ(k)i , ŝ(k)j ).

When all of the weights are known, we have

ŝ(k) = W(k)ŝ(k−1) = W(k)W(k−1)ŝ(k−2) = · · · =
(

k−2

∏
l=0

W(k−l)

)
ŝ(1). (2.2.3)

The ith row of
(

∏
k−2
l=0 W(k−l)

)
is the vector of weights that the agent a(k)i applies to

the first-layer estimates, since its entries are the coefficients in s(k)i .

The complete covariance matrix, Ω(k), can therefore be written as

Ω(k) = Cov(ŝ(k)) = Cov(W(k)ŝ(k−1)) = W(k) Cov(ŝ(k−1))
(

W(k)
)T

(2.2.4)

=

(
k−2

∏
l=0

W(k−l)

)
Cov(ŝ(1))

(
k−2

∏
l=0

W(k−l)

)T

=

(
k−2

∏
l=0

W(k−l)

)
Diag

(
1

w1
, ...,

1
wL1

)(k−2

∏
l=0

W(k−l)

)T

.

Now the ith agent in layer k ≥ 3, a(k)i , can use Ω(k−1) to calculate w(k)
i . If the

agent is not connected to all agents in the (k − 1)th layer, it uses the submatrix

of Ω(k−1) with rows and columns corresponding to the agents in the previous
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layer that communicate their estimates to it. We denote this submatrix R(k−1)
i . As

in [43], we assume that we remove edges from the graph so that all submatrices

R(k−1)
i are invertible, but all estimates are the same as in the original network.

An agent thus receives estimates that follow a multivariate normal distribu-

tion, N (ŝ(k−1)
j→i , R(k−1)

i ), see [32]. The weights assigned by agent a(k)i to the esti-

mates of agents in the previous layer are therefore (see also [43]),

w̃(k)
i =

1T
(

R(k−1)
i

)−1

1T
(

R(k−1)
i

)−1
1

. (2.2.5)

We define w(k)
i by using the corresponding entries from w̃(k)

i and setting the re-

mainder to zero. In the following we describe the maximum-likelihood estimate

that can be made from all the estimates in a layer. For simplicity, we denote this

final estimate by ŝ. The following results are standard [32].

Proposition 1. The posterior distribution over s of the final agent is normal with

ŝ =
1T (Ω(n−1))−1

1T (Ω(n−1))−1 1
ŝ(n−1) and Var [ŝ] =

1
1T (Ω(n−1))−1 1

(2.2.6)

where Ω(n−1) is defined by Eq. (2.2.4) and Eq. (2.2.5). Here ŝ is the maximum-likelihood,

as well as minimum-variance, unbiased estimate of s.

It follows from Eq. (2.2.3) that the estimate of any agent in the network is a

convex linear combination of the estimates in the first layer.

Examples Returning to the example in Fig. 2.1.1(a) we have
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C(1) =

1 1 0

0 1 1

 , W(2) =

 1
2

1
2 0

0 1
2

1
2

 , Ω(2) =

 1
2

1
4

1
4

1
2

 , (Ω(2))−1 =
16
3

 1
2 − 1

4

− 1
4

1
2



The final agent applies the weights W(3) =

(
1
2 , 1

2

)
to the estimates from the

second layer. We thus have the final estimate ŝ =
(

1
4 , 1

2 , 1
4

)
· ŝ(1) with Var [ŝ] = 3

8 .

The variance of the ideal estimate is 1
3 .

On the other hand, the final agent in the example in Fig. 2.1.1(b) makes an ideal

estimate: Here W(2) =


1
2

1
2 0

1
2 0 1

2

0 1
2

1
2

, Ω(2) =


1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2

, and after inverting Ω(2)

we see that applying a weight of 1
3 to every agent in the second layer gives the

ideal estimate, ŝ =
(

1
3 , 1

3 , 1
3

)
· ŝ(1).

Remark. If the agents have a proper normal prior with mean χ and variance σ2
p , then

agents in the first layer make the estimate,

ŝ(1)i =
σ−2

i

σ−2
i +σ−2

p
xi +

σ−2
p

σ−2
i +σ−2

p
χ,

with a similar form in the following layers. This does not change the subsequent results

as long as all agents have the same prior. Also, if each agent in the network makes a

measurement, then it makes an estimate based on both this private information and the

social information communicated by its upstream neighbors. However, the general ideas

that follow remain unchanged.
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2.3 Results

We ask what graphical conditions need to be satisfied so that the agent in the final

layer makes an ideal estimate. That is, when does knowing all estimates of the

agents in the (n− 1)st layer give an estimate that is as good as possible given the

measurements of all first-layer agents. We refer to a network in which the final

estimate is ideal as an ideal network.

Proposition 2. A network with n layers andσ2
i 6= 0 for i = 1, . . . , L1, is ideal if and only

if the vector of inverse variances, (w1, ..., wL1), is in the row space of the weight matrix

product (∏n−3
l=0 W(n−1−l)).

Proof. In this setting the ideal estimate is

ŝideal =
1

∑i wi

L1

∑
i=1

wi ŝ
(1)
i . (2.3.1)

The network is ideal if and only if there are coefficients β j ∈ R such that

ŝideal =
Ln−1

∑
j=1

β j ŝ
(n−1)
j .

Matching coefficients with Eq. (2.3.1), we need

1
∑ j w j

L1

∑
i=1

wi ŝ
(1)
i =

(
β1, ...,βLn−1

)
· ŝ(n−1),

or equivalently,

1
∑ j w j

(w1, ..., wL1) · ŝ
(1) =

(
β1, ...,βLn−1

)
·W(n−1)ŝ(n−2)

=
(
β1, ...,βLn−1

)
·
(

n−3

∏
l=0

W(n−1−l)

)
ŝ(1).
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Equality holds exactly when (w1, ..., wL1) is in the row space of
(

∏
n−3
l=0 W(n−1−l)

)
.

In particular, a three-layer network with σ2
i = σ for all i ∈ {1, . . . , L1} is ideal

if and only if the vector ~1 = (1, 1, ..., 1) is in the row space of the connectivity

matrix C(1) defined by Eq. (2.2.1). We will use and extend this observation below.

2.3.1 Graphical Conditions for Ideal Networks

We say that a network contains a W-motif if two agents downstream receive com-

mon input from a first-layer agent, as well as private input from two distinct first-

layer agents. Examples are shown in Fig. 2.1.1(a) and Fig. 2.3.1. A rigorous defi-

nition follows.

We will show that all networks that are not ideal contain a W-motif. However,

the converse is not true: The network in Fig. 2.1.1(b) contains many W-motifs,

but is ideal. Therefore ideal networks can contain a W-motif, as the redundancy

introduced by a W-motif can sometimes be resolved. Hence, additional graphical

conditions determine if the network is ideal.

As shown in Fig. 2.3.1, in a W-motif there is a directed path from a single agent

in the first layer to two agents in the third layer. There are also paths from distinct

first-layer agents to the two third-layer agents. This general structure is captured

by the following definitions.
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Fig. 2.3.1: A W-motif spanning three layers.

Definition 1. The path matrix Pkl, l < k, from layer l to layer k is defined by,

Pkl
i j =


1, if there is a directed path from agent a(l)j to agent a(k)i

0, otherwise.

Definition 2. A network contains a W-motif if a path matrix from the first layer,

Pk1, has a 2 × 3 submatrix equal to

1 1 0

0 1 1

 (modulo column permutation).

Graphically, two agents in layer k are connected to one common, and two distinct

agents in layer 1.

Theorem 1. A non-ideal network in which every agent communicates its estimate to the

subsequent layer must contain a W-motif. Equivalently, if there are no W-motifs, then the

network is ideal.

Proof of Theorem 1 We will spend the remainder of this subsection proving the

theorem. Intuitively, any agent receives estimates that are a linear combination of

first-layer measurements. If there are no W-motifs, any two estimates are either
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obtained from disjoint sets of measurements, or the measurements in the estimate

of one agent contain the measurements in the estimate of another. When mea-

surements are disjoint, there are no correlations between the estimates and thus

no degradation of information. When one set of measurements contains the other,

then the estimates in the subset are redundant and can be discarded. Therefore,

this redundant information does not cause a degradation of the final estimate.

We start with the simpler case of a W-motif between the first two layers and

then extend it to the general case. We begin with definitions that will be used in

the proof.

Let g be the input-map which maps an agent to the subset of agents in the first

layer that it receives information from (through some path). That is, g(a( j)
i ) is the

set of agents in the first layer that provide input to a( j)
i . It is intuitive – and we

show it formally in Lemma 1 – that a network contains a W-motif if each of the

inputs to two agents, A and B are not contained in the other, and their intersection

is not empty. That is, g(A) 6⊆ g(B) and g(B) 6⊆ g(A), but g(A) ∩ g(B) 6= ∅. If

these conditions are met, we also say that the inputs of A and B have a nontrivial

intersection. If g(A) ⊆ g(B), we say that the input of B overlaps the input of A:

every agent which contributes to the estimate of A also contributes to the estimate

of B.

Similarly, we let f be the output-map which maps an agent, a( j)
i , to the set of

all agents in the next, j + 1st, layer that receive input from a( j)
i . We first prove a

few lemmas essential to the proof of Theorem 1.
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Lemma 1. Assume a network does not contain a W-motif and there are two agents, a(k)i1

and a(k)i2
, with g(a(k)i1

) ∩ g(a(k)i2
) nonempty. Then g(a(k)i1

) overlaps or is overlapped by

g(a(k)i2
).

Proof. We prove the claim by contradiction. If one input does not overlap the

other, then there are two distinct first-layer agents a(1)n1 and a(1)n2 such that a(1)n1 ∈

g(a(k)i1
) \ g(a(k)i2

) and a(1)n2 ∈ g(a(k)i2
) \ g(a(k)i1

). This means Pk1
i1n1

= Pk1
i2n2

= 1 and

Pk1
i1n2

= Pk1
i2n1

= 0. Since the inputs of the agents have nonempty intersection,

we also have Pk1
i1m = Pk1

i2m = 1 for some m. Thus there is a 2 × 3 submatrix of

Pk1 which, up to rearrangement of the columns, is equal to

1 1 0

1 0 1

 and the

network contains a W-motif, contrary to assumption.

Every agent’s estimate is a convex linear combination of estimates in the first

layer, given by Eq.(2.2.3). We will use the corresponding weight vectors in the

following proofs. We show that in networks without W-motifs, agents will only be

receiving collections of estimates with weight vectors which pairwise either have

disjoint support (nonzero indices) or the support is contained in the support of the

other agent. Thus, with no W-motifs, no two agents have inputs with nontrivial

intersection. The next two lemmas will allow us to easily calculate the estimates

of such agents.

Lemma 2. Let r, s, t be positive integers, wi = σ−2
i , and consider three weight vectors
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applied by three agents in layer k, a(k)1 , a(k)2 , and a(k)3 , to the estimates of the first layer:

v1 =

(
w1

∑
r
i=1 wi

, . . . ,
wr

∑
r
i=1 wi

, 0, . . . , 0
)

v2 =

(
w1

∑
r+s
i=1 wi

, · · · ,
wr+s

∑
r+s
i=1 wi

, 0, . . . , 0

)

v3 =

(
0, . . . , 0,

wr+s+1

∑
r+s+t
i=r+s+1 wi

, . . . ,
wr+s+t

∑
r+s+t
i=r+s+t wi

, 0, . . . , 0

)
.

An agent a(k+1)
i in f (a(k)1 ) ∩ f (a(k)2 ), but not in f (a(k)3 ), will use weight vector v2. An

agent a(k+1)
i in f (a(k)2 ) ∩ f (a(k)3 ), but not f (a(k)1 ), will use weight vector

v4 =

(
w1

∑
r+s+t
i=1 wi

, . . . ,
wr+s+t

∑
r+s+t
i=1 wi

, 0, ..., 0

)
.

Proof. First, consider an agent receiving the first two estimates with weights v1

and v2. Suppose that a fictitious agent receives a collection of estimates with

weight vectors {z1, ..., zr+s}, where zi = (0, . . . , 0, 1, 0, . . . , 0), i.e., each estimate

equals the measurement of agent a(1)i . This fictitious agent can obtain any linear

combination of the first r + s measurements. The linear combination with lowest

variance has weights given by v2. Therefore, an agent receiving measurements

corresponding to the weight vectors v1 and v2 cannot do better than the estimate

of agent a(k)2 with weights given by v2.

A similar argument works when estimates are received from agents a(k)2 and

a(k)3 . Since these two agents make locally optimal estimates based on non-overlapping

sets of measurements in the first layer, the best estimate is obtained by combining

the two sets of measurements. This is precisely the estimate corresponding to the

weights given by vector v4.
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Lemma 3. Suppose an agent, a(k)i , receives a collection of estimates such that for any pair,

there is a relabeling of agents in the first layer that makes the pair look like v1 and v2 or

like v2 and v3 in Lemma 2. Then, up to some relabeling of the agents in the first layer, that

agent will make an estimate with corresponding weight vector

v =

(
w1

∑
r
i=1 wi

, . . . ,
wr

∑
r
i=1 wi

, 0, . . . , 0
)

.

Proof. Let the vectors zi be defined as in the proof of Lemma 2. Relabel the first-

layer agents so that only the first r entries of the weight vector applied by agent

a(k)i are non-zero. Then a fictitious agent receiving estimates with weight vectors

zi, 1 ≤ i ≤ r can construct any estimate that agent a(k)i can obtain. The optimal

estimate of this fictitious agent has weight vector v. Hence if some linear combi-

nation of the weight vectors of estimates communicated to agent a(k)i equals v, this

linear combination defines the best estimate.

Then for each j = 1, ..., r, we can find a weight vector, v j, which is nonzero in

the jth entry with support that contains the support of every other weight vector

which is nonzero in the jth entry. Such a vector exists by the assumption that

any two vectors have disjoint support or the support of one contains the other.

Therefore, we can find the weight vector with maximal support for each entry. If

we take the distinct elements of {v j : 1 ≤ j ≤ r}, then these maximal weight

vectors will have disjoint support that partitions the first r indices. Therefore,

v =
1

∑
r
i=1 wi

∑
v j distinct

 r

∑
i=1,vi

j nonzero

wi

 v j,
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which shows the lemma.

We now state and prove the three-layer case of Theorem 1 and then use it to

finish the proof of Theorem 1.

Proposition 3. If a three-layer network is not ideal and every first-layer agent communi-

cates with at least one second-layer agent, then the network must contain a W-motif.

Proof. Assume the network does not contain a W-motif. Given a first-layer agent

a(1)i , Lemma 1 says that for any two agents in f (a(1)i ), one agent’s input must

overlap the other. Two second-layer agents thus receive estimates with input sets

where one overlaps the other, or the sets do not intersect. Thus the set of weight

vectors in the second layer satisfies the assumptions of Lemma 3. As all agents

from the first layer communicate with the final agent, the network is ideal.

To obtain the proof of Theorem 1, we use induction with Proposition 3 as a

base case.

Proof of Theorem 1. Assume the network has n layers, there are no W-motifs, and

every agent (except those in the first layer) receives input from at least one other

agent. Lemma 1 implies that in the second layer each pair of agents has ei-

ther disjoint input or one overlaps the other. Thus in the third layer, by rela-

beling the agents, each agent makes an estimate with weight vector of the form:

1
∑

r
i=1 wi

(w1, . . . , wr, 0, . . . , 0).

Now assume that any estimate in layer k can be put in this form by relabeling
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the agents. Since there are no W-motifs, Lemma 1 implies that set of measure-

ments used by agents a(k)i1
and a(k)i2

is disjoint or overlapping. This again allows us

to apply Lemma 3 and any agent in layer k + 1 makes an estimate whose weight

vector again has the form 1
∑

r
i=1 wi

(w1, . . . , wr, 0, . . . , 0). Applying the same argu-

ment to the final agent, where every entry will be nonzero in some penultimate-

layer agent’s weight vector, we have that the network is ideal.

2.4 Sufficient Conditions for Ideal Three-Layer Net-

works

We next consider only three-layer networks. This allows us to give a graphical in-

terpretation of the algebraic condition describing ideal networks in Proposition 2.

To do so, we will use the following corollary of the proposition.

Corollary 1. Let C(1) be defined as in Eq. (2.2.1). Then a three-layer network is ideal if

and only if the vector m~1 is in the row space of C(1) over Z for some nonzero m ∈ N.

Proof. We will show that a three-layer network is ideal if and only if m~1 is in the

row space of C(1) over Z for some m ∈ N. We do this by first showing that the

network is ideal if and only if ~1 is in the row space of C(1) over R, and then we

show that this is equivalent to m~1 being in the row space of C(1) over Z.

By Proposition 2, a three-layer network is ideal if and only if (w1, . . . , wL1) is
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in the row space of W(2). We claim that this is equivalent to ~1 being in the row

space of C(1): Multiplying each row of W(2) by the common denominator of the

nonzero entries gives

R(W(2)) = R(C(1)Diag(w1, . . . , wL1)),

where R denotes the row space. By definition, ~1 is a linear combination of the

rows of C(1) if and only if

1 = ∑
i
βiC

(1)
i j , ∀ j.

This holds if and only if

w j = ∑
i
βiw jC

(1)
i j , ∀ j.

The last equality is equivalent to

(w1, . . . , wL1) = ∑
i
βi(C(1)Diag(w1, . . . , wL1))i ,

which means (w1, . . . , wL1) is in the row space of W(2). Hence, for three-layer

networks, the network is ideal if and only if the vector~1 is in the row space of C(1)

over R.

Thus it remains to show that~1 ∈ R(C(1)) over R is equivalent to~1 ∈ R(C(1))

over Z. If m~1 ∈ R(C(1)) over Z, then it is a linear combination of the rows of C(1)

with integer coefficients. Multiplying the coefficients of this linear combination

by 1
m shows that~1 is in the row space of C(1) and hence the network is ideal.

If~1 is in the row space of C(1) over R, then by closure of Qn this means there is

some linear combination of the rows of C(1) over Q which is equal to~1:

L2

∑
i=1

αiC
(1)
i =~1, αi ∈ Q.
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Multiplying both sides by the absolute value of the product of the denominators

of the nonzeroαi shows that

L2

∑
i=1

βiC
(1)
i = m~1, βi ∈ Z

for some m ∈ N and thus m~1 is in the row space of C(1) over Z.

