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Abstract

Modeling mechanical interactions of bacteria is integral to capturing their dynamics

in close-knit populations, because mechanical signals can be a primary means of

inter-cellular communication in these environments. Agent-based models are used

to study such mechanical interactions; however, conventional frameworks usually

neglect the role of mechanical constraint and its coupling to other cellular dynamics.

Continuum models often neglect sufficient description of cellular ordering dynamics,

which depend on the complex interactions of cell shape anisotropy and shear flow

that can originate from cellular growth expansion.

In this dissertation, we present models for the study of mechanical interactions

of bacterial consortia in microfluidic traps. We include in our study an agent-based

model that directly incorporates mechanical growth inhibition into the dynamics of

the model and we show how emergent dynamics can be shaped by differences in

model parameters. We also study a continuum model that considers growth through

the evolution of the cell pressure and the resulting spatially-mapped velocity gradi-

ents. Our continuum model borrows ordering dynamics equations from liquid crystal

theory in a two-dimensional setting and we use our model to predict how both persis-

tent order and disorder can exist among close-packed bacterial cells in a microfluidic

trap .

Further, we explore the impact of dynamic aspect ratio control on bacterial con-

sortia and show how it can be used as a population control modality. We conclude

with a conjecture and model for the modulation of a protein production rate by

mechanical constraint that helps explain anomalous experiments.
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Chapter 1

Introduction

This dissertation is a study of mathematical modeling of bacteria in the context of

synthetic biology and we begin with a brief background to set the context of the

work.

1.1 Bacterial microorganisms and their role in syn-

thetic biology

The study of bacteria encompasses a large array of scientific fields. For example, we

benefit in public health from myriad advances in this sphere: from the study of the

generation, evolution, and transfer of microbial pathogens [89], to the production of

food supplements [103], proteins [163], and antibiotics in medical applications [21,

127]. Industrial applications of bacteria give economic advantages to production of
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food and pharmaceuticals [9], chemical biosynthesis [85], bioremediation [26, 88, 31]

and pest elimination [134], and can even be harnessed for the microbial production

of high-energy fuels [149, 138].

Synthetic biology is a rapidly expanding, interdisciplinary field that harnesses

engineering principles, mathematical modeling, and standardized parts and tools to

design biological systems with specific functionality [7, 15]. Microbes are prominent

in this effort due to their relative simplicity [101], wide application, and general ease

of use [22], and due to their abundance in, on, and around our corpus [53, 80, 158,

173]. Further, many microorganisms are well-characterized with advanced techniques

available for their genetic manipulation [92].

Advances in synthetic biology have widened the scope and refined the processes

of all of the above industrial microbial applications [9, 25, 115, 120, 129, 144, 150,

174], and there is wide-ranging research in many other areas, from drug discovery

[169], toxic chemical detection [87], antimalerial therapies [119, 106], environmental

management [96] and synthetic ecology [83], gastrointestinal health [108], tissue self-

organization [84], designer probiotics [35] and biomedical devices [68], to detection

of explosives [86] and potential use for resource utilization on space missions [107].

Besides advancing applications in the industrial sphere, synthetic biology also

comprises many areas of fundamental research that produce biological insights into

form and function of biological systems at all levels [155]. From the seminal pub-

lications of a synthetic oscillator [46] and switch [58], synthetic biology advances

knowledge in the areas of (among others): synthetic orthogonal transcription factors

[22, 95], gene regulatory parts [100], timing of transcriptional regulation [33], and
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intercellular communication systems [13].

Research with applications for non-regulatory (structural) genetic control spans:

digital logic gates [112] and switches [24], genetic oscillators [32, 148], genomically

encoded memory [51, 124, 162, 154] and population-based computing [11], genetic cir-

cuit [71] and bio-production breadboard models [176], repurposing of the translation

system for novel functions [41], metabolic engineering [36, 76, 121] and division of

labor [160], molecular, intercellular communication systems [13, 50, 53] and chemical

control of organisms [55], and rational engineering of synthetic microbial consortia

[22, 59, 73, 147].

The accelerating expanse of synthetic biology techniques has been met with at-

tempts to standardize certain tools across systems and exchange of information be-

tween institutions [128, 18]. We further comment that this vast array of biological

research does not come without certain risks, potentially to humans or to the environ-

ment, and addressing pathogenic, social, ethical and legal issues is also of increasing

concern [65, 125, 139, 150, 156, 37, 90].

The study of bacteria and their use in synthetic biology furthers the promise for

rational design of organisms for all of public health, medicine, industrial and pure

scientific applications. The field of synthetic biology is wide-ranging, ongoing, and

perhaps one of the most exciting cross-disciplinary fields in current existence. This

dissertation attempts to further this study with mathematical models that aid in

predicting and explaining experiments.
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1.2 Consortia in synthetic biology

The promise of synthetic biology relies not only on the rational design of single

cell dynamics, structure and function, but also on the design of assemblies of in-

teracting cells and organisms. Cooperating cells can specialize and assume different

responsibilities within a collective [172] and this allows such bacterial consortia to

outperform monocultures [105, 130, 114, 54]. Both in terms of efficiency and range of

functionality, cell collectives can perform computations and make decisions that are

far more sophisticated than those of a single bacterium [126]. Advances in synthetic

biology allow us to design multiple, interacting bacterial strains, and observe them

over many generations [32]. The dynamics of such microbial consortia are strongly

affected by spatial and temporal changes in the densities of the interacting strains,

and their resulting spatial distribution determines the concentrations of the corre-

sponding intercellular signals in their environment, which, in turn, determines the

coupling among strains. To effectively design and control such consortia, it is nec-

essary to understand the mechanisms that govern the spatiotemporal dynamics of

bacterial collectives.