Note that the corollary is not restricted to the case where first-layer agents

have equal variance measurements; whether the network is ideal or not depends

entirely on the connection matrix C(1). The ith row of the matrix C(1) corresponds

to the inputs of agent a(2)i , and the sum of the jth column is the out-degree of agent

a(1)j . Therefore, Corollary 1 is equivalent to the following: If each second-layer

agent applies equal integer weights to all of its received estimates, then a three-

layer network is ideal if and only if, for some choice of weights, the weighted

out-degrees of all agents in the first layer are equal. Hence, we have the following

special case:

Corollary 2. A three-layer network is ideal if all first-layer agents have equal out-degree

in each connected component of the network restricted to the first two layers.

In the connected network in Fig. 2.1.1(a), the second agent in the first layer

has greater out-degree than the others, while the agents in the first layer of the

connected network in Fig. 2.1.1(b) have equal out-degree.

Some row reduction operations can be interpreted graphically. Let g be the

input-map which maps an agent, a(2)i , to the subset of agents in the first layer that

it receives estimates from. Formally, let P(A) denote the power set of a set A,
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then g : {a(2)1 , . . . , a(2)L2
} → P{a(1)1 , . . . , a(1)L1

} is defined by a(1)j ∈ g(a(2)i ) if agent

a(1)j communicates with agent a(2)i , i.e. if C(1)
i j = 1.

If g(a(2)i ) ⊆ g(a(2)j ) for some i 6= j, then some of the information received by

a(2)j is redundant, as it is already contained in the estimate of agent a(2)i . We can

then reduce the network by eliminating the directed edges from g(a(2)i ) to a(2)j , so

that in the reduced network g(a(2)i ) ∩ g(a(2)j ) = ∅. This reduction is equivalent

to subtracting row i from row j of C(1) resulting in a connection matrix with the

same row space. By Proposition 2, the reduced network is ideal if and only if the

original network is ideal. This motivates the following definition.

Definition 3. A three-layer network is said to be reduced if g(a(2)i ) is not a subset

of g(a(2)j ) for all 1 ≤ i 6= j ≤ L2.

Reducing a network eliminates edges, and results in a simpler network struc-

ture. In a three-layer network, this will not affect the final estimate: Since reduc-

tion leaves the row space of C(1) unchanged, the final estimate in the reduced and

unreduced network is the result of applying the same weights to the first-layer es-

timates. This reduction procedure often simplifies identification of ideal networks

to a counting of out-degrees (see Corollary 2).

Example In Fig. 2.4.1, we illustrate a two-step reduction of a network. In both

steps, an agent (in yellow) has an input set which is overlapped by the input sets

of some other agents (bolded). We use this to cancel the common inputs to the

bolded agents and simplify the network. In the first step, note that the yellow
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agent receives input (in red) from a single first-layer agent. We use this to remove

all of the other connections (in green) emanating from this first-layer agent. In

the second step, we again see that the yellow agent receives input (red) that is

overlapped by input to the agent next to it. We can thus remove the redundant

inputs (in green) to the bolded agent. The reduced network has 5 connected com-

ponents all containing vertices with equal out-degree. Hence, this network is ideal

by Corollary 2.

Fig. 2.4.1: Example of a two step network reduction. It is difficult to tell whether
the network on top is ideal. However, after two steps of reduction, all first-layer
agents in each of the five connected components have equal out-degree. The net-
work is therefore ideal.
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2.5 Conclusion

We examined how information about the world propagates through layers of ra-

tional agents. We assumed that at each step, a group of agents makes an inference

about the state of the world from information provided by their predecessors. The

setup is related, but different from information cascades where a chain of rational

agents make decisions in turn [5, 23, 57, 7], or recurrent networks where agents ex-

change information iteratively [40]. The assumption that the observed variables in

our analysis follow a Gaussian distribution simplified the analysis considerably.

However, we believe that the main results hold under more general assumptions.

Our preliminary work shows that when agents in the first layer make a Boolean

measurement the presence of W-motif is necessary to prevent ideal information

propagation. For more general measurements, for instance a sample from the ex-

ponential family of distribution, a nonlinear estimator would be needed, and the

analysis becomes more complicated.

Related results have been obtained by Acemoglu, et al. [1] who considered

social networks in which individuals receive information from a random neigh-

borhood of agents. They show that agents can make the right choice, or infer the

correct state of the world as network size increases when a finite group of agents

does not account for most of the information that is propagated through the net-

work. However, the setting of this study is somewhat different from ours: Agents

are assumed to only observe each other’s actions, but do not share their belief

about the binary state of the world.
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We translated the question about whether the estimate of the state of the world

degrades across layers in the network to a simple algebraic condition. This al-

lowed us to use results of random matrix theory in the case of random networks,

find equivalent networks through an intuitive reduction process, and identify a

class of networks in which estimates do not degrade across layers, and another

class in which degradation is maximal.

Networks in which estimates degrade across layers must contain a W-motif.

This motif introduces redundancies in the information that is communicated down-

stream and may not be removed. Such redundancies, also known as “bad cor-

relations,” are known to limit the information that can be decoded from neural

responses [39, 8]. This suggests that agents with large out-degrees and small in-

degrees can hinder the propagation of information, as they introduce redundant

information in the network. On the other hand, agents with large in-degrees inte-

grate information from many sources, which can help improve the final estimate.

However, the detailed structure of a network is important: For example, an agent

with large in-degree in the second layer can have a large out-degree without hin-

dering the propagation of information as it has already integrated most available

first-layer measurements.

To make the problem tractable, we have made a number of simplifying as-

sumptions. We made the strong assumption that agents have full knowledge of

the network structure. Some agents may have to make several calculations in or-

der to make an estimate, so we also do not assume bounded rationality [4]. This is

unlikely to hold in realistic situations. Even when making simple decisions, pairs
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of agents are not always rational [3]: When two agents each make a measurement

with different variance, exchanging information can degrade the better estimate.

The assumption that only agents in the first layer make a measurement is not

crucial. We can obtain similar results if all agents in the network make indepen-

dent measurements, and the information is propagated directionally, as we as-

sume here. However, in such cases, the confidence (inverse variance of the esti-

mates) typically becomes unbounded across layers.
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Chapter 3
Asymptotics for Feedforward

Networks

3.1 Variance and Bias of the Final Estimate

We next consider how the variance and bias of the estimate in layer n depend

on the network structure. By definition, the variance of the ideal estimate is

Var(ŝ) =
(

∑
L1
i=1 wi

)−1
. If the variances of the individual estimates are bounded

above as the size of the network increases, the final estimate in an ideal network is

consistent: As the number of measurements increases the final estimate converges

in probability to the true value of s [32]. We next show that the final estimate in

non-ideal networks is not necessarily consistent. We also show that biases of cer-

tain first-layer agents can have a disproportionate impact on the bias of the final

estimate.
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Fig. 3.1.1: Example of a network with an inconsistent final estimate. The green
and blue nodes represent agents in the first and second layer, respectively. Each
second-layer agent receives input from the common, central agent and a distinct
first-layer agent, and thus L2 = L1 − 1.

Example (Variance Maximizing Network Structure) Fig. 3.1.1 shows an exam-

ple of a network structure for which the variance of the final estimate converges

to a positive number as the number of agents in the first layer increases. We as-

sume that all first-layer agents make measurements with unit variance. We will

show that as the number of agents in both layers increases, the variance of the

final estimate approaches 1/4. Let the estimate of the central agent be s(1)1 . Then

each agent in the second layer makes an estimate 1
2(s

(1)
1 + s(1)i ) for some i 6= 1. By

symmetry the single agent in the last layer averages all estimates from the second

layer to obtain ŝ = 1
2(s

(1)
1 + 1

L1−1 ∑
L1
i=2 s(1)i ). Therefore, the estimate of the central

agent (which communicates with all agents in the second layer) receives a much

higher weight than all other estimates from the first layer. The variance of the final

estimate thus equals

Var(ŝ) =
1
4
+

1
4(L1 − 1)

.
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Hence, the final estimate is not consistent, as its variance remains positive as the

number of first-layer agents, L1, diverges. Given a restriction on the number of

second-layer agents, we show that this network leads to the highest possible vari-

ance of the final estimate:

Proposition 4. The final estimate in the network in Fig. 3.1.1 has the largest variance

among all three-layer networks with a fixed number L1 ≥ 4 of first-layer, and L2 ≥ L1− 1

second-layer agents, assuming that every first-layer agent makes at least one connection.

The idea of the proof is to limit the possible out-degrees of the agents in the

first layer and show that the structure in Fig. 3.1.1 has the highest variance for this

restriction.

Proof. We will show that the network architecture that maximizes the variance of

the final estimate for a given number of first and second-layer agents is the one

shown in Fig. 3.1.1. To simplify notation we write L1 = n and L2 = m.

Lemma 4. If d = (d1, ..., dn) is the vector of out-degrees in the first layer, so di =

| f (a(1)i )|, then to maximize the variance of the final estimate, d must equal (m, 1, . . . , 1),

up to relabeling.

Proof of Claim. Given a network structure consider the naı̈ve estimate:

1
Z ∑

i
|g(a(2)i )|ŝ(2)i =

1

∑i j C(1)
i j

∑
i

C(1)
i · ŝ

(1), (3.1.1)

where Z is a normalizing factor that makes the entries of the corresponding vector

of weights sum to 1. This estimate can always be made and is the same as using
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a linear combination of estimates of agents a(1)j with weights di
∑

n
j=1 d j

. Thus the

variance of the optimal estimate of the agent in the final layer is bounded above

by the variance of the naı̈ve estimate in Eq. (3.1.1). By assumption 1 ≤ d j ≤ m for

all j. For the network in Fig. 3.1.1, this naı̈ve estimate equals the final estimate.

Thus it is sufficient to show that the naı̈ve estimate has maximal variance when

d = (m, 1, . . . , 1), up to relabeling.

The variance, V, of the naı̈ve estimate is:

V(d1, . . . , dn) = ∑
j

(
d j

∑
n
k=1 dk

)2

.

If we treat the degrees as continuous variables then V is continuous on d ∈

[1, m]n and we can calculate the gradient of V to find the critical points.

∂V
∂di

= 2
(

di

∑k dk

)
∑k dk − di

(∑k dk)
2 + ∑

j 6=i
2
(

d j

∑k dk

) −d j

(∑k dk)
2

Setting ∂V
∂di

= 0 and multiplying both sides by 1
2

(
∑

n
k=1 dk

)3 gives

0 = di(∑
k 6=i

dk)−∑
j 6=i

d2
j = ∑

j 6=i
d j(di − d j).

This shows that d = k~1 for k = 1, . . . , m are the only critical points, since if there

exist di ≤ d j, for all j 6= i and di < dk for some k 6= i then the right hand side

would be negative. These critical points are the first-layer out-degrees of ideal

networks by Corollary 2, hence they are minima. This implies that V takes on its

maximum values on the boundary.

The boundary of [1, m]n consists of points where at least one coordinate is 1 or

m. Since V is invariant under permutation of the variables, we set d1 equal to one

of these values and investigate the behavior of V on this restricted set.
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First set d1 = m. Setting ∂V
∂di

to 0 on this boundary gives:

0 = m(di −m) + ∑
j 6=i,1

d j(di − d j)

One critical point is thus m~1. If di ≤ d j for j 6= i and di < m then again the right

hand side would be negative. Hence di = m for all i, and there are no critical

points on the interior of {m} × [1, d]n−1.

Next if d1 = 1, setting ∂V
∂di

to 0 on this boundary and multiplying by −1 gives:

0 = 1− di + ∑
j 6=i,1

d j(d j − di)

Here a critical point is~1. If di ≤ d j for j 6= i and 1 < di < m then again the

right hand side would be negative. Hence di = 1 for all i, and there are no critical

points on the interior of {1} × [1, d]n−1. If we iterate this procedure, we see that

the maximum value of V must occur on the corners of the hypercube [1, d]n.

Choose one of these corners, c, and, without loss of generality, assume that the

first l coordinates are m and the last n− l coordinates are 1, 1 ≤ l < n. Then

V(c) =
l

∑
j=1

(
m

∑
n
k=1 dk

)2

+
n

∑
j=l+1

(
1

∑
n
k=1 dk

)2

=

(
1

lm + (n− l)

)2 (
lm2 + (n− l)

)
=

lm2 + n− l
l2m2 + 2lm(n− l) + (n− l)2

=
l(m2 − 1) + n

l2(m− 1)2 + l2n(m− 1) + n2

Under the assumption that m ≥ n − 1, a lengthy algebra calculation that we

omit shows that this is maximized for l = 1. Hence the maximum value of V

is achieved at (m, 1, . . . , 1), or any of its coordinate permutations.
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Finally, to have d = (m, 1, . . . , 1), one first-layer agent, a(1)1 , communicates

with all second-layer agents and every other agent has exactly one output. Since

there are at least n− 1 agents in the second layer, this means that each first-layer

agent must communicate with a distinct second-layer agent and each second-layer

agent must receive input from a(1)1 . Otherwise, some agent in the second layer

would receive only the input from a(1)i and thus the final estimate could use that

estimate to decorrelate all of the second-layer estimates.

So, the naı̈ve estimate for an alternative network has smaller variance than

the ideal estimate for the ring network in Fig. 3.1.1. Hence the final estimate in

any alternative network will have smaller variance. Since the only network with

d = (m, 1, . . . , 1) is the network in Fig. 3.1.1, we have shown that this structure

maximizes the variance of the final estimate among all networks with L2 ≥ L1 −

1.

In general, we conjecture that for the final estimate to have large variance,

some agents upstream must have a disproportionately large out-degree, with the

remaining agents making few connections. On the other hand, as the in-degree

of a second-layer agent increases, the variance of its estimate shrinks. Thus when

a few agents communicate information to many, the resulting redundancy is dif-

ficult to resolve downstream. But when downstream agents receive many esti-

mates, we expect the estimates to be good. We next show that the biases of the

agents with the highest out-degrees can have an outsized influence on the esti-

mates downstream.
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3.1. VARIANCE AND BIAS OF THE FINAL ESTIMATE

Propagation of Biases We next ask how biases in the measurements of agents

in the first layer propagate through the network. Ideally, such biases would be

averaged out in subsequent layers. To simplify the analysis we assume constant,

additive biases, ŝ(1)i = xi + bi, with the constant bias, bi. Downstream agents are

unaware of these biases, and therefore assume them to be zero. Since all estimates

in the network are convex linear combinations of first-layer measurements, the

final estimate will have the form

ŝ = ∑αi (xi + bi) = ∑αixi +∑αibi, (3.1.2)

and thus will have finite bias bounded by the maximum of the individual biases.

We have provided examples of network structures where the estimate of a

first-layer agent was given higher weight than others, even when all first-layer

measurements had equal variance. Eq. (3.1.2) shows that this agent’s bias will

also be disproportionately represented in the bias of the final estimate. Indeed, in

the example in Fig. 2.1.1(a), the estimate of second agent in first layer has weight

1
2 , and its bias will have twice the weight of the other agents in the final estimate.

Similarly, the bias of the central agent in Fig. 3.1.1 will account for half the bias

of the final estimate as n → ∞. Thus even if the biases, bi, are distributed ran-

domly with zero mean, the asymptotic bias of the final estimate does not always

disappear as the number of measurements increases.

More generally, networks that contain W-motifs can result in biases of first-

layer agents with disproportionate impact on the final estimate. As with the vari-

ance, we conjecture that the bias of agents that communicate their estimates to
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3.2. INFERENCE IN RANDOM FEEDFORWARD NETWORKS

many agents downstream will be disproportionately represented in the final es-

timate. Equivalently, if the network contains agents that receive many estimates,

we expect the bias of the final estimate to be reduced.

3.2 Inference in random feedforward networks

We have shown that networks with specific structures can lead to inconsistent and

asymptotically biased final estimates. We now consider networks with randomly

and independently chosen connections between layers. Such networks are likely

to contain many W-motifs, but it is unclear whether these motifs are resolved and

whether the final estimate is ideal. We will use results of random matrix theory

to show that there is a sharp transition in the probability that a network is ideal

when the number of agents from one layer exceeds that of the previous layer [14].

We assume that connections between agents in different layers are random,

independent and made with fixed probability, p. We will use the following result

of [35], also discussed by [14]:

Theorem 2 (Komlos). Let ξi j, i, j = 1, . . . , n be i.i.d. with non-degenerate distribution

function F(x). Then the probability that the matrix X = (ξi j) is singular converges to 0

with the size of the matrix,

lim
n→∞ P(det X = 0) = 0.

Corollary 3. For a three-layer network with independent, random, equally probable (p =
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3.2. INFERENCE IN RANDOM FEEDFORWARD NETWORKS

1/2) connections from first to second-layer, as the number of agents L1 and L2 increases,

L1

L2
≤ 1 =⇒ P(ŝ = ŝideal)→ 1,

and
L1

L2
> 1 =⇒ P(ŝ = ŝideal)→ 0.

Proof. Whether or not ŝideal = ŝ is determined by C(1). For simplicity, we drop the

superscript and refer to this connectivity matrix as C. By our assumption, this is a

random matrix with P(Ci j = 0) = P(Ci j = 1) = 1/2.

First assume that there are at least as many second-layer agents as there are

first-layer agents: L2 ≥ L1 or L1
L2
≤ 1. Then C is a random L2 × L1 matrix with

i.i.d. non-degenerate entries that has more rows than columns. By Theorem 2,

this means that the L1 × L1 submatrix formed by the first L1 rows and columns is

nonsingular with probability approaching 1 as L1, L2 → ∞. Thus the probability

that the row space of C contains the vector ~1 converges to 1 with the size of the

network.

Next assume that there are fewer second-layer agents than first-layer agents,

that is L2 < L1 or L1
L2

> 1. We will show that the probability that the row space of

C contains~1 goes to zero as L1, L2 → ∞. Since increasing the number of rows will

not decrease the probability that C contains a vector in its row space we assume

that L2 = L1 − 1 and let L1 = n:

lim
L1 ,L2→∞ P(ŝ = ŝideal) ≤ lim

n→∞ P(~1 ∈ R(C(n− 1, n)))
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3.2. INFERENCE IN RANDOM FEEDFORWARD NETWORKS

where C(n− 1, n) refers to the random matrix as before, and identifies that it has

n− 1 rows and n columns. We first use:

P(~1 ∈ R(C(n− 1, n))) ≤ P(

~1
C

 is singular)

since if~1 is the row space of C, then attaching that row of ones to it would create

a singular matrix.

Lemma 1. P

det(

~1
C

) = 0

→ 0 as n→ ∞.

We can rewrite C =

(
B v

)
, where v is the nth column of C and B is the

remaining submatrix. We claim

det(

~1
C

) = −1k det(

~1 1

B̃ ~0

) = −1k+n+1 ∗ det(B̃) (3.2.1)

where B̃ is a random (n− 1)× (n− 1) matrix distributed like C. Assuming this

claim, then by [35] :

P(det(

~1
C
= 0

)) = P
(
det(B̃) = 0

)
→ 0 as n→ ∞.

Thus P(~1 ∈ R(M(n− 1, n)))→ 0 as n→ ∞.

To prove the first equality in Eq. (3.2.1), we use row operations on

~1 1

B v

: If

vi = 1 then subtract the first row from the ith row, (Bi vi), to get a vector whose

entries are all 0 and −1. Then (Bi vi) → −(B̃i 0) where (B̃i 0) is a vector of
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Fig. 3.2.1: The probability that a random, three-layer network is ideal for connec-
tion probabilities p = 0.1 (left), 0.5 (center) , and 0.9 (right). In each panel, the
different curves correspond to different, but fixed numbers of agents in the first
layer. The number of agents in the second layer is varied. There is a sharp tran-
sition in the probability that a network is ideal when the number of agents in the
the second layer exceeds the number in the first. Simulation details can be found
in Section 3.2.2.

entries which are again either 0 or 1 with equal probability. We do this for every

row which has a 1 in its last entry and multiply the determinant a factor −1 and

denote the number of these reductions as k. Since P(Ci j = 0) = 1
2 we also have

P(B̃i j = 0) = 1
2 .

The same proof works when L1/L2 ≤ 1 and the probability of a connection is

arbitrary, p ∈ (0, 1]. We conjecture that the result also holds for L1/L2 > 1 and

arbitrary p, but the present proof relies on the assumption that p = 1/2. Fig. 3.2.1

shows the results of simulations which support this conjecture: The different pan-

els correspond to different connection probabilities, and the curves to different

numbers of agents in the first layer. As the number of agents in the second layer

exceeds that in the first, the probability that the network is ideal approaches 1 as

the number first-layer agents increases. With 100 agents in the first layer, the curve

is approximately a step function for all connection probabilities we tested.
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3.2. INFERENCE IN RANDOM FEEDFORWARD NETWORKS

3.2.1 More than 3 Layers

We conjecture that a similar result holds for networks with more than three layers:

Conjecture. For a network with n layers with independent, random, equally probable

connections between consecutive layers, as the total number of agents increases,

Lk ≤ Lk+1 for 1 ≤ k < n− 1 =⇒ P(ŝ = ŝideal)→ 1

and

L1 > Lk for some 1 < k < n =⇒ P(ŝ = ŝideal)→ 0.

Evidence for the conjecture can be found in Fig. 3.2.2, which shows the re-

sults with four-layer networks with different connection probabilities across lay-

ers. The number of agents in the first and second layers are equal, and we varied

the number of agents in the third layer. The results support our conjecture.

With multiple layers (n ≥ 4), if L1 > L2 then the network will not be ideal as

in the limit the estimate of s will not be ideal already in the second layer by Corol-

lary 3. If the number of agents does not decrease across layers, we conjecture that

the probability that information is lost across layers is small when the number

of agents is large. Indeed, it seems reasonable that the products of the random

weight matrices will be full rank with increasing probability allowing us to apply

Proposition 2. However, the entries in these matrices are no longer independent,

so classical results of random matrix theory no longer apply.
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Fig. 3.2.2: The probability that a random, four-layer network is ideal for connec-
tion probabilities p = 0.1 (left), 0.5 (center) , and 0.9 (right). Each curve corre-
sponds to equal, fixed numbers of agents in the first two layers, with a chang-
ing number of agents in the third layer. Simulation details can be found in Sec-
tion 3.2.2.

3.2.2 Simulation Details

All simulations were done in MATLAB. For the 3-layer networks we randomly

generated binary connection matrices and tested whether or not the vector~1 was

in the row space. Each point in the plots corresponds to the number of agents in

the first two layers for a given connection probability and was generated using

at least 10,000 samples. The code used for these simulations can be found at the

repository https://github.com/Spstolar/FFNetInfoLoss.

3.3 Conclusion

Here we considered asymptotics results for the information sharing process de-

tailed in Chapter 2. We gave conditions for when ideal networks were generic by

showing the dependence on the ratio of the layer sizes and detailed the worst-case
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3.3. CONCLUSION

scenario: an arbitrarily large network for which the final estimate is not consis-

tent. In the viewpoint of asymptotic learning on networks, we showed something

analagous of asymptotic learning: rather than the probability of making the ex-

act correct estimate going to 1, we considered how the variance of that estimate

shrunk. If the network is not consistent, then the variance does not go to 0 and

in some sense the network does not exhibit asymptotic learning. However, if it

is consistent, which we showed is a generic condition for three-layer networks

where the second layer is larger than the first, then asymptotic learning occurs,

because the variance of the final agent does go to 0.
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Chapter 4
Evidence Accumulation on Networks

In the previous chapters we have assumed that agents make a single observation

or measurement of a parameter (state of the world), and communicate informa-

tion about this measurement to their neighbors. In many situations agents can in-

tegrate information from multiple private measurements to make an estimate or

reach a decision. In an uncertain environment, agents on a network can use this

private information along with the social information obtained from their neigh-

bors. Intuitively, if the measurements of the agents in the network are condition-

ally independent on the state of the world, then the sharing of private information

should lead to a better estimate or decision. This is especially important in sce-

narios like predator detection, where animals are trying to determine if there is a

threat nearby [51, 18]. The group has a better chance of escaping a predator if the

individuals within it observe each other’s actions or communicate information to

one another.
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How to accumulate evidence from a sequence of measurements to decide be-

tween two choices is one of the fundamental problems in decision theory [55, 20].

It has long been known that optimal decisions can be based on the log-likelihood

ratio of the posterior probabilities of the two choices given a sequence of measure-

ments [55]. When there are many observations, each providing little evidence, this

process is well-approximated by a drift-diffusion process [13]. Decisions that pro-

vide the best balance between speed and accuracy can be made by choosing an

optimal threshold which, once crossed by the log-likelihood, triggers a choice.

A group of agents that makes sequential measurements and communicates the

obtained private information to their neighbors can be modeled heuristically by

a set of diffusively coupled drift-diffusion equations [51, 48]. However, there are

two issues with this approach: First, it is not always clear whether the linear cou-

pling between neighbors used in such models approximates the accumulation of

evidence by agents that optimally use all available information (rational agents).

Second, and more importantly for the discussion that follows, in many situations

agents do not share their exact beliefs, or each individual measurement and ob-

servation with their neighbors. Rather, the agents may only observe each other’s

actions or decisions. While such actions do reveal the belief of each agent, they

occur much less frequently than the individual measurements. Furthermore, an

agent will typically not see the actions of all other agents in the network, which

means it will have to take unobserved possibilities into account. This is in contrast

to the model discussed in [33], where there is a global agent which sees all actions

and then optimizes a final decision based on a group of independent agents.
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Here we take a Bayesian approach and investigate the behavior of rational

agents who can only observe each other’s decisions or actions. We assume that

these decisions occur at a single moment in time. Thus the social information that

is communicated by each action is localized in time. The decision itself informs

all those observing the acting agent about its belief. Interestingly, we will show

that in some situations, even the absence of a decision or action can communicate

information. We will begin by reviewing the drift-diffusion model in the single

agent case. We next extend the model to a pair of agents, and continue with more

general networks in the next chapter. We show how decision thresholds (which

determine when an agent has sufficient information to act), network connectivity,

and assumptions about boundedly rational agents affect group evidence accumu-

lation.

Throughout we will use the terms individual, agent, and observer interchange-

ably.

4.1 Single-Agent Setup

The two-alternative forced choice task has been thoroughly studied for a single

observer [13]. Here an observer is tasked with deciding on the true state of the

world which can take one of two values H ∈ {±1}. Equivalently, the observer

needs to decide which of two hypotheses is true. To do so, the observer makes a

sequence of noisy observations,ξt. The observations lie in a set Ξ, and in what fol-

lows we will assume that Ξ = R, or that Ξ is a discrete subset of R. We will assume
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4.1. SINGLE-AGENT SETUP

that the observations are independent and identically distributed conditioned on

the state of the world, H. For two observations this means

P(ξ1,ξ2|H) = P(ξ1|H)P(ξ2|H) = fH(ξ1) fH(ξ2),

where f+(ξ) = P(ξ |H = 1) and f−(ξ) = P(ξ1|H = −1) are the conditional dis-

tributions of the observations or measurements, which we will call the evidence

distributions. We denote the set of observations until time T by ξ0:T. We de-

note by I the totality of information about H available to an agent. This is initially

I = ξ0:T, but will be more general later, when agents begin to incorporate evidence

(social information) from observing the decisions of their neighbors.

Given information, I, the agent compares P(H = 1|I) to P(H = −1|I). How a

choice is made depends on the setup: An agent can be asked which state is more

likely at some point in time (interrogation paradigm), or an agent can be allowed

to freely make a selection once they have a sufficient amount of evidence in favor

of one of the options (free response paradigm). Under the interrogation paradigm,

the agent is allowed a fixed number of observations, or a fixed amount of time,

to reach a decision. If we denote this set of observations by ξ0:T, at the end of the

given time a rational agent will choose

arg max
H

P(H|ξ0:T).

Here, we will focus on the free response paradigm. A possible utility function

could be simply the probability of being correct. However, this would incentivize

an agent to wait infinitely long before deciding. Thus we assume our rational

agents choose H = 1 when log P(H=1|I)
P(H=−1|I) is sufficiently large, and H = −1 when
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4.1. SINGLE-AGENT SETUP

it is sufficiently small. More precisely, we assume that an agent wants to exceed an

accuracy level α. Therefore, if the goal is to be correct more than 95% of the time,

then α = 0.95. To achieve this, the agent can check when log P(H=1|I)
P(H=−1|I) exceeds

the threshold θ+ = log α
1−α and select H = 1, and similarly select H = −1 when

the quantity falls below θ− = log 1−α
α . In this case we say the thresholds are

symmetric, since θ− = −θ+. We will extend this and more generally allow the

thresholds to be asymetric, so that we do not necessarily have |θ−| = |θ+|. Thus

we generally assume the agent is using thresholds θ− < 0 < θ+.

The agent knows both evidence distributions f− and f+, corresponding to

H = −1 and H = 1, respectively, but not which one is being sampled from. An

agent computes how likely it was that an observation came from either distribu-

tion and applies the optimal Sequential Probability Ratio Test [55]. To compute the

posterior probability P(H|ξt) agents use Bayes’ Rule to compute P(ξt|H), that is,

the probability that the observation was generated from one of the two evidence

distributions. For simplicity we assume a flat prior, P(H = 1) = P(H = −1), but

our arguments are easily extended to the case of unequal priors.

An agent making a single observation at time t applies Bayes’ Rule and com-

putes:

log
(

P(H = 1|ξt)

P(H = −1|ξt)

)
= log

(
P(ξt|H = 1)P(H = 1)P(ξt)

P(ξt|H = −1)P(H = −1)P(ξt)

)
(4.1.1)

= log
(

P(ξt|H = 1)
P(ξt|H = −1)

)
.

Conditioned on the true state, H, the observations are independent. Thus, if

we define yt as the log-likelihood ratio at time t, which is a measure of the agent’s
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belief at time t, we have

yt := log
(

P(H = 1|ξ0:t)

P(H = −1|ξ0:t)

)
= log

(
P(ξ0:t|H = 1)P(H = 1)P(ξ0:t)

P(ξ0:t|H = −1)P(H = −1)P(ξ0:t)

)
= log

(
P(ξ0:t|H = 1)

P(ξ0:t|H = −1)

)
= log

(
∏

t
s=0 P(ξs|H = 1)

∏
t
s=0 P(ξs|H = −1)

)
= log

(
t

∏
s=0

P(ξs|H = 1)
P(ξs|H = −1)

)

=
t

∑
s=0

log
(

P(ξs|H = 1)
P(ξs|H = −1)

)
.

Hence to get the log-likelihood ratio at time T, the agent adds the result of (4.1.1)

to a running total:

yt = yt−1 + log
(

P(ξt|H = 1)
P(ξt|H = −1)

)
,

where

y0 = log
(

P(ξ0|H = 1)
P(ξ0|H = −1)

)
is the evidence from the initial observation. The agent continues until the sum

reaches one of the two pre-determined decision thresholds, θ− < 0 < θ+, and

then chooses H = −1 if the evidence yt ≤ θ− or H = 1 if yt ≥ θ+. An example of

what the process look like is given in Figure 4.1.1.

Note that this process can be extended to more than two possible choices. Op-

timal decision strategies with more than two alternatives are harder to define and

analyze, as the threshold crossing procedure we use here is not optimal [38]. How-

ever, many interesting scenarios (such as predator detection) are modeled with
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Time

choose H = 1

choose H = -1

LL
R

Single Agent Evidence Accumulation

Fig. 4.1.1: An example of the evolution of the log-likelihood ratio when the evi-
dence distributions are normal with means ±0.1 corresponding to H = ±1 and
equal variance 1. The true state is H = 1, the thresholds are θ− = −3 and θ+ = 3,
and the agent eventually accumulates enough evidence to make a correct decision.

just two alternatives.

4.2 Two-Agent Setup

Our goal is to extend the single-agent model of evidence integration to a directed

network with N agents, where the direction of the edges will correspond to the

flow of information. Each agent has the same goal as a single observer: determine

the true state of the world, H ∈ {−1, 1}. We will assume that agents are making

a series of noisy observations of this unknown state. These observations are iden-

tically distributed, and independent from each other in time and between agents,

conditioned on the true state of the world, H. As in the case of a single agent, we

assume that each agent makes a decision and communicates this decision exactly

when its log-likelihood ratio crosses a threshold.
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Unlike an isolated observer, agents on a network receive additional social in-

formation when their neighbors decide or act. We assume that after every obser-

vation, agents communicate whether they have integrated sufficient evidence to

make a decision, in which case they communicate their choice to all their neigh-

bors downstream, according to the network topology. When they have not accu-

mulated enough evidence to reach a decision they do not communicate anything.

Thus the absence of a decision or an action communicates that an agent has not

gathered sufficient evidence to decide. This is equivalent to assuming that agents

observe the actions of all of their upstream neighbors, and that each action is de-

termined completely by an agent’s belief about the state of the world. We will

show how an ideal observer integrates its own observations along with social in-

formation communicated by its upstream neighbors to reach a decision.

We begin with the simplest possible setup with two agents and social informa-

tion flowing in one direction. We use this simple example to show how decision

thresholds determine the evidence accumulation dynamics, and derive a contin-

uum limit of the process. In the next chapter, we then move to the case where

two agents are exchanging social information, and each is observing the actions

of the other. We will investigate how this bidirectional flow introduces additional

complications in the analysis, which are absent in the following setup.

We start with the simplest nontrivial network, depicted in Figure 4.2.1.

1 2

Fig. 4.2.1: A pair of agents with unidirectional coupling.
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We assume both agents accumulate evidence about H: For agent 1 this infor-

mation consists entirely of its own observations. Agent 2 makes its own observa-

tions, and obtains social information from agent 1. Let I(i)t be the total information

available to agent i at time t. For instance, I(2)t consists of all private observations

of agent 2, and the history of decisions of agent 1 up to time t. We denote the

decision boundaries for both agents by θ− < 0 < θ+. We assume that when the

evidence causes the log-likelihood ratio,

y(i)t = log
P(H = 1|I(i)t )

P(H = −1|I(i)t )
,

to exceed θ+, agent i chooses H = 1 and stops collecting information. Equiva-

lently, when the log-likelihood ratio, y(i)t , falls belowθ− the agent chooses H = −1

and stops collecting information. If neither condition is satisfied, the agent con-

tinues accumulating evidence. We refer to y(i)t as the belief of agent i at time t. We

will always assume that the agents have the same decision boundaries, θ− and

θ+, but this assumption can be relaxed.

Agent 1 makes only private observations, so behaves as a lone observer. At

each time step, t, agent 1 makes an observation, ξ(1)
t ∈ Ξ, which is a sample from

P(ξ |H) with H the true state of the world. Then the agent updates its belief, y(1)t ,

equivalently to an isolated observer:

y(1)t = y(1)t−1 + log

(
P(ξ(1)

t |H = 1)

P(ξ(1)
t |H = −1)

)
,

and

y(1)0 = log
(

P(ξ0|H = 1)
P(ξ0|H = −1)

)
.
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Next, the agent communicates to agent 2 the decision state d(1)t where

d(1)t =



−1, y(1)t ≤ θ−

0, log P(ξ(1)
t |H=1)

P(ξ(1)
t |H=−1)

∈ (θ−,θ+)

1, y(1)t ≥ θ+

.

So if agent 1 has sufficient evidence to make a decision, it communicates its belief

about H. Otherwise the agent indicates that it is still undecided by communicating

0. We emphasize that the absence of a decision can provide information about the

belief of an agent.

At each time step, t, agent 2 makes an observation ξ
(2)
t ∈ Ξ from the same

distribution as agent 1: P(ξ |H), and updates its belief before receiving the latest

piece of information from agent 1:

ỹ(2)t = log
P(H = 1|ξ(2)

0:t , d(1)0 , . . . d(1)t−1)

P(H = −1|ξ(2)
0:t , d(1)0 , . . . d(1)t−1)

.

If this evidence is sufficient to make a decision, then agent 2 stops here. Otherwise,

it receives the communicated decision, d(1)t , from agent 1 and updates its log-

likelihood ratio again:

y(2)t = log
P(H = 1|ξ(2)

0:t , d(1)0 , . . . d(1)t−1, d(1)t )

P(H = −1|ξ(2)
0:t , d(1)0 , . . . d(1)t−1, d(1)t )

.

Agents continue this process until they have both made a decision.

As stated before, it is important that we assume both agents know that they

share the same distribution of observations, P(ξ |H = 1) and P(ξ |H = −1). Al-

ternatively, we could assume that agents know each other’s measurement distri-

butions, but the notation becomes more cumbersome. We also assume that both
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agents know they are acting rationally, and that once an agent has made a deci-

sion, it cannot change it. Agents make a decision as soon as they have sufficient

evidence, that is, once the log-likelihood ratio given all the evidence exceeds one

of the two thresholds.

For agent 1, the process is identical to the case of a single observer, except that

it is also communicating its decision state, d(1)t , at every time step. However, the

second agent has additional information. We next show that the log-likelihood

ratio of the two choices can be separated into parts corresponding to evidence

from private observations and evidence from agent 1’s decisions.

Consider the following computation that agent 2 makes after a private mea-

surement at step t = 1, and having observed the decision of agent one at t = 0,

log
P(H = 1|I(2)1 )

P(H = −1|I(2)1 )
= log

(
P(H = 1|ξ(2)

0:1 , d(1)0 )

P(H = −1|ξ(2)
0:1 , d(1)0 )

)

= log

(
P(ξ(2)

0:1 , d(1)0 |H = 1)

P(ξ(2)
0:1 , d(1)0 |H = −1)

)

= log

(
P(ξ(2)

0:1 |H = 1)P(d(1)0 |H = 1)

P(ξ(2)
0:1 |H = −1)P(d(1)0 |H = −1)

)

= log

(
P(ξ(2)

0 |H = 1)P(ξ(2)
1 |H = 1)P(d(1)0 |H = 1)

P(ξ(2)
0 |H = −1)P(ξ(2)

1 |H = −1)P(d(1)0 |H = −1)

)

=
1

∑
t=0

log

(
P(ξ(2)

t |H = 1)

P(ξ(2)
t |H = −1)

)
+ log

(
P(d(1)0 |H = 1)

P(d(1)0 |H = −1)

)

The first equation follows from Bayes’ rule, assuming equal prior probabilities

over the two states. The second and third equality follow from the assumption

66



4.2. TWO-AGENT SETUP

that the observations across time and between agents are conditionally indepen-

dent. Thus the second agent’s log-likelihood ratio splits into a sum of the log-

likelihood ratio change due solely to observations (private information), and a

log-likelihood ratio obtained from observations of agent 1. Agent 2 then uses the

result of this computation to update its belief at t = 1.

Remark. Even though P(ξ(2)
0 ,ξ(2)

1 , d(1)0 |H = 1) can be written as the product of

P(ξ(2)
0 |H = 1), P(ξ(2)

1 |H = 1), and P(d(1)0 |H = 1) it is not necessarily the case that

P(ξ(2)
0 ,ξ(2)

1 , d(1)0 ) = P(ξ(2)
0 )P(ξ(2)

1 )P(d(1)0 ). Observations are only independent from

each other, and the decisions of the other agent, when conditioned on the state of the world.

Because agent 2 knows the conditional distribution of measurements and as-

sumes the first agent is acting optimally, it knows that the value of agent 1’s first

decision state, d(1)0 , indicates something about the first agent’s belief, y(1)0 . At this

first step, agent one has only reached a decision if its single observation provided

a sufficient amount of evidence for H = 1 or H = −1.

The following proposition shows that the belief of the second agent can be

split into two parts at any other point in time. For simplicity, we will use OB( j)
0:t to

denote the evidence agent j has received from its own observations up to time t:

OB( j)
0:t =

t

∑
l=0

log
P(ξ( j)

l |H = 1)

P(ξ(1)
l |H = −1)

(Observation Evidence)

and DEC(d(1)0:t ) to denote the evidence agent 2 gets from knowing the decision

states of agent 1 up to time t:

DEC(d(1)0:t ) = log
P(d(1)0:t |H = 1)

P(d(1)0:t |H = −1)
. (Decision Evidence)
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Proposition 1. Assume that in the network depicted in Fig. 4.2.1 agent 1 chooses H = 1

at time T. Then, if agent 2 has not yet made a decision, its belief can be written as a sum

of observational and decisional evidence acquired up to time t:

y(2)s =


OB(2)

0:s + DEC(d(1)s = 0) , s < T

OB(2)
0:s + DEC(d(1)T−1 = 0, d(1)T = 1) , s ≥ T

(4.2.1)

Proof. The decisions of agent 1 are independent from the observations of agent 2,

when conditioned on the state. Thus

P(ξ(2)
0:s , d(1)0:s |H = 1) = P(ξ(2)

0:s |H = 1)P(d(1)0:s |H = 1).

The same thing holds for conditioning on H = −1, hence taking the log ratio gives

y(2)s = OB(2)
0:s + DEC(d(1)0:s )

thus it just remains to show that DEC(d(1)0:s ) simplifies as shown in (4.2.1).

Consider P(d(1)0 = i1, . . . , d(1)s = is|H) where i1, . . . , is ∈ {−1, 0, 1}. Before

agent 1 makes a decision, it communicates a decision state of 0, so if s < T:

P(d(1)0 = 0, . . . , d(1)s = 0|H) = P(d(1)s = 0|H)

because once an agent makes a decision it cannot change it.

Similarly, when agent 1 chooses state H = 1 at time T, we can write

P(d(1)0 = 0, . . . , d(1)T−1 = 0, d(1)T = 1, . . . , d(1)s = 1|H).

Note d(1)0 = 0, . . . , d(1)T−2 = 0 is implied by d(1)T−1 = 0 and the values of the decision

states after time T, d(1)T+1 = 1, . . . , d(1)s = 1 are implied by d(1)T = 1. Thus

DEC(d(1)0 = 0, . . . , d(1)T−1 = 0, d(1)T = 1, . . . , d(1)t = 1) = DEC(d(1)T−1 = 0, d(1)T = 1)
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and we note that the evidence from the decision state depends on the value of the

decision state and the time when it was first non-zero, i.e., when agent 1 made a

choice.

4.3 Thresholds and Decision Evidence

First, we will see what evidence a decision, d(1)t = ±1, provides. We will then

show that when |θ−| = |θ+|, non-decisions, d(1)t = 0, are uninformative, provided

an assumption on the evidence distributions.

4.3.1 Decision Evidence

At each point in time each agent computes its belief, a log-likelihood ratio (LLR),

y(i)t , i = 1, 2. As we have shown, since the agents are making independent obser-

vations, y(2)t can be broken into two parts:

y(2)t = OB(2)
0:t + DEC(d(1)0 , . . . , d(1)t ).

After agent 1 has made a decision, the evidence from the decision state remains

fixed. Assume agent 1 chooses H = 1 at time T. Then the belief of agent 2 at time

t ≥ T is:

y(2)t = OB(2)
0:t + log

 P(d(1)T−1 = 0, d(1)T = 1|H = 1)

P(d(1)T−1 = 0, d(1)T = 1|H = −1)

 .

Hence if we can compute P(d(1)T−1 = 0, d(1)T = 1|H = ±1), we can determine the

evidence provided by a decision from agent 1. Intuitively, if agent 1 communicates
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4.3. THRESHOLDS AND DECISION EVIDENCE

the decision d(1)T = 1, then agent 2 knows that y(1)T ≥ θ+. Since this information

was acquired through independent observations, agent 2 can use all of it to update

its belief:

Proposition 5. A choice of H = 1 at time T by agent 1 results in an an increase of at

least θ+ in the belief of agent 2, since

log

 P(d(1)T−1 = 0, d(1)T = 1|H = 1)

P(d(1)T−1 = 0, d(1)T = 1|H = −1)

 ≥ θ+.

If the evidence distributions f± are sufficiently close, so that individual observations small

amounts of evidence on average, then:

DEC(d(1)T−1 = 0, d(1)T = 1) ≈ θ+.

Proof. We have

P(d(1)T−1 = 0, d(1)T = 1|H = 1) = P(OB(1)
0:T−1 ∈ (θ−,θ+), OB(1)

0:T ≥ θ+|H = 1).

We observe that d(1)T−1 = 0, d(1)T = 1 imply y(1)T−1 ∈ (θ−,θ+) and y(1)T ≥ θ+.

Hence

θ− <
T−1

∑
t=0

log
P(ξ(1)

t |H = 1)

P(ξ(1)
t |H = −1)

< θ+

T

∑
t=0

log
P(ξ(1)

t |H = 1)

P(ξ(1)
t |H = −1)

≥ θ+

Following [12], we have

T

∏
t=0

P(ξ(1)
t |H = 1)

P(ξ(1)
t |H = −1)

≥ eθ+

T

∏
t=0

P(ξ(1)
t |H = 1) ≥ eθ+

T

∏
t=0

P(ξ(1)
t |H = −1) (4.3.1)
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Hence P(d(1)T−1 = 0, d(1)T = 1|H = 1) is the probability of making a chain of

observations ξ(1)
0:T from f+ whose log-likelihood probability surpasses θ+ at time

T, but remains in (θ−,θ+) prior to T. We call the collection of such “legal” obser-

vation chains L and note that L ⊆ ΞT. We then have:

P(d(1)T−1 = 0, d(1)T = 1|H = 1) =
ˆ
L

f+(ξ
(1)
0:T)dξ

(1)
0:T .

Every legal chain satisfies (4.3.1), hence we can integrate:
ˆ
L

f+(ξ
(1)
0:T)dξ

(1)
0:T ≥

ˆ
L

eθ+ f−(ξ
(1)
0:T)dξ

(1)
0:T = eθ+P(d(1)T−1 = 0, d(1)T = 1|H = −1).

Thus

P(d(1)T−1 = 0, d(1)T = 1|H = 1) ≥ eθ+P(d(1)T−1 = 0, d(1)T = 1|H = −1)

and so

log
P(d(1)T−1 = 0, d(1)T = 1|H = 1)

P(d(1)T−1 = 0, d(1)T = 1|H = −1)
≥ θ+.

When the evidence distributions are close together log P(ξ(1)
t |H=1)

P(ξ(1)
t |H=−1)

will be small

and since ∑
T−1
t=0 log P(ξ(1)

t |H=1)

P(ξ(1)
t |H=−1)

< θ+, we will have ∑
T
t=0 log P(ξ(1)

t |H=1)

P(ξ(1)
t |H=−1)

≈ θ+.

The equivalent results hold when agent 1 chooses H = −1 and provides θ− <

0 evidence to agent 2. Thus, we have fully described the belief of the second agent

when it receives a decision from its upstream neighbor. This computation shows

that a decision from a neighboring agent gives a kick of at least the threshold size,

as compared with a heuristic fraction of the threshold size used in [16]. Next, we

look at the behavior of the evidence before agent 1 makes a decision: DEC(d(1)t =

0).
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4.3.2 Non-decision evidence and Symmetry

When |θ−| 6= |θ+| we say that the thresholds are asymmetric and when θ− =

−θ+ we say that the thresholds are symmetric. The farther the thresholds are

away from zero, the more accurate we expect an agent’s decision to be, but at the

cost of response time [12, 51]. This is intuitive because we can think of P(d(1)t =

±1|H = ±1) = α as the probability that agent 1 makes the correct decision and

P(d(1)t = ∓1|H = ±1) = 1−α as the probability that it makes an error. If we set

θ+ = log α
1−α , then the largerα is, the more accurate the agent will be, but it takes

more observations to achieve that level of accuracy.

We call the evidence agent 2 has before agent 1 makes a decision the non-

decision evidence, given by

DEC(d(1)t = 0) = log
P(d(1)t = 0|H = 1)

P(d(1)t = 0|H = −1)
. (4.3.2)

We will show that non-decisions are uninformative, i.e., the non-decision ev-

idence is zero, given symmetric thresholds and a symmetry condition on the ev-

idence distributions. Furthermore, this will be true for more general network

structures, which we examine in the next chapters. Thus, we will assume these

symmetries in the next chapters to simplify our examination of decision making

dynamics in larger networks.

The quantity P(d(1)t = 0|H = 1) is the probability that the observations of
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agent 1 have not caused it to make a decision. The absence of a decision is re-

lated to the survival probability:

S±(t) = P(d(1)t = 0|H = ±1) = P(OB(1)
0:s ∈ (θ−,θ+), 0 ≤ s ≤ t|H = ±1).

When the thresholds are asymmetric we typically have S−(t) 6= S+(t). Thus,

when no decision is made this should give evidence for the evidence distribution

associated with the larger threshold. We think of d(1)t as providing partial infor-

mation of the stochastic process y(1)t : It reveals whether or not the process y(1)t has

hit a threshold yet. This means the non-decision information is the log ratio of the

survival probabilities:

DEC(dt(1) = 0) = log
S+(t)
S−(t)

.

We will do some explicit calculations for evidence accumulation with asymmetric

thresholds in the next section.

Now let us assume that the thresholds are symmetric. Intuitively, let the evi-

dence distributions f± be symmetric about the y-axis ( f+(ξ) = f−(−ξ)) then the

belief of agent 1 should should remain bounded by the thresholds (survive) with

the same probability given H = 1 or H = −1. To see this, as in the proof of 5, we

let LS be the collection of chains of observations ξ(1)
0:t that survive, i.e., do not lead

to a threshold crossing. Then if ξ(1)
0:t survives, so does −ξ(1)

0:t since for 0 ≤ s ≤ t:

s

∑
l=0

log
f+(ξ

(1)
l )

f−(ξ
(1)
l )

=
s

∑
l=0

log
f−(−ξ(1)

l )

f+(−ξ(1)
l )

= −
s

∑
l=0

log
f+(−ξ(1)

l )

f−(−ξ(1)
l )
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So, if ∑
s
l=0 log f+(ξ

(1)
l )

f−(ξ
(1)
l )
∈ (θ−,θ+), so is ∑

s
l=0 log f+(−ξ(1)

l )

f−(−ξ(1)
l )

. Hence,

S+(t) =
ˆ
LS

f+(ξ
(1)
0:t )dξ

(1)
0:t

=

ˆ
LS

f−(−ξ(1)
0:t )dξ

(1)
0:t

=

ˆ
LS

f−(ξ
(1)
0:t )dξ

(1)
0:t

= S−(t).

We generalize this definition to any pair of evidence distributions that satisfy

this property with the following.

Definition 4. The conditional measurement distributions P(ξ |H = 1) = f+(ξ)

and P(ξ |H = −1) = f−(ξ) are symmetric if ∀z ∈ (θ−,θ+)

P(log
f+(ξ)
f−(ξ)

= z|H = 1) = P(log
f+(ξ)
f−(ξ)

= −z|H = −1)

whenever −z ∈ (θ−,θ+).

For example, if we let N (ξ ;µ,σ2) denote the probability density function of

the normal distribution with meanµ and varianceσ2, then when f+(ξ) = N (ξ ;µ+,σ2)

and f−(ξ) = N (ξ ;µ−,σ2) with µ+,µ− ∈ R andσ2 ∈ R+, we get distributions are

symmetric.

Thus, we finish by noting that when the thresholds and decisions are symmet-

ric we have

DEC(d(1)t = 0) = log
P(d(1)t = 0|H = 1)

P(d(1)t = 0|H = −1)
= log

S+(t)
S−(t)

= 0,

i.e., non-decisions are uninformative.
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Time

choose H = 1

choose H = -1

LL
R

Unidirectional Coupling Evidence Accumulation

Agent 1

Agent 2

Fig. 4.3.1: An example of evidence accumulation with two agents, and normal
evidence distributions with means ±0.1 corresponding to H = ±1 and equal
variance 1. The true state is H = 1. Agent 1 makes the wrong decision, but this
does not mislead the second agent.

Summary Assume the decision thresholds and observation distributions are sym-

metric. Then before agent 1 makes a decision at time T, agent 2 only has evidence

from its own observations:

y(2)t = OB(2)
0:t , t < T.

After the first agent makes a decision, the log-likelihood ratio for agent 2 will jump

by θ+ if agent 1 chooses H = 1 and θ− it chooses H = −1. Hence

y(2)t = OB(2)
0:t + d(1)T θ+, t ≥ T.

An example of this process is given in Figure 4.3.1. The true state is H = 1.

Even though agent 1 chooses H = −1 around t = 50 and this causes agent 2 to

update its belief by θ−, agent 2 still ends up accumulating enough evidence to

make the correct decision.
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4.4 Discrete Example

To gain some intuition we look at this process when the measurement distribu-

tions f+ and f− are discrete and then we do explicit calculations for an example

where the decision thresholds are small and asymmetric.

4.4.1 Setup

We assume that each agent can make one of three observations, A and B, with

P(A|H = 1) = p P(A|H = −1) = q (4.4.1)

P(B|H = 1) = q P(B|H = −1) = p

P(C|H = 1) = s P(C|H = −1) = s

where p + q + s = 1 and p ≥ q ≥ 0, s ≥ 0. Thus observation A supplies stronger

evidence for H = 1, observation B provides stronger evidence for H = −1, and

observation C is uninformative. Equivalently, each informative measurement has

only two values and has some probability of being incorrect. These equations

define the confusion matrix [34]. Note that these discrete evidence distributions

are symmetric, where f+ is defined by the left equations and f− the right equations

in (4.4.1).

For simplicity we let θ = log p
q > 0, and define the positive threshold as θ+ =

mθ for some m ∈ N, and the negative threshold as θ− = −nθ for some n ∈ N.

These assumptions simplify the analysis, as the thresholds, as well as the beliefs

of the two agents are restricted to lie on the lattice θZ = {kθ : k ∈ Z}. The
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informative private observations A and B change the belief of an agent by θ and

−θ, respectively. Thus an A measurement and a B measurement can cancel each

other out, so it takes m cumulative measurements of A to choose H = 1, and n

cumulative measurements of B to choose H = −1. Thus for an isolated agent,

repeated measurements result in a biased random walk on the θZ lattice.

4.4.2 Non-Decision Evidence

As we discussed in Section 4.2, the belief of agent 2 at any point in time can be split

into a part corresponding to private observations, and another part corresponding

to social information obtained from agent 1. Thus, to determine the behavior of

the unidirectional coupling for discrete distributions, we first compute the amount

of information the second agent receives before agent 1 makes a decision. For

t ≥ 0 the change in belief of agent 2 is the non-decision evidence defined in (4.3.2).

We are looking at a biased random walk on a lattice where the boundaries are

absorbing. Thus the terms in the numerator and denominator of the log-ratio in

Eq. (4.3.2) are the probabilities that the belief of agent 1 has not reached either

threshold by time i, given that the true states is H = 1 or H = −1, respectively.

Thus the update of agent 2 is based on an inference about the unobserved state

of agent 1’s belief. This belief evolves as a biased random walk on a lattice with

absorbing boundaries (See Figure 4.4.1). Therefore agent 2 can explicitly calculate

the relative probability that a walk has not escaped, for example:

P(d(1)t = 0|H = 1) =
m−1

∑
l=−(n−1)

P(y(1)t = l|H = 1).
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Fig. 4.4.1: An example lattice for a random walk where θ− = −3θ and θ+ = 5θ
are the absorbing boundaries.

The random walk starts at 0 and each observation corresponds to a one step

movement on the lattice. Thus d(1)t must equal zero until a walk can hit the bound-

ary, and thus DEC(d(1)t = 0) = 0 for t < min {m, n}. Hence, not observing a deci-

sion during this initial time provides no information about agent 1’s belief, since

no decision could have occured in either H = 1 or H = −1.

Survival Trajectories

From here on we assume m ≥ n. Let v(t) be the vector of length (m + n + 1)− 2

which catalogues the probability that a walk starting at 0 ends up at each state

without hitting an absorbing boundary by time t. We index v(t) using the lattice

positions:

v j(t) = probability a non-escaping walk is located at lattice position j at time t,

with t ≥ 0 and −n < j < m. Since our walks start at the origin we set the initial

condition:

v(0) = (0, . . . , 0, 1, 0, . . . , 0)T

where the 1 is at the 0 index, i.e., v0(0) = 1.
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Define

Ap,q,s =



s q 0 0

p s q 0

0 p s q

0 0 p s
... . . . . . . . . .


.

Note that A1,1,1 is the adjacency matrix for walks. Using Ap,q,s we can define the

update equation

v(t) = Ap,q,sv(t− 1)

or

v(t) = At
p,q,sv(0).

Now we have a formula for the non-decision evidence:

DEC(d(1)t = 0) = log

(
(At

p,q,sv(0)) · 1
(At

q,p,sv(0)) · 1

)
.

This is simple to compute numerically for relatively small decision boundary

sizes, but unfortunately we cannot get an explicit formula for (At
p,q,sv(0)) · 1, the

survival probability of the biased random walk with absorbing boundaries, for

general m, n ∈ N. Next we look at a couple of cases where we can do a direct

computation and then produce simulations for more general examples.

Symmetric Absorbing Boundaries

When the decision thresholds are symmetric, that is, when m = n, then because

the distributions for P(ξ |H = 1) and P(ξ |H = −1) are symmetric we know that

79



4.4. DISCRETE EXAMPLE

non-decision evidence is zero in this case, as shown in Section 4.3.2. This makes

sense because (Ai
p,q,sv(0)) · 1 = (Ai

q,p,sv(0)) · 1 since Ap,q,s is the transpose of

Aq,p,s. As a result, DEC(d(1)i = 0). When the bounds are are not symmetric,

m 6= n, the survival probabilities will eventually differ because probability should

leak out of the closer boundary faster.

Analytic Example: Four State Biased Random Walk

10-1 2

q p
s

q p
s

Fig. 4.4.2: A simple example lattice with two transient states, two absorbing states,
and transition probabilities indicated by arrows.

We compute explicit log-likelihood ratios for the simplest nontrivial example

with non-symmetric boundaries: a biased random walk on 4 states. To simplify

things even more, we let θ = 1, so that we get the lattice in Figure 4.4.2,

Every walk starts at location 0, and locations −1 and 2 are the absorbing

boundaries. Stationary steps correspond to uninformative observations.

We will use standard first-step analysis [53]. Let y(1)n be the location of agent

1’s belief at time n. For simplicity let P+(y(1)n = l) = P(y(1)n = l|H = 1) denote
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the probability that agent 1’s belief is at location l ∈ {−1, 0, 1, 2} given that the

true state is H = 1. Then the probability of the belief reaching different locations

is given by:

P+(y(1)n = −1) = P+(y(1)n−1 = −1) + qP+(y(1)n−1 = 0)

P+(y(1)n = 0) = sP+(y(1)n−1 = 0) + qP+(y(1)n−1 = 1)

P+(y(1)n = 1) = pP+(y(1)n−1 = 0) + sP+(y(1)n−1 = 1)

P+(y(1)n = 2) = pP+(y(1)n−1 = 1) + P+(y(1)n−1 = 2)

P+(y(1)0 = 0) = 1

where p + q + s = 1 as before with p > q > 0 and s ≥ 0, so that the belief is biased

towards H = 1.

So we have:

v(n) =

P+(y(1)n = 0)

P+(y(1)n = 1)

 = An
p,q,sv(0) =

s q

p s


n1

0

 .

We can use eigenvector analysis to compute

DEC(d(1)n = 0) = log
(An

p,q,sv(0)) · 1
(An

q,p,sv(0)) · 1

explicitly for this case. An
p,q,s has the eigenvalues λ1 := s−√pq, λ2 := s +

√
pq.

Then we can write the corresponding eigenvectors:

e1 =

 −q√
pq

1

 , e2 =

 q√
pq

1

 ,

so that

v(0) =
−√pq

2q
e1 +

√
pq

2q
e2 =

 1
2

−√pq
2q

+

 1
2
√

pq
2q

 .
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Which gives us a simple expression for v(n):

v(n) = λn
1

 1
2

−√pq
2q

+ λn
2

 1
2
√

pq
2q

 .

We get do the same for An
q,p,s by swapping p and q. Hence:

DEC(d(1)n = 0) = log
1
2(λ

n
1 + λn

2) +
√

pq
2q (λn

2 − λn
1)

1
2(λ

n
1 + λn

2) +
√

pq
2p (λn

2 − λn
1)

= log
1 +

2λn
1

λn
2−λn

2
+
√

pq
q

1 +
2λn

1
λn

2−λn
2
+
√

pq
p

.

In order to see what the asymptotic non-decision information is, first note that

2λn
1

λn
2 − λn

2
=

2

(λ2
λ1
)n − 1

.

For our choice of s, p, q we have λ2/λ1 ≈ −7.98 so we get fairly fast convergence

lim
n→∞ 2

(λ2
λ1
)n − 1

→ 0

which gives

lim
n→∞ DEC(d(1)n = 0) = log

1 +
√

p
q

1 +
√

q
p

Then
√

p
q =
√

e so

lim
n→∞ DEC(d(1)n = 0) = log

1 +
√

e
1 + 1√

e

=
1
2

.

because
1√

e
1 +
√

e
1 + 1√

e

=
1 +
√

e√
e + 1

= 1

implies
1 +
√

e
1 + 1√

e

=
√

e.
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Fig. 4.4.3: The value of the non-decision evidence that computes for θ− =
−1,θ+ = 2, p = e

5 , q = 1
5 , s = 1− p− q. We see that the evidence quickly con-

verges to 1
2 .
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We thus get that the non-decision information fairly quickly converges to 1
2 , a fact

we confirm with simulations in Figure 4.4.3

We have a recursive formula for the belief distribution of agent 1. We also

have a closed form for the belief distribution in a specific case. The closed form

allows us to describe how the non-decision evidence from agent 1 behaves and

we confirm that behavior more generally with simulations.

In particular, this example shows us that we might expect the evidence from

a non-decision to saturate at a significantly large value that is bounded by the

upper threshold, but not enough to cause the agent to decide without additional

evidence. We show this holds using simulations.

4.4.3 Simulations

We next investigate the evolution of beliefs when coupling is unidirectional and

the measurement distribution discrete. Using simulations we will show how non-

decision evidence defined in (4.3.2) depends on threshold size. We will further

investigate the size of the non-decision evidence by varying the evidence obtained

from each observation.

Non-decision Evidence Choosing probabilities that allow us to have integer-

valued thresholds, we plot the non-decision evidence for four pairs of thresholds

in Figure 4.4.4. We see that the evidence saturates for all pairs to a value less than

the threshold. This is related to a general fact about how much evidence social
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Fig. 4.4.4: Non-decision evidence saturates for different ratios of thresholds. We
let p = e

5 , q = 1
5 , s = 1− q− p so that log p

q = 1 and p + q + s = 1.

information can provide shown in a claim in Chapter 6. Furthermore when the

thresholds are close in size, we see that less evidence is provided than the evidence

from an informative private observation. But, when the thresholds are different

in size, the non-decision evidence becomes substantial; the equivalent of almost

25 A observation when θ− = −50 and θ+ = 100, which is shown in the bottom

right panel of Figure 4.4.4.
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Dependence on Bias For large thresholds, it will take several steps for a decision

to be made. If θ− = −nθ and θ+ = mθ, with m < n then it will take at least

n time steps for a decision to be possible, in which case it must have resulted

from n consecutive B observations. As a consequence, the absence of a decision

during these first n− 1 steps is not informative about the belief of agent 1. We can

compute exactly how much evidence agent 2 obtains if agent 1 does not make a

decision after observation n:

DEC(d(1)n = 0) = log
1− pn

1− qn .

The amount of evidence when the non-decision information is first informative is

shown in Figure 4.4.5 for different values of p and n. This tells us that the initial

evidence is smaller the farther away the boundaries are. Furthermore, it shows

that the initial evidence for a non-decision is always smaller than the evidence

provided by a decision. Thus the non-decision information will have a small im-

pact early on. However, since it is positive, if agent 2 does not choose H = −1

before receiving d(1)n , then the non-decision evidence is enough to force an extra B

observation before choosing H = −1 because −nθ+ DEC(d(1)n = 0) > −nθ.

4.5 Continuum Limit

We finish our investigation of the simple network in Figure 4.2.1 by characterizing

the continuum limit of the evidence accumulation process. We obtain this limit by

letting the time between observations, as well as the change in the belief of each

agent due to private observations go to 0 [12]. We start with the continuum limit
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Fig. 4.4.5: The amount of evidence obtained by agent 2 after observing a non-
decision at time step n where n is the minimal number of steps needed to reach
the closer, negative threshold. The parameter p defining the observational dis-
tribution is varied in the interval p ∈ [0.5, 1) to obtain the different curves. For
comparison, the amount of evidence obtained from a single A observation is given
by the blue curve.
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4.5. CONTINUUM LIMIT

of agent 1. As this agent only makes observations this is equivalent to previous

derivations that use the Functional Central Limit Theorem to describe the evolu-

tion of the belief as a drift–diffusion process [54, 12]. We next turn to agent 2 by

first assuming it does not make private observation and only receives the decision

states of agent 1. We conclude by describing the evolution of the belief of an agent

that combines both social and private information to update its belief.

For simplicity we give the results for the concrete evidence distributions N+

and N−, defined by

N±(ξ) =
1√

2πσ2
exp

(
−1
2σ2 (ξ ∓µ)2

)
(4.5.1)

with µ,σ2 > 0. So, the likelihood functions are determined by the normal distri-

butions, N−(ξ) and N+(−ξ) so they are symmetric about the y-axis and thus are

symmetric as in Definition 4. The results hold for more general distributions, but

require more theoretical detail without much distinction in the resulting behavior.

Observations Only

As shown in [54, 12], the first agent’s belief evolves approximately as a realization

of a process described by the SDE:

dy(1)t = gdt + ρdW (4.5.2)

where Wt is a standard Wiener process and g and ρ2 are defined as:

g := Eξ

[
ln

f+(ξ)
f−(ξ)

∣∣∣∣HT

]
, ρ2 := Varξ

[
ln

f+(ξ)
f−(ξ)

∣∣∣∣HT

]
.
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where HT is the true state.

When the observations follow normal distributions, then

ln
N+(ξ)

N−(ξ)
=

2µ
σ2ξ ,

and so

g = HT
2µ2

σ2 , ρ2 =
4µ2

σ2 .

Decision States Only

To simplify the computation of y(2)t , we first compute zt, the amount of evidence

agent 2 receives from agent 1 alone, in the absence of its own observations. As-

sume the observations are made at discrete times {tn}n∈N0 = {t0, t1, . . . } and that

no decision has been made by time tn:

zn = DEC(d(1)n = 0) = log
P(d(1)n = 0|H = 1)

P(d(1)n = 0|H = −1)
.

Then define the time increment between any two consecutive decisions:

∆t = tn − tn−1.

To define the continuum limit process we assume ∆t is small and introduce the

difference:

∆zn = zn − zn−1 = log
P(d(1)n = 0|H = 1)

P(d(1)n = 0|H = −1)
− log

P(d(1)n−1 = 0|H = 1)

P(d(1)n−1 = 0|H = −1)
.

Given ∆t, we can compute a differential equation for ∆zn. Note that since

these increments are defined in terms of probabilities that an agent has not made
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4.5. CONTINUUM LIMIT

a decision up to a certain time, they are not random. The probabilities in these

ratios are survival probabilities:

P(d(1)n = 0|H = ±1) = S±,tn =

ˆ θ+

θ−
P(y(1)n = x|H = ±1)dx.

We assume, but do not rigorously show, that as ∆t → 0 the discrete step

survival probabilities approximate the continuous survival probabilities S±(t),

which are the probabilites that the solution to (4.5.2) has not hit a threshold by

continuous time t ∈ R≥0 given H = ±. Therefore,

lim
∆t→0

S±,tn → S±(t).

Under this assumption for t = tn−1:

∆zn = log
S+(tn)

S−(tn)
− log

S+(tn−1)

S−(tn−1)

= log
S+(t + ∆t)
S−(t + ∆t)

− log
S+(t)
S−(t)

= [log S+(t + ∆t)− log S+(t)]− [log S−(t + ∆t)− log S−(t)] .

After dividing both sides by ∆t, and taking the limit ∆t→ 0 we get

z′(t) =
d
dt

ln
S+(t)
S−(t)

=
S′+(t)
S+(t)

− S′−(t)
S−(t)

or

dz =

(
S′+(t)
S+(t)

− S′−(t)
S−(t)

)
dt.

Thus in the case agent 2 only observes the decisions of agent 1, but makes no

private observations, its believe evolves deterministically according to

z(t) = ln
S+(t)
S−(t)

,
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4.5. CONTINUUM LIMIT

until the time of a decision by agent 1.

Assuming that agent 1 has made a decision at time T: d(1)T 6= 0, we have

Claim 1.

dzt =

(
(1− HT(t))

(
S′+(t)
S+(t)

− S′−(t)
S−(t)

)
+ δTθd(1)T

)
dt

Observations and Decision States

To finish, we combine the previous two process to fully describe the behavior of

agent 2 in the continuous case. Assume the first agent has not reached a decision,

and the second agent has made the observations ξ
(2)
0:n . Then the log-likelihood

ratio for agent 2 at step n is:

y(2)n =
n

∑
j=0

ln
P(ξ(2)

j |H = 1)

P(ξ(2)
j |H = −1)

+ ln
P(d(1)n = 0|H = 1)

P(d(1)n = 0|H = −1)
.

Then, by independence of the observations, we can combine the previous equa-

tions to get the full SDE for agent 2.

Claim 2.

dy(2)t =

(
g + (1− HT(t))

(
S′+(t)
S+(t)

− S′−(t)
S−(t)

)
+ δTθd(1)T

)
dt + ρ dW

Fokker-Planck Equation and Simulations In order to understand the behavior

of the additional drift term, log S+(t)
S−(t)

, we note that if

dy(1)t = gdt + ρdW

91



4.5. CONTINUUM LIMIT

and the process terminates when y(1)t = θ− or θ+, then we can define

p±(x, t) = p(y(1)t = x|H = ±1),

so that the probabilities p±(x, t) satisfy

∂p(x, t)
∂t

= ∓a
∂p±(x, t)

∂x
+

b
2

∂2 p±(x, t)
∂x2 ,

for some drift rate a and diffusion rate b, with absorbing boundaries

p±(θ−, t) = p±(θ+, t) = 0,

and initial condition

p±(x, 0) = δ(x).

It is possible to use a Fourier series to solve for p±(x, t) explicitly, but the co-

efficients are difficult to solve for and the analytic expression does not help our

analysis much further. Instead we note that

S±(t) =
ˆ θ+

θ−
p±(x, t)dx.

Hence, we numerically compute the solutions p±(x, t) and plot them in Fig. 4.5.1

We see that the probability mass between the absorbing boundaries stays high

longer when the belief diffuses towards the farther boundary (higher threshold).

Then to compute the survival probabilities we sum up our simulation of p±(x, t)

at each time step and plot the results, including the resulting non-decision evi-

dence, in Figure 4.5.2.
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Fig. 4.5.1: A simulation of the conditional belief distributions for H = −1 (left) and
H = 1 (right) using Crank-Nicolson discretization. Each plot shows how the belief
is distributed and evolves in time where brightness corresponds to probability.
Here we let the boundaries be θ− = −1 and θ+ = 3. We used a drift rate a = 1,
diffusion rate b = 1, space step size dx = 0.01, time step size dt = 0.001, and total
time T = 10.
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Fig. 4.5.2: Using the simulations from Figure 4.5.1, we compute the survival prob-
abilites and resulting non-decision evidence and plot them on the same graph.
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4.6 Conclusion

We derived the behavior for the simplest evidence accumulation network. This

interaction will give us insight when things become more complex as we allow

for more general networks which can have recurrent connections, but we will

see that many of the concepts carry over. We showed that for symmetric pairs

of evidence distributions and symmetric thresholds, the social information the

downstream agent receives before agent 1 makes a decision is uninformative. If

the thresholds are asymmetric or the evidence distributions are not symmetric,

then we no longer have this property. The non-decision evidence the downstream

agent receives can be substantial and will depend on the distributions and how

long agent 1 has gone without making a decision. We gained intuition for the

process by looking at discrete distributions. When we took a continuum limit and

numerically computed the surival probabilities for our process, we saw that the

same properties hold for more general distributions.

95



Chapter 5
Bidirectional Coupling

When people look to one another to try and make decisions, they are not merely

observing each other’s actions. When you observe another person’s gaze, you

also realize that the other person is looking at you. Moreover, the other person

is acknowledging your gaze, and you realize this too. Thus we know that the

other person knows that we are observing them, and we know that the other per-

son knows that we know this. In theory, this recursive process does not end, and

it is at the heart of the mathematical notion of “common knowledge.” A simi-

lar recursive process also makes the analysis of a bidirectionally coupled pair of

agents more difficult to study than the unidirectionally coupled pair of the previ-

ous chapter.

In this chapter we explore the dynamics of evidence accumulation and deci-

sion making for two agents that observe each other’s decisions. We will show that
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this process is simple when the agents have symmetric boundaries and symmet-

ric evidence distributions, as was the case of one-way communication. However,

with asymmetries the absence of a decision is informative about an agent’s belief.

A rational observing agent will use this information to update its belief, leading

to a recursive process which is difficult to describe explicitly.

In the first section we will describe the setup, introducing new notation be-

cause the process is more complicated. We will show that the process is equivalent

to the unidirectional coupling case when boundaries and evidence distributions

are symmetric. We then describe the case of asymmetric boundaries and give up-

date equations for discrete time. We will then look at an example with discrete

evidence distributions, and discuss simulations of the process that illustrate how

the behavior differs from the unidirectional case.

5.1 Setup and Symmetric Boundaries

Figure 5.1.1, shows the graph corresponding to two agents who make indepen-

dent, private observations, and share their decision states after each observation.

1 2

Fig. 5.1.1: Two bidirectionally coupled agents.
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We will assume time, t, is discrete and an observation is made during each

time step, ti. Moreover, we divide each time step into multiple parts. At the

beginning of a time step, ti, agents make a private observation, and update their

belief. They then observe whether the neighboring agent has made a decision.

As we will show, this leads to a process that can take a number of substeps. We

assume that the agents continue to observe each other’s decision state until there

are no further changes in their beliefs. Only at this point do they make another

private observation (this corresponds to time step ti+1.

As in Section 4.2, an observation is a sample from the conditional evidence

distribution f+ or f−. Thus agent j = 1, 2 makes the observation ξ
(i)
t , at time ti,

and updates its belief from the end of the previous time step, y(i)t−1. Therefore,

y(i)t,0 = y(i)t−1 + log

(
P(ξ(i)

t |H = 1)

P(ξ(i)
t |H = −1)

)
. (5.1.1)

The second subscript in y(i)t,n indexes the substeps between two observations. We

will define y(i)t−1 iteratively using (5.1.3) below. As we will see, during the process,

observers iteratively update their belief based on the observations of each other’s

decision state. At the beginning of this process, n = 0, each agent integrates

evidence from a new observation (private information). For n ≥ 1, each agent

integrates the social information communicated by its neighbor.

The process proceeds as follows: For n ≥ 0, after both agents compute y(i)t,n,
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they communicate their decision state to their counterpart:

d(i)t,n =



−1, y(i)t,n ≤ θ−

0, y(i)t,n ∈ (−θ−,θ+)

1, y(i)t,n ≥ θ+.

Once an agent makes a decision, it cannot change it. So if d(i)t,n 6= 0 then d(i)s,m =

d(i)t,n for all s ≥ t, m ≥ n. At substep n + 1, between two observations agent i

incorporates the observation of the decision d(¬i)
t,n from their counterpart, at the

previous substep. We first write:

y(i)t,n+1 = log

 P(d(¬i)
t,n , h(i)t−1, d(¬i)

t,0:n−1, d(i)t,0:n−1,ξ(i)
0:t |H = 1)

P(d(¬i)
t,n , h(i)t−1, d(¬i)

t,0:n−1, d(i)t,0:n−1,ξ(i)
0:t |H = −1)

 .

Where we define the index ¬i = 2, 1 when i = 1, 2, respectively, d( j)
t,0:n−1 =

{d( j)
t,0 , . . . , d( j)

t,n−1} are the decision states communicated by agent j up to substep

n − 1, d( j)
0:t are the decision states at the end of each time step, and h(i)0:t−1 is the

entire record of decision states of agent i knows up to time step t− 1:

h(i)t−1 = {d(1)s,i , d(2)s,i }0≤s≤t−1,i∈N0 .

Then we are able to split the belief into evidence from observations and evidence

from decision states, but the latter must be conditioned on the observations:

y(i)t,n+1 = OB(i)
0:t + log

 P(d(¬i)
t,n , h(i)t−1, d(¬i)

t,0:n−1, d(i)t,0:n−1|ξ
(i)
0:t , H = 1)

P(d(¬i)
t,n , h(i)t−1, d(¬i)

t,0:n−1, d(i)t,0:n−1|ξ
(i)
0:t , H = −1)

 . (5.1.2)

We note a key difference here from the unidirectional coupling case: decision

states are no longer necessarily independent from observations. In the asymmet-

ric case some information about agent i’s private observations is communicated
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through its decisions, and in general

P(d(¬i)
t,n , h(i)t−1, d(¬i)

t,0:n−1, d(i)t,0:n−1|ξ
(i)
0:t , H = ±) 6= P(d(¬i)

t,n , h(i)t−1, d(¬i)
t,0:n−1, d(i)t,0:n−1|H = ±).

Information that through the absence of the decision of an agent is then used by

the other agent in the computation of its own decision states. This dependence

makes it necessary to condition on observations in the numerator and denomina-

tor of the second term in Eq. (5.1.2).

If neither agent has made a decision at substep n of the observational step t,

then

y(i)t,n+1 = OB(i)
0:t + log

 P(d(¬i)
t,n = 0, d(i)t,n−1 = 0|ξ(i)

0:t , H = 1)

P(d(¬i)
t,n = 0, d(i)t,n−1 = 0|ξ(i)

0:t , H = −1)


because we do not allow decisions to change, and hence d(¬i)

t,n = 0 implies d(¬i)
s,i = 0

for 0 ≤ s ≤ t, 0 ≤ i ≤ n− 1.

To move from time step t− 1 to t we let

y(i)t = lim
n→∞ y(i)t,n (5.1.3)

be the belief of agent i at after communicating its decision states back and forth

with its neighbor. We say that two agents are equilibrating their beliefs during

this exchange of decision states, and we will refer to the repeated exchange of deci-

sion states as equilibration steps. We next show why this process simplifies when

the decision thresholds and evidence distributions are symmetric, and in the next

section we show that equilibration process converges even when the thresholds

are asymmetric.
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Proposition 6. When the distributions f+ and f− are symmetric and the agents have the

same symmetric thresholds, then if agent j decides before agent i at time T, then

y(i)t =


OB(i)

0:t , t < T

OB(i)
0:t + d( j)

T θ , t ≥ T.

Thus, decision states are uninformative and both agent integration private observation

evidence until one of the makes a decision. Once agent j chooses H = ±1, agent i′s belief

changes by ±θ.

Proof. The argument is similar to that in Section 4.3.2. If the two agents have not

made a decision then this does not provide any evidence for either choice H = ±:

DEC(d(i)t,n = 0) = log
P(d(i)t,n = 0|H = 1)

P(d(i)t,n = 0|H = −1)
= 0.

Thus non-decision evidence is zero, so when an agent communicates d(i)t,n = 0 it

is uninformative and d(¬i)
t,n+1 = dt,n, and the equilibration process terminates at

the first step. When an agent decides it can provide no further information to its

counterpart. Therefore, agent i updates its belief by ±θ as in the unidirecational

case.

5.2 Equilibration Process

We show that the equilibration process converges so that at the end of each time

step, prior to the next observation, both agents settle on the amount of evidence

they gain from their private and social information.
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Proposition 7. At the end of each time step t ≥ 0, limn→∞ y(i)t,n exists, and thus the

beliefs of both agents equilibrate.

Proof. Let Yt,n ⊆ (θ−,θ+) be the range of values that y(i)t,0 could have been equal to

without causing the agent to make a decision by time t and equilibration step n.

Note that each observation of a non-decision can only shrink this range of beliefs

of the other agent. Since this is a finite interval, the process must converge.

Alternatively, we conjecture that following [49, 41], we can obtain conver-

gence via martingale theory. The idea is to use conditional probabilities break

up the probabilities comprising the social evidence. For instance we can break up

P(d(2)t,n , h(1)t−1, d(2)t,0:n−1, d(1)t,0:n−1|ξ
(1)
0:t , H = 1) into:

P(h(1)t−1, d(2)t,0:n−1, d(1)t,0:n−1|ξ
(1)
0:t , H = 1)P(d(2)t,n |h

(2)
t−1, h(1)t−1, d(2)t,0:n−1, d(1)t,0:n−1,ξ(1)

0:t , H = 1).

Then the term on the left should cancel out with the corresponding term for

H = −1 and then we just need to show

lim
n→∞ P(d(2)t,n |h

(2)
t−1, h(1)t−1, d(2)t,0:n−1, d(1)t,0:n−1,ξ(i)

0:t , H = 1)

converges. If we define the history of an agent up to this equilibrium step:

H(1)
n = {h(2)t−1, h(1)t−1, d(2)t,0:n−1, d(1)t,0:n−1}

we observe that H(1)
n ⊆ H(1)

n+1 and thus, we can use martingale convergence to

show that the agents eventually equilibrate.

Furthermore we conjecture that when both agents are undecided limn→∞H(1)
n =

limn→∞H(2)
n and the evidence agents gain from observing each other’s decision
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states converges to the same value for both agents. This does not mean that the

agents will have the same belief at the end of the equilibration process, because

they made different private observations. However, the evidence they gain from

social information should converge to the same value.

This result gives us convergence, but does not tell us what computations the

agents use, or how quickly their beliefs equilibriate.

We will give the concrete calculation for the equilibration at time step t = 0. As

we will see, showing the computation as time moves forward introduces another

difficulty, so this isolates the calculation of the equilibration process.

We assume that both agents make their first observation at time step t = 0, and

the evidence it provides is insufficient to cause either one to decide. If one of them

does decide, the process is equivalent to the unidirectional case, as the agent that

observes the decision updates its belief by an amount equal to the threshold that

has been crossed, and continues accumulating information. We therefore describe

only steps during which no decisions take place.

No decisions after the first observation imply y(1)0,0 , y(2)0,0 ∈ (θ−,θ+). We now

view the computation from the perspective of agent 1 because the computation is

identical for the other agent.

First, because the evidence from their initial observations was insufficient to

make a decision, it follows that d(i)0,0 = 0 for i = 1, 2. This tells agent 1 that y(2)0,0 ∈
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(θ−,θ+) =: Θ, and its first belief update during the equilibration process is:

y(1)0,1 = OB(1)
0 + log

P(d(2)0,0 = 0|H = 1)

P(d(2)0,0 = 0|H = −1)
= OB(1)

0 + log
P(y(2)0,0 ∈ Θ|H = 1)

P(y(2)0,0 ∈ Θ|H = −1)
,

with an equivalent expression for agent 2.

Assuming no decision has been made after the first observation, we have we

have d(i)0,1 = 0 and ∣∣∣∣∣∣log
P(y(2)0,0 ∈ Θ|H = 1)

P(y(2)0,0 ∈ Θ|H = −1)

∣∣∣∣∣∣ < |θ−|+θ+

otherwise the agent would have accumulated enough evidence to make a deci-

sion. Thus agent 1 knows the following

θ− < y(2)0,0 < θ+ (5.2.1)

θ− < y(2)0,0 + log
P(y(1)0,0 ∈ Θ|H = 1)

P(y(1)0,0 ∈ Θ|H = −1)
< θ+ (5.2.2)

where we see in the second line how agent 2 incorporates its knowledge about of

agent 1’s belief. Let us denote this piece of evidence,

E(i)
0,0 := log

P(y(i)0,0 ∈ Θ|H = 1)

P(y(i)0,0 ∈ Θ|H = −1)
.

Depending on the relative sizes of the thresholds and the evidence distributions

E(i)
0,0 may be positive, negative, or zero. If E(i)

0,0 ≥ 0 then (5.2.2) becomes

θ− < y(¬i)
0,0 < θ+ − E(i)

0,0

and if E(i)
0,0 < 0 it is

θ− − E(i)
0,0 < y(¬i)

0,0 < θ+.
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Thus, if there have been no decisions after the first equlibration step, agent i,

knows the following about the belief of agent ¬i

max{θ− − E(i)
0,0,θ−} < y(¬i)

0,0 < min{θ+ − E(i)
0,0,θ+}.

This allows agent i to update its belief again:

y(i)0,2 = OB(i)
0 + log

P(y(¬i)
0,0 ∈ (max{θ− − E(i)

0,0,θ−}, min{θ+ − E(i)
0,0,θ+})|H = 1)

P(y(¬i)
0,0 ∈ (max{θ− − E(i)

0,0,θ−}, min{θ+ − E(i)
0,0,θ+})|H = −1)

.

This illustrates the steps in the general equilibration process resulting in a se-

quence of intermediate belief updates, y(i)0,n. While the process may seem complex,

it can be explained simply: At each equilibration step, the absence of a decision

provides bounds on the neighbor’s belief at the beginning of the process, that

is, after the latest private observation. These bounds give a sequentially tighter

bound on the belief of the opposite agent. When the bounds on the belief of the op-

posite agent do not change from one step to the next, then nothing new is gained

by learning the non-decision and the process ends. Otherwise, new evidence is

gained and the process is repeated.

Importantly, this process is deterministic: Given the initial observations of both

agents, it will always produce the same sequence of bounds on their beliefs. We

can describe the general steps in the form of an algorithm:

1. Denote

E0,l = log
P(y(2)0,l ∈ Θ|ξ(1)

0 , H = 1)

P(y(2)0,l ∈ Θ|ξ(1)
0 , H = −1)

,

where the conditioning has to be stated because doing this calculation is

dependent on ξ
(1)
0 ∈ Θ.
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2. From the previous step, agent 1 has bounds on agent 2’s initial observation

max
0≤l≤n−2

{θ− − E0,l ,θ−} < y(2)0,0 < min
0≤l≤n−2

{θ+ − E0,l ,θ+}.

3. Then if E0,n−1 tightens either bound then d(1)0,n−1 was informative. Meaning

if

θ− − E0,n−1 > max
0≤i≤n−2

{θ−E0,i,θ−}

or

θ+ − E0,n−1 < min
0≤i≤n−2

{θ+E0,i,θ+}

then y(1)0,n 6= y(1)0,n−1.

4. We then compute

y(1)0,n = OB(1)
0 + log

P(y(20,0 ∈ [an−1, bn−1]|ξ
(1)
0 , H = 1)

P(y(20,0 ∈ [an−1, bn−1]|ξ
(1)
0 , H = −1)

with

Y0,n−1 = [ max
0≤i≤n−1

{θ−E0,i,θ−}, min
0≤i≤n−1

{θ+E0,i,θ+}],

the range of values that y(i)0,0 could have been equal to without causing the

agent to make a decision by equilibration step n− 1.

5. Then, the agent uses y(1)0,n to compute its decision state d(1)0,n−1. Then the pro-

cess continues and only terminates when E0,n = E0,n+1 because in that case

the belief update will no longer change.

We use simulations for the probability mass which allow us to approximate

the probability that y(i)0 is in a certain interval. This allows us to simulate the
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equilibration process and preliminary results show that it usually terminates after

one step, which provides evidence that the process is finite and moreover stops

after at most 2 steps. Hence we conjecture y(i)t,2 = y(i)t .

5.3 Recursive Process in Time

In the previous section we described the equilibration process after the first pri-

vate observation. We note that this process is only necessary when the thresholds

or evidence distributions are not symmetric, as otherwise the absence of a deci-

sion provides no new information to an observing agent. We now want to give

a general description of what happens after a private observation at an arbitrary

time t.

As in the equilibration process, computing yt,0 will require recursive inference,

that is, it requires using how much a neighboring agent updates its belief in re-

sponse to the decision state at previous time steps, which were in turn calculated

using the decision states computed by that neighbor at previous time steps, and

so on.

We can think of decision states as revealing partial information about an agent’s

belief. If an agent is undecided, it must have had evidence greater thanθ− and less

than θ+, otherwise it would have picked H = −1 or H = 1, respectively. There-

fore, the history of decisions gives a sequence of bounds on the belief of the op-

posing agent over time. Agents know how beliefs are computed, so this allows
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them to infer bounds on the observation evidence alone by subtracting off this

known amount of social evidence. This means the agents can convert the history

of belief bounds into a history of bounds on the private evidence.

The initial part, for n = 0, of the evidence at time step t is simply what ap-

peared in Eq. (5.1.1). We next show how to compute y(1)t,1 , under the assumption

that both agents have remained undecided after the observation at t. We see from

Eq. (5.1.2) that we need to compute

y(1)t,1 = OB(1)
0:t + log

P(d(2)t,0 = 0|ξ(1)
0:t , H = 1)

P(d(2)t,0 = 0|ξ(1)
0:t , H = −1)

,

since

P(d(2)t,0 = 0, h(i)t−1, d(¬i)
t,0:n−1, d(i)t,0:n−1|ξ

(i)
0:t , H = 1) = P(d(2)t,0 = 0|ξ(1)

0:t , H = 1)

because decisions are immutable. Because agents do not communicate their exact

evidence this can be simplified

y(1)t,1 = OB(1)
0:t + log

P(d(2)t,0 = 0|d(1)0:t = 0, H = 1)

P(d(2)t,0 = 0|d(1)0:t = 0, H = −1)
.

To go further we rewrite the numerator of the decision state term:

P(d(2)t,0 = 0|d(1)0:t = 0, H = 1) = P(d(2)t,0 = 0, d(2)t−1,n = 0|d(1)0:t = 0, H = 1).

This can be written as the product

P(d(2)t,0 = 0|d(2)t−1,n = 0, d(1)0:t = 0, H = 1)P(d(2)t−1,n = 0|d(1)0:t = 0, H = 1).

Next, we again have d(1)t = 0 =⇒ d(1)0:t = 0 so this becomes

P(d(2)t,0 = 0|d(2)t−1,n = 0, d(1)t = 0, H = 1)P(d(2)t−1,n = 0|d(1)t = 0, H = 1).
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If the probability of a non-decision is not altered significantly by the fact that it

will result in a non-decision for their counterpart, i.e., if

P(d(2)t−1,n = 0|d(1)t = 0, H = 1) ≈ P(d(2)t−1,n = 0|d(1)t−1 = 0, H = 1)

then

y(1)t,1 ≈ OB(1)
t + log

P(d(2)t,0 = 0|d(2)t−1,n = 0, d(1)t = 0, H = 1)

P(d(2)t,0 = 0|d(2)t−1,n = 0, d(1)t = 0, H = −1)
+ y(1)t−1,1.

However, it is not tractable to go much further than this, and all that can really

be done is computing complicated equations using concrete equations, which is

beyond the scope of what we do here. Rather, we will generalize the interactions

described in Chapter 4 and this chapter under the assumption of symmetric evi-

dence distributions and decision thresholds.
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Chapter 6
General Network Accumulation

We have examined interactions between two rational agents accumulating infor-

mation and observing each other’s resulting decisions. We next extend this anal-

ysis to larger networks of agents. We first discuss different three agent networks

to motivate the theory. Information sharing in three agent networks has aspects

that are not observed with two agents, but are characteristic of larger networks

of agents. In particular, a rational agent in a network with more than two agents

may need to take into account the impact of unobserved decisions of next nearest

neighbors. The required computation can be complex, and we only consider the

symmetric case.

We next consider arbitrarily large fully connected networks (cliques). We pro-

vide an explicit description of the evidence update process and obtain conjectures

for asymptotic results. We compare this to conjectured behavior for an arbitrarily

large directed line.
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As noted above, throughout this chapter we assume the decision boundaries

are symmetric. This results in more tractable computations as the absence of a de-

cision is not informative about the belief of any agent, hidden or visible. Therefore,

social information is only communicated when an agent makes a decision. As a

decision leads to a jump in the belief of neighboring agents, it typically ignites a

cascade of decisions across the network. Although we assume symmetric bound-

aries and symmetric conditional evidence distributions, once an agent makes a

decision symmetry can be broken. As a result, after an agent observes a decision

of a neighbor, non-decisions of its other neighbors may become informative about

their beliefs. In this case, which we do not analyze in detail here, rational agents

must employ survival probabilities to update their own beliefs, as discussed in

Section 6.1.3.

6.1 Accumulation of Evidence on General Networks

We will consider general directed networks with N rational agents accumulat-

ing measurements, and observing each other’s decisions, as in the previous chap-

ters. After introducing terminology and notation we first prove an import re-

sult on non-decisions: As in the case of two agents, when agents on a larger

network all have symmetric decision thresholds and measurement distributions

non-decisions of their neighbors are uninformative. Finally, we describe the main

challenge posed by the need to take into account all possible decisions of unob-

served agents via marginalization.
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6.1.1 Terminology and Notation

Each agent i, for 1 ≤ i ≤ N, makes a private observation at every time step.

After incorporating the evidence from this observation the agent then updates its

decision state and shares it with its neighbors. A directed edge from agent i to j,

denoted by i → j, means that agent i communicates its decisions to agent j. The

set of neighbors that agent i observes (receives information from) is denoted by

N(i):

N(i) = { j : j→ i}.

Agent i thus receives social information from all agents in N(i), but agent i also

needs to take into account decisions of unobserved agents, and we therefore define

U(i) = { j : j /∈ N(i) ∪ {i}}.

The entire set of agents – the set of all nodes in the network – can therefore be

partitioned as N(i) ∪ {i} ∪U(i).

Recall that an agent makes decisions based on private information obtained

from a sequence of measurements, and social information obtained from observ-

ing the decision states of its neighbors. We denote by OB(i)
0:t the information agent

i has received from its own observations up to time t:

OB(i)
0:t =

t

∑
l=0

ln
P(ξ(i)

l |H = 1)

P(ξ(i)
l |H = −1)

. (Observation Information)

We will denote the set of decisions by the neighbors of agent i at time t by

dN(i)
t = {d(k)l : k ∈ N(i)}. Similarly, the set of the decisions by unobserved agents
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is denoted by dU(i)
t . More generally, dN(i)

0:t denotes the sequence of decision states

of the neighbors of agent i up to and including time t: dN(i)
0:t = {dN(i)

s : 0 ≤ s ≤ t}.

Finally, we have seen that the evidence from decisions depends on the time the

decision was first made, i.e., the time step T such that d(i)T 6= 0 but d(i)T−1 = 0. Hence

will use d
(i)
T = ±1 to denote d(i)T−1 = 0, d(i)T = ±1 as a notational convenience.

6.1.2 Marginalization

Suppose that agents i, j, have neighborhoods such that N( j) 6⊂ N(i) ∪ {i}, that is

agent j has neighbors that agent i does not observe directly. Agent i will therefore

not know if a decision of agent j was solely due to j’s private observations, or has

been influenced by social information from agents not directly observed by i. If

j makes a decision d( j)
t , we can only conclude that the resulting belief update of i

should be DEC( j)
t = d( j)

t θ if N( j) ⊂ N(i) ∪ {i}.

As the decision of agent j may have been caused by unobserved agents, agent i

must marginalize over (“take into account”) all possible decision states of the un-

observed neighbors in order to accurately update its belief, P(ξ(i)
0:t , dN(i)

0:t |H = 1).

We can think of dU(i)
s as a decision tuple at time s. Therefore dU(i)

s = ~c ∈ {−1, 0, 1}#U(i)

where the l-th component cl = dU(i)
s,l = d(l)s corresponds to the decision of agent

l ∈ U(i) at time s. However, in order to fully marginalize we have to take into

account the full decision history of each unobserved agent. To do so we denote by

CU(i)
t all distinct tuples of histories of the unobserved agents:

CU(i)
t = {d(k)0:t : k ∈ U(i), d(k)0:t ∈ {−1, 0, 1}t+1}.
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Thus we can write the general belief update of agent i as:

y(i)t = log
P(I(i)t |H = 1)

P(I(i)t |H = −1)

= log
P(ξ(i)

0:t , dN(i)
0:t |H = 1)

P(ξ(i)
0:t , dN(i)

0:t |H = −1)

= log
∑dU(i)

0:t ∈C
U(i)
t

P(ξ(i)
0:t , dN(i)

0:t , dU(i)
0:t |H = 1)

∑dU(i)
0:t ∈C

U(i)
t

P(ξ(i)
0:t , dN(i)

0:t , dU(i)
0:t |H = −1)

.

Therefore to update its belief, an agent must compute the joint probability of its

observed evidence and marginalize over all possible unobserved decision histo-

ries. We will give an example of such marginalization in Section 6.2.2.

6.1.3 Pre-decision

We now show an important result on networks where all agents have symmetric

thresholds and are drawing observations from symmetric evidence distributions.

Before an agent or any of its neighbors has made a decision, the agent’s belief y(i)t

has two properties that make computations somewhat simpler. First, the belief

is a sum of terms corresponding to private and social information. Second, the

social information is uninformative until a decision is made.

Proposition 8. Assume all agents have symmetric thresholds and evidence distribtions.

At time t, agent i’s information consists of I(i)t = {OB(i)
0:t, dN(i)

0:t }. If neither agent i nor

any of its neighbors in N(i) have made a decision by time t then

1. I(i)t = {OB(i)
0:t} ∪ {d

(k)
t = 0 : k ∈ N(i)},
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2. y(i)t = OB(i)
0:t

Proof. The first claim follows as in Proposition 1. Agents cannot change a non-zero

decision state and thus a non-decision at time t, d(k)t = 0, implies a non-decision

for previous times before as well, d(k)0:t = 0.

The second claim follows similarly to reasons discussed in Sections 4.3.2 and

5.1. However, we need to marginalization over unobserved decisions to establish

the result.

First we can split the observation evidence from the social evidence condi-

tioned on the agent’s observations. Hence:

y(i)t = log
P(I(i)t |H = 1)

P(I(i)t |H = −1)

= log
P(ξ(i)

0:t , dN(i)
0:t = 0|H = 1)

P(ξ(i)
0:t , dN(i)

0:t = 0|H = −1)

= log
P(ξ(i)

0:t |H = 1)

P(ξ(i)
0:t |H = −1)

+ log
P(dN(i)

0:t = 0|ξ(i)
0:t , H = 1)

P(dN(i)
0:t = 0|ξ(i)

0:t , H = −1)

We therefore need to show that

0 = log
P(dN(i)

0:t = 0|ξ(i)
0:t , H = 1)

P(dN(i)
0:t = 0|ξ(i)

0:t , H = −1)

= log
∑dU(i)

0:t ∈C
U(i)
t

P(dN(i)
0:t = 0, dU(i)

0:t |ξ
(i)
0:t , H = 1)

∑dU(i)
0:t ∈C

U(i)
t

P(dN(i)
0:t = 0, dU(i)

0:t |ξ
(i)
0:t , H = −1)

.

For a decision history of the unobserved agents dU(i)
0:t , let −dU(i)

0:t , be the oppo-

site decision history. The negation changes the sign of each decision in the vector
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dU(i)
0:t , and leaves non-decisions unaffected. As a special case, the vector of zeroes

is equal to its negation. The key point is that P(dN(i)
0:t = 0, dU(i)

0:t |ξ
(i)
0:t , H = 1) =

P(dN(i)
0:t = 0,−dU(i)

0:t |ξ
(i)
0:t , H = −1) for all dU(i)

0:t and thus we get cancellation be-

cause every term in the numerator has a corresponding equal term in the denomi-

nator. We have P(dN(i)
0:t = 0, dU(i)

0:t |ξ
(i)
0:t , H = 1) = P(dN(i)

0:t = 0,−dU(i)
0:t |ξ

(i)
0:t , H = −1)

due to the symmetry of the evidence distributions and thresholds. This is because

for symmetric distributions and thresholds

P(y( j)
t = z|H = 1) = P(y( j)

t = −z|H = −1).

Thus, given H = 1, any history of unobserved decision states dU(i)
0:t occurs with

the same probability as the history −dU(i)
0:t given H = −1.

Thus, before decisions are made, agents independently accumulate evidence

and social information is only informative when some agent makes a decision.

Remark. As in the case of two agents, a decision by any agent will lead to a jump in

the belief of all observing neighbors. Suppose an agent k observes both the deciding agent

and one of its neighbors, call it j. Then agent k must take into account the fact that

agent j has updated its belief due to the observed decision. Agent k now knows that the

belief of agent j must have increased by a discrete amount in accordance with the observed

decision. Thus agent k has gained knowledge about the belief of agent j, even if j does

not immediately decide. The symmetry is therefore broken, and henceforth the situation is

similar to the asymmetric case discussed in Section 6.1.3. This introduces additional drift

into the evolution of the belief of agent k until either it or agent j make a decision. We thus

concentrate on the dynamics up to the first decision, but discuss the general case in more
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detail in some of our examples.

6.2 Three-Agent Networks

To illustrate the behavior of the decision-making process on general networks we

investigate some 3-agent network examples. If the agents are labelled, then there

are 26 possible directed network topologies for three agents because there are six

possible connections (two directed edge possible between any of the three pairs).

However this number is reduced when we ignore agent labeling, and consider

only networks without isolated agents. Thus we can eliminate those which are

mapped to others via symmetries in the dihedral group D3, i.e., structures which

are reflections and rotations of each other. There are thus 16 distinct directed net-

works with three agents (see [31]) and since 3 of those are not weakly connected

(i.e., contain an agent that does not receive or send information, as in the isolated

network, and the unidirectinal or bidirectional coupling with an isolated third

agent) this results in the 13 networks depicted in Figure 6.2.1.

6.2.1 NS1: The Fully Connected Network

We first investigate the three-agent, fully-connected network, where all agents

communicate with each other (NS1 in Fig. 6.2.1). A fully connected network,

or a clique, is one of the most tractable general networks because all agents are

symmetrically connected. As every agent observes all others, the marginalization
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Behavior Computed

3

21

3

21

NS1 3

21

NS2

3

21

NS3 3

21

NS4 3

21

NS5 3

21

NS6

3

21

NS7 3

21

NS8 3

21

NS9 NS10

3

21

NS11 3

21

NS12 3

21

NS13

Fig. 6.2.1: We outline in pink the two networks whose behavior we analyze in
detail. The other networks can be analyzed using a similar approach, or can be
understood from the analysis of the two agent case (e.g. NS8 is essentially a two-
agent network with an observer). We will refer to each network by the given label.
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discussed in Section 6.1.2 is not required.

Before any agent makes a decision, the only evidence comes from private ob-

servations. Therefore the first non-zero social evidence arrives when some agent

j first makes a choice at time T, that is d
( j)
T = ±1. Without loss of generality, as-

sume that agent 3 reaches decision H = 1 at time T and the other agents have not

decided, d
(3)
T = 1, d(1)T = d(2)T = 0. The two other agents then know that y(3)T = θ

and thus add d(3)T θ to their belief. For i = 1, 2 we have,

y(i)T = OB(i)
0:T + log

P(d(¬i)
T = 0, d

(3)
T = 1|ξ(i)

0:T , H = 1)

P(d(¬i)
T = 0, d

(3)
T = 1|ξ(i)

0:T , H = −1)

= OB(i)
0:T + log

P(d(¬i)
T = 0|ξ(i)

0:T , H = 1)

P(d(¬i)
T = 0|ξ(i)

0:T , H = −1)
+ log

P(d
(3)
T = 1|ξ(i)

0:T , H = 1)

P(d
(3)
T = 1|ξ(i)

0:T , H = −1)

= OB(i)
0:T + 0 + log

P(d
(3)
T = 1|ξ(i)

0:T , H = 1)

P(d
(3)
T = 1|ξ(i)

0:T , H = −1)

= OB(i)
0:T +θ.

The updated belief could be sufficient to make a decision at this time. For sim-

plicity we assume that all agents wait until all resulting decisions are made before

continuing to gather further private information. As we will see, there could be a

number of decision-making rounds before evidence accumulation continues.

After the decision of agent 3, there are three possible outcomes:

(i) If, before accounting for the decision d
(3)
T = 1, y(i)T ≥ 0 for both remaining

agents, i = 1, 2, then both agents immediately choose H = 1.

(ii) If, before accounting for the decision d
(3)
T = 1, y(i)T ≥ 0 for only one agent,
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then the corresponding agent decides H = 1, and the other remains unde-

cided.

(iii) If, before accounting for the decision d
(3)
T = 1, y(i)T < 0 for both remaining

agents, i = 1, 2, then both remain undecided.

Evidence accumulation stops in case (i). We therefore only examine the latter

cases. As in the case of bidirectional interactions discussed in the previous chap-

ter, agents will update their beliefs and communicate their decisions repeatedly.

Hence we define the computations during a sequence of substeps following the

decision of agent 3:

y(i)T,0 = OB(i)
0:T

y(i)T,1 = OB(i)
0:T +θ

y(i)T,n = OB(i)
0:T +θ+ log

P(d(¬i)
T,n−1|d

(3)
T = 1, d(¬i)

T,0:n−1, d(i)T,0:n−1,ξ(i)
0:T , H = 1)

P(d(¬i)
T,n−1|d

(3)
T = 1, d(¬i)

T,0:n−1, d(i)T,0:n−1,ξ(i)
0:T , H = 1)

,

where d(¬i)
T,n is the decision state of the other remaining agent after it has updated

its belief, y(¬i)
T,n .

Case (ii) - One Agent Undecided

Assume that y(2)T,0 ≥ 0 so that agent 2 decides right after observing agent 3’s deci-

sion, i.e., d(2)T,1 = 1. After observing the decisions of agent 3 and then agent 2, the
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remaining agent 1 updates its belief:

y(1)T,2 = OB(1)
0:T + ln

P(d
(2)
T,1 = 1, d

(3)
T,0 = 1|H = 1)

P(d
(2)
T,1 = 1, d

(3)
T,0 = 1|H = −1)

(6.2.1)

= OB(1)
0:T + ln

P(d
(2)
T,1 = 1|d(3)T,0 = 1, H = 1)P(d

(3)
T,0 = 1|H = 1)

P(d
(2)
T,1 = 1|d(3)T,0 = 1, H = −1)P(d

(3)
T,0 = 1|H = −1)

= OB(1)
0:T + ln

P(d
(3)
T,0 = 1|H = 1)

P(d
(3)
T,0 = 1|H = −1)

+ ln
P(d

(2)
T,1 = 1|d(3)T,0 = 1, H = 1)

P(d
(2)
T,1 = 1|d(3)T,0 = 1, H = −1)

= OB(1)
0:T +θ+ ln

P(d
(2)
T,1 = 1|d(3)T,0 = 1, H = 1)

P(d
(2)
T,1 = 1|d(3)T,0 = 1, H = −1)

.

Note, here P(d
(3)
T,0 = 1|H = 1) implicitly means that only agent 3 has made a deci-

sion at that time. The private and social information can be split in the first line

because of Proposition 8.

The last term can be rewritten because the belief of agent 2 must have been

non-negative before observing the decision of agent 3,

P(d
(2)
T,1 = 1|d(3)T,0 = 1, H = 1) = P(0 ≤ y(2)T ≤ θ|H = 1).

Hence

y(1)T,2 = OB(1)
0:T +θ+ ln

P(0 ≤ y(2)T,0 ≤ θ|H = 1)

P(0 ≤ y(2)T,0 ≤ θ|H = −1)
. (6.2.2)

The last term in the sum is the update to the belief of agent 1 due to an observation

of the decision of agent 2. As a consequence of Proposition 9 below, this update is

smaller than θ, but can cause agent 1 to decide as well. If not it will continue with

its private observation until it does. We estimate the evidence from the last term

in Eq. (6.2.2) when we look at arbitrarily large cliques in Section 6.3.
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Case (iii): Two Agents Undecided

If both agents remain undecided then this means both agents had negative beliefs

prior to observing the decision of agent 3. Following the same computations as in

Eqs. (6.2.1,6.2.2) we have

y(i)T,2 = OB(2)
0:T +θ+ ln

P(−θ ≤ y(¬i)
T ≤ 0|H = 1)

P(−θ ≤ y(¬i)
T ≤ 0|H = −1)

. (6.2.3)

for i = 1, 2, where ¬i refers to the other undecided agent. Since the last term must

be negative, both agents communicate d(i)T,2 = 0 upon making this update. Thus

after observing the decision of agent 3, and observing that both are still undecided

each agent can conclude that the other has gathered evidence in favor of H = −1,

and adjust their belief accordingly.

Let us denote the evidence gained by learning that an agent has observed a

decision in favor of H = 1 but still not decided (the last term in Eq. (6.2.3)) by:

R(¬i)
− := ln

P(−θ ≤ y(¬i)
T ≤ 0|H = 1)

P(−θ ≤ y(¬i)
T ≤ 0|H = −1)

.

Due to symmetry, R(1)
− = R(2)

− so we will suppress the superscript. Then the fact

that d(i)T,0 = d(i)T,1 = d(i)T,2 = 0 means

−θ < y(i)T,0 +θ+ R− < θ

so that

−2θ− R− < y(i)T,0 < −R−.

This together with the previous bounds means

max{−θ,−2θ− R−} < y(i)T,0 < min{0,−R−} = 0.

122



6.2. THREE-AGENT NETWORKS

Thus if −θ < −2θ − R−, then this gives a finer bound on the private evidence

y(i)T,0: Not only was it negative, but it was also bigger than −2θ − R−. Note that

this process is similar to the equilibration computations done in the case of two

bidirectionally coupled agents. Thus a non-decision d(i)T,2 = 0 will no longer pro-

vide evidence to agent ¬i if −θ ≥ −2θ − R−, i.e., if R− ≥ −θ. The fact that

R− ≥ −θ and the process equillibrates follows from the next proposition. Intu-

itively, knowing that an agent’s belief is bounded |y(i)T,0| < θ cannot provide more

than a change of θ in the belief.

Proposition 9. Assume that agent j has not made a decision and has not accumulated

any evidence from social information by time T. Let −θ < a ≤ b < θ. Then∣∣∣∣∣ln P(a ≤ y( j)
T ≤ b|H = 1)

P(a ≤ y( j)
T ≤ b|H = −1)

∣∣∣∣∣ < θ.

That is, the evidence received from a bound on agent j’s evidence is itself bounded by θ.

Proof. If the belief is negative, then we need to show that

−θ < ln

[
P(y( j)

T ∈ [a, b]|H = 1)

P(y( j)
T ∈ [a, b]|H = −1)

]
,

or, equivalently, that

P(y( j)
T ∈ [a, b]|H = 1) > e−θP(y( j)

T ∈ [a, b]|H = −1)

Since y( j)
t consists only of evidence from private observations then the obser-

vations satisfy
T

∏
t=0

P+(ξ
( j)
t ) > e−θ

T

∏
t=0

P−(ξ
( j)
t ),
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where P±(ξ
( j)
t ) = P(ξ( j)

t |H = ±1).

If observations are drawn from the space Ξ, then we will integrate over the

subset of the product space consisting of valid observation sequences VT ⊂ ΞT:

VT = {(ξ( j)
0 , . . . ,ξ( j)

T ) ∈ ΞT : OB( j)
0:t ∈ (−θ,θ), for t ≤ T, OB( j)

0:T ∈ [a, b]}.

Since no decision is made for valid observation sequences:(
T

∏
t=0

P+(ξ
( j)
t )/

T

∏
t=0

P−(ξ
( j)
t )

)
> e−θ, ∀ξ0:T ∈ VT .

Letting Ptrue be the evidence distribution from which the observations are ac-

tually drawn, we apply the conditional independence of the observations to get:

P+(ξ
( j)
0:T)Ptrue(ξ

( j)
0:T) > P−(ξ

( j)
0:T)Ptrue(ξ

( j)
0:T)e

−θ, ∀ξ0:T ∈ VT

so if we integrate over VTa

ˆ
VT

P+(ξ1:i)ξ
( j)
0:T >

ˆ
VT

P−(ξ1:i)e−θdξ( j)
0:T .

The left hand side is the probability that, given H = 1, agent j does not make a

decision by time T and has log-likelihood evidence bounded inside [a, b] and the

right hand side is similar, we get

P(y( j)
T ∈ [a, b]|H = 1) > e−θP(y( j)

T ∈ [a, b]|H = −1),

which is what we set out to prove.

Now that sharing decision states is no longer informative, both agents can con-

tinue collecting observations. But, unlike before the initial decision, non-decisions
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are now informative because, as discussed in the last remark in Section 6.1.3, both

agents will have unequal priors over the two states (their beliefs will no longer be

equal to zero after equilibration). The process thus continues on as in the bidirec-

tional coupling with asymmetric decision thresholds.

6.2.2 NS11: The 3-Agent Unidirectional Line

Next we consider network NS11 of Fig. 6.2.1. After relabeling and redrawing we

obtain the network depicted in Fig. 6.2.2. We use the new labeling in what follows.

1 2 3

Fig. 6.2.2: Agents on a unidirectional Line

To begin, note that it suffices to examine the case when agent 2 makes a deci-

sion at time T, say d
(2)
T = 1: If agent 3 makes a decision then it does not share the

information with any other agent. If agent 1 makes a decision, then agent 2 re-

acts as in the case of two unidirectionally coupled agents discussed in Section 4.2.

In that case we still have to analyze how agent 3 reacts after agent 2’s eventual

decision. Thus, the only case left to describe is how agent 3 reacts to d
(2)
T = 1.

As we showed more generally in Section 6.1.3, there is no evidence from social

information before agent 2 makes a decision. Thus we compute how agent 3 up-

dates its belief after observing a decision of agent 2 by marginalizing over possible
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decision histories of agent 1:

P(d(2)t = 1|H = 1) =P(d(2)t = 1, d(1)t = 0|H = 1)

+ ∑
s<t

P(d(2)t = 1, d(1)s−1 = 0, d(1)s = −1|H = 1)

+ ∑
s<t

P(d(2)t = 1, d(1)s−1 = 0, d(1)s = 1|H = 1)

The first term on the right hand side corresponds to the case when agent 2 decides

before observing a decision of agent 1. Note that P(d(2)t = 1, d(1)t = 0|H = 1) = α,

where α is the probability of making the correct decision as in the previous chap-

ters. Thus if agent 3 knew agent 1 had not made a decision then it would update

its belief by adding θ as in the unidirectional coupling. The other two terms on

the right hand side correspond to the cases where agent 2 makes a decision after

observing the decision of agent 1 at some prior time.

We intuitively compute the evidence when agent 1 makes the decision H = −1

at time s < t. The decision state d(1)s = −1 provides −θ evidence, and if agent 2

did not immediately decide, it had to of had negative evidence at time t. Thus at

time s, the evidence should be E[y(2)s |y
(2)
s > 0]−θ. Then agent 2 updates its belief

by −θ, so if it eventually chooses H = 1 it has to collect θ evidence to override

this update, plus an additional θ− E[y(2)t |y
(2)
s > 0] evidence to accumulate to the

H = 1 threshold. Hence

DEC(d(2)t = 1, d(1)s = −1) = E[y(2)s |y
(2)
s > 0]−θ+θ+θ− E[y(2)s |y

(2)
s > 0] = θ.

Similarly

DEC(d(2)t = 1, d(1)t = 1) = θ+ E[y(2)t |y
(2)
s > 0]
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and for s < t

DEC(d(2)t = 1, d(1)s = 1) = θ = DEC(d(2)t = 1, d(1)t = 0).

The issue is that we want to compute DEC(d(2)t = 1), but we cannot sim-

ply break up decision evidence as a sum of possible decision evidence terms be-

cause the marginalization has to be done in the numerator and denominator of

DEC(d(2)t = 1), so:

DEC(d(2)t = 1) 6=DEC(d(2)t = 1, d(1)t = −1) + DEC(d(2)t = 1, d(1)t = 0)

+ DEC(d(2)t = 1, d(1)t = 1)

If DEC(d(2)t = 1, d(1)t = c) = θ for all possible choices c ∈ {−1, 0, 1} then this

would mean P(d(2)t =1,d(1)t =c|H=1)

P(d(2)t =1,d(1)t =c|H=−1)
is the same fraction, and thus DEC(d(2)t = 1)

would also be θ. However, we should not expect this since DEC(d(2)t = 1, d(1)t =

1) = θ+ E[y(2)t |y
(2)
s > 0] > θ, using our intuitive computation.

Since we have

P(d(2)t = 1, d(1)s = −1|H = 1)

P(d(2)t = 1, d(1)s = −1|H = −1)
= eθ =

P(d(2)t = 1, d(1)t = 0|H = 1)

P(d(2)t = 1, d(1)t = 0|H = −1)

and
P(d(2)t = 1, d(1)s = −1|H = 1)

P(d(2)t = 1, d(1)s = −1|H = −1)
= eθ

then the possibilities where agent 2 did not immediately agree with agent 1 can
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be written as

P(d(2)t = 1, d(1)t = 0|H = 1) = eθP(d(2)t = 1, d(1)t = 0|H = −1)

+ ∑
s<t

P(d(2)t = 1, d(1)s = −1|H = 1) +eθ ∑
s<t

P(d(2)t = 1, d(1)s = −1|H = −1)

+ ∑
s<t

P(d(2)t = 1, d(1)s = 1|H = 1) +eθ ∑
s<t

P(d(2)t = 1, d(1)s = 1|H = −1)

so we define A to be the left hand side. Then DEC(d(2)t = 1) is

log

(
P(d(2)t = 1, d(1)t = 1|H = 1) + A

P(d(2)t = 1, d(1)t = 1|H = −1) + e−θA

)
.

Then P(d(2)t = 1, d(1)t = 1|H = 1) is the product of agent 2 having positive

evidence and agent 1 choosing the correct choice at time t:

P(y(2)t ∈ [0,θ)|H = 1)P(d(1)t = 1|H = 1).

Let’s assume

P(d(1)t = 1|H = 1) = eθP(d(1)t = 1|H = −1)

and

P(y(2)t ∈ [0,θ)|H = 1) = eR+P(y(2)t ∈ [0,θ)|H = −1),

where

R+ = log
P(y(2)t ∈ [0,θ)|H = 1)

P(y(2)t ∈ [0,θ)|H = −1)
.

Then 0 ≤ R+ ≤ θ. If θ is small we can approximate eθ ≈ eR+ in which case we get

DEC(d(2)t = 1) ≈ θ
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but is this is a somewhat special case, so all we are certain is that

DEC(d(2)t = 1) ≥ θ.

Thus, as in the two-agent interactions a decision provides an update at least

equal to the threshold it corresponds to. However, with using the explicit distri-

butions and decision times we cannot say by how much the update may exceed

that threshold.

6.2.3 Other Networks

Notice that the analysis of the other 3 agent networks follow from the clique and

line examples. In general, the process can be broken into 3 steps, as follows (we

assume that the indices i, j, k all refer to different agents):

1. Agents accumulate private information until one, say agent i, decides. If

no other agents observe i, then we the remaining two agents behave as dis-

cussed in Chapters 4 and 5.

(a) In NS10, if agent 2 decides, then this becomes a bidirectional coupling

example.

(b) In NS8, if agent 1 decides, then this becomes a unidirectional coupling

example.

(c) In NS11, if agent 1 decides, then this becomes two uncoupled agents.
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2. Suppose agent j observes the decision of agent i, but does not have k as a

neighbor. If i has k as a neighbor, then j must marginalize over the possible

decision histories of k as in the unidirectional line.

(a) In NS3, if agent 3 decides, then agent 2 marginalizes over the possible

decision histories of agent 1, and agent 1 marginalizes over the possible

decision histories of agent 2.

(b) In NS2, if agent 3 decides, then agent 1 marginalizes over the possible

decision histories of agent 2.

3. If an agent i has both other agents as neighbors, then it will behave as an

agent in a clique. If it observes agent j deciding first, it will increase its belief

by θ. If agent j’s decision followed that of agent k, then the belief update

will be smaller, as discussed in the case of a clique. A similar process takes

place when two agents observe the the third agent, and have each other as

neighbors.

(a) In NS2, if agent 3 decides, then agent 2 does not have to marginalize

over the possible decisions of agent 1.

(b) In NS5, if agent 3 decides, then agents 1 and 2 undergo a belief update

as in the 3-agent clique.
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6.3 Large Cliques: Simulations and Asymptotics

We next consider a clique of N agents who all have the same symmetric decision

boundaries. We will show that the decision process has the following steps:

1. An agent makes a decision first. By symmetry, any agent is equally likely to

make the first decision.

2. A group of other agents makes the same decision.

3. The remaining undecided agents compare the number of agents that de-

cided in step 2 to the number that did not and update their beliefs using this

distribution.

4. As we will see with simulations, after step 3, most agents will have decided

with high probability. The remaining agents undergo an equilibration pro-

cess similar to that in the case of two bidirectionally coupled agents, where

they communicate their decision states until it is no longer informative. Any

agents that have not decided by this point will continue integrating private

information, but are likely to start with unequal priors over the two states.

As this appears to happen infrequently, and symmetry has been broken, we

do not analyze this case further.

Without loss of generality, we assume that agent 1 accumulates enough ev-

idence to decide on H = 1. This means y(1)t = θ, and thus every other agent

updates their log-likelihood evidence

y(i)t,1 = y(i)t,0 +θ, ∀i 6= 1.
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As before agents will stop making observations and communicate their decision

states until there is no more information to be gained. Observing d(1)t,0 = 1 will

cause any agent whose belief satisfies y(i)t,0 ≥ 0 to make the same decision. We call

these the agreeing agents. The agents whose beliefs satisfy y(i)t,0 < 0 do not make a

decision, and we call them the disagreeing agents. Upon observing the decision

of agent 1, the belief of any disagreeing agent satisfies 0 < y(i)t,1 < θ. We give a

schematic in Figure 6.3.1.

1

Fig. 6.3.1: The first decider, agent 1 is on top. The agreeing agents are on the right
in the purple group and the disagreeing agents are on the left in the green group.

Intuitively, each agreeing agents now gives additional evidence for H = 1,

while each disagreeing agent gives evidence for H = −1. By symmetry, each type

of agent should provide the same magnitude of evidence one way or the other.

Therefore, if more than half of the remaining agents follow the first and decide

in favor of H = 1, this provides additional evidence for that choice. On the other

hand, if the majority of agents stay silent, the evidence favors H = −1. We com-

pute the corresponding belief update in Section 6.3.1.
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6.3.1 Agreement Information

Before any agent makes a choice, the communicated decision states are uninfor-

mative. Once agent 1 chooses H = 1 at time T, a wave of agreeing agents follows.

Let N = a + d + 1 where a is the number of agreeing agents who had positive

evidence at time t, and d is the number of disagreeing agents who had negative

evidence at time t. We let A be the set of agreeing agents and D be the set of

disagreeing agents.

We want to know what a disagreeing agent j ∈ D (so d( j)
T,1 = 0) learns by

observing the distribution of A and D. To compute the evidence update for agent

j first note:

P(d(1)T,0 = 1, d(i)T,1, d(k)T,1|H) = P(d(i)T,1, d(k)T,1|d
(1)
T,0 = 1, H)P(d(1)T,0 = 1|H = 1)

= P(d(i)T,1|d
(1)
T,0 = 1, H)P(d(k)T,1|d

(1)
T,0 = 1, H)P(d(1)T,0 = 1|H = 1),

by a rule of conditional probability and the independence of the observations of

the agents. From this we get

y( j)
T,1 = y( j)

T,0 + log
P(d(1)T,0 = 1|H = 1)

P(d(1)T,0 = 1|H = −1)

and

y( j)
T,2 = y( j)

T + log
P(d(1)T,0 = 1|H = 1)

P(d(1)T,0 = 1|H = −1)

+ ∑
i∈A

log
P(d(i)T,1 = 1|d(1)T,0 = 1, H = 1)

P(d(i)T,1 = 1|d(1)T = 1, H = −1)

+ ∑
k∈D

log
P(d(k)T,1 = 0|d(1)T,0 = 1, H = 1)

P(d(k)T,1 = 0|d(1)T,0 = 1, H = −1)
.
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This simplifies to:

y( j)
T,2 = y( j)

T,0 +θ+ a log
P(0 ≤ y(i)T,0 < θ|H = 1)

P(0 ≤ y(i)T,0 < θ|H = −1)

+ d log
P(−θ < y(k)T,0 < 0|H = 1)

P(−θ < y(k)T,0 < 0|H = −1)

by independence.

Note

P(0 ≤ y(i)T,0 < θ|H = 1) = P(0 ≤ y(i)T,0|y
(i)
T,0 ∈ Θ, H = 1)P(y(i)T,0 ∈ Θ|H = 1)

with Θ = (−θ,θ). So we define S±,T = P(y(i)T,0 ∈ Θ|H = ±1) as well as

R±,T = P(0 ≤ y(i)T,0|y
(i)
T,0 ∈ Θ, H = ±1), L±,T = P(y(i)T,0 < 0|y(i)T,0 ∈ Θ, H = ±1).

Then we suppress the index which denotes the dependence on the initial decision

time T and compute:

y( j)
T,2 − y( j)

T,0 −θ = a log
P(0 ≤ y(i)T,0 < θ|H = 1)

P(0 ≤ y(i)T,0 < θ|H = −1)
+ d log

P(−θ < y(k)T,0 < 0|H = 1)

P(−θ < y(k)T,0 < 0|H = −1)

= a log
R+S+

R−S−
+ d log

L+S+

L−S−

= (a + d) log
S+

S−
+ a log

R+

R−
+ d log

L+

L−

The first term here is zero when we assume the distributions and boundaries are

symmetric. We also have R+ = L− because the probability that the evidence is

accumulating in the correct direction given the state is independent of the state

when the evidence distributions are symmetric, and similarly, R− = L+. Thus

y( j)
T,2 = y( j)

T,0 +θ+ (a− d) log
R+,T

R−,T
.
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If (a− d) log R+,T
R+,T

< −2θ (when d is sufficiently larger than a) we have a some-

what counterintuitive situation: If insufficiently many agents fail to follow the

decision of agent 1, then in the next step every agent in D chooses H = −1!

We thus refine the process described in the beginning of this section.

1. Agent 1 decides H = 1 and the positive evidence agents choose H = 1.

2. The disagreeing agents all jump by θ+ (a− d) log R+
R− .

3. This may cause some disagreeing agents to make a choice:

(i) if (a− d) log R+
R− ≥ θ all agents choose H = 1;

(ii) if (a − d) log R+
R− < −2θ all agents in D choose H = −1, and thus we

have a + 1 agents choosing H = 1 versus d agents choosing H = −1;

(iii) if −θ ≤ (a− d) log R+
R− ≤ 0, for instance, when a = d, then no agent in

D will make a decision and the process might equilibrate here;

(iv) if−2θ < (a− d) log R+
R− < −θ then some of the agents in D may choose

H = −1 and this will give the remaining agents a bound on where their

LLRs must be (similar to the n = 3 case);

(v) if 0 < (a − d) log R+
R− < θ then some of the agents in D may choose

H = 1 and this will give the remaining agents a bound on where their

LLRs must be (similar to the n = 3 case).

In cases (i) and (ii) we are done. For cases (iii)-(v) we must carry out an analysis

similar to that in section 6.2.1.
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Asymptotics

LetαN be the probability that the first agent to decide in an N-agent clique makes

the correct decision. We conjecture that as the clique size N → ∞, the probability

that the majority of the agents make the correct decision goes to 1; furthermore,

all agents will make the correct decision with probabilityαN.

In Figures 6.3.2, 6.3.3, and 6.3.4 we plot information about the behavior of

cliques of size 10, 100, and 1000, respectively. We assume the correct state is

H = 1. As expected, the more agents in the clique, the earlier a first agent will

make a decision. Also, the probability that a given agent will have the correct

belief (meaning here that its belief is positive) is indepent of the network size.

We also plot the probability the exactly k agents have the correct belief for

various values of k < N to show that a majority of agents will have the correct

belief and thus observing the ratio of a to d will be informative. We see that most

of the agents will make the correct choice immediately after the first agent decides.

Thus two things can happen. If the first agent is wrong, the majority of agents

will have positive evidence and this will cause the expected evidence to be large

enough for those agents to make the correct decision. Alternatively, that agent is

correct, and all agents will agree with it and a unanimous decision will be reached.

Intuitively, this is one difference between cliques and unidirectional lines: we ex-

pect unanimous decisions on unidirectional lines to be rare.

We need to further explore to confirm that the probability of having a majority

of agents with correct belief overwhelms how early decisions occur. As a start, we
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Fig. 6.3.2: Simulations for a fully-connected network with 10 agents for H = 1.
Top left: probability some agent decides (red) by time t and and probability a
given agent has positive belief (blue). Top right: the probability exactly k agents
have positive belief. Bottom left: the expected amount of evidence gained after
seeing the distribution of agreeing and disagreeing agents. Bottom right: how
much evidence is gained per agreeing agent.
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Fig. 6.3.3: The plots are the same as in Figure 6.3.2, here done for 100 agents. The
only difference is, in the top right, we plot the probability k agents are correct for
all k larger than half the total number of agents. This gives us an idea of how likely
the majority of agents agree.
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Fig. 6.3.4: The plots are the same as in Figure 6.3.2, here done for 1000 agents. The
only difference is, in the top right, we plot the probability k agents are correct for
all k larger than half the total number of agents. This gives us an idea of how likely
the majority of agents agree.
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Fig. 6.3.5: The expected first passage time for a given sized clique. Each point was
done by averaging the first exit times over 100 simulations.

compute the rate at which the time that the first agent makes a decision goes to

zero as the clique size increases in Figure 6.3.5.
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