This dissertation presents different strategies to achieve this goal, with a par-

ticular emphasis on the role of mechanical interactions of bacteria in a collective.

Mathematical and computer models help in this effort by allowing the researcher to

explore potentially large parameter spaces using reduced-order models or large-scale

parallelism to sweep the parameter space, which can be costly and time-prohibitive

in an experimental setting. Agent-based models are particularly well suited to study
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consortial dynamics, as they allow the programming of independent rules to in-

teracting strains, whose spatiotemporal dynamics are neither easily predicted nor

analytically tractable. Chapter 2 will explore an agent-based model that focuses on

emergent behaviors of bacterial collectives and allows the exploration of parameter

spaces that include mechanical constraint with respect to cell growth and protein ex-

pression, for example. We argue that mechanical effects, alongside cell signaling and

genetic transformations, are important to the study of bacterial collectives, and this

dissertation will attempt to further this study by including mechanical interactions

directly into the modeling framework.

1.3 Microfluidic devices and experimental imag-

ing of bacterial consortia

Observing the growth of bacteria in a scientific context presents several challenges.

Bacterial growth in natural environments is dominated by the formation of biofilms

[114, 54, 105, 130], whereby bacterial cells can communicate as an emergent unit un-

der conditions of limited resources to gain advantages of social cooperation, metabolic

resource acquisition and resistance to antimicrobial exposure [54]. In a laboratory

environment, cells are typically observed via flow cytometry [141] and in microfluidic

traps [20, 91, 123, 147]. In this dissertation, we consider only models of bacterial

growth in microfluidic devices. However, many of the models’ components are general

enough to be applicable in other environments. In the next section, we will review

different mathematical modeling approaches to bacterial growth in the contexts of
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biofilms and microfluidics primarily.

1.4 Mathematical modeling in synthetic biology

1.4.1 Computational resources

The rapid expansion of genetic techniques for transformation and control of microor-

ganisms in the context of systems and synthetic biology has been accompanied by

continued growth in software and computing resources [27], including those available

both on a researcher’s laptop computer, and on large-scale computing clusters at

the institutional, governmental and commercial levels. A 2010 government report

(“The opportunities and challenges of exascale computing”) sets the motivation for

computing in the sciences [12]:

The great frontier of computational physics and engineering is in the chal-

lenge posed by high-fidelity simulations of real-world systems, that is, in truly

transforming computational science into a fully predictive science.

This report cites, alongside climate and weather, aerospace, materials science, nuclear

engineering and national security, biological and medical systems as a field where

such transformation has taken place. The report gets to the heart of the matter for

mathematical modeling in biology and a call for the increase in computation scale

[12]:

In biology, the challenges of modeling at multiple scales—from atomic, through
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genomic and cellular, to ecosystems—are already pushing beyond the petas-

cale class of computing systems coming online. For example, a computational

approach to understanding cellular systems and their related genes and bio-

chemical pathways, referred to as systems biology, aims to develop validated

capabilities for simulating cells as spatially extended mechanical and chemi-

cal systems in a way that accurately represents processes such as cell growth,

metabolism, locomotion, and sensing. Modeling and simulation provide only a

local view of each process, without interactions between modalities and scales.

Exascale computing and new simulation management tools are needed to rep-

resent the various macroscopic subsystems and to enable a multiscale approach

to biological modeling.

This dissertation deals directly with many of the components mentioned in the above

quotation. For example, modeling of consortia leads to spatially separated strains

and interactions (signaling distance is limited), local spatial scales are important in

agent-based models (where consortial scales are emergent), and protein production

(genetic expression) is typically modeled by stochastic simulation of reaction kinetics,

but may also include metabolic cost, cell transport, and sensory input.

An increase of availability, size, and complexity of computational resources trans-

lates to both increased speed and increased parallelism in simulations of mathemat-

ical models, both of which can combine to increase model precision and realism.

However, judicious choices of model parameters and understanding the extent of a

model’s detail will always be part of any modeling effort.

7



1.4.2 Modeling complexity

Mathematical models, generally speaking, are meant to bridge the gap between ex-

periment and theory [177], whereby model iterations allow one to converge on good

models, and perhaps more importantly, dismiss bad ones as quickly as possible. Of-

ten, the complexity of the model is of central importance, and the appropriate choice

of number and range of parameters is critical for model tractability and appropri-

ate description of quantitative features, and for use in extracting general principles

[60]. If we think of the level of detail of quantitative features as the model scope, we

can describe any particular model as being relatively placed along an axis between

two extremes of focused (a small number of equations) and broad (a large number of

highly coupled equations), and the modeling space can be described as being spanned

by two orthogonal axes characterizing model scope and level of realism [111], with

the usefulness of the model perhaps governing the exact placement of a model within

this space.

The key questions to address in selecting modeling complexity are then: What is

the level of detail required and what is the computational cost? The tradeoff between

these components requires an appropriate model approach, which can selectively

emphasize quantitative and qualitative features in appropriate detail.

1.4.3 Modeling approaches

Modeling strategy can further be considered to be of two kinds: forward and reverse

modeling [66]. In forward modeling one starts by assembling known or assumed rules,
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and asserts (known or simulated) causality to inform predictions, whereas in reverse

modeling one begins with experimental data and attempts to explain its causality

through an inspired mathematical model [66]. We will present both types of models

in this dissertation.

We will consider in Chapter 2 an agent-based model (ABM), which we consider

to be of the forward type in the above definition: rules are established for individual

agents and emergent behavior is predicted (namely, by computer simulation). In

Chapter 4, we will present a continuum model for cell growth that relies on a partial

differential equation (PDE) formulation that we consider to be of the reverse type

(per above), where observed cell growth and ordering is observed in experimental

data and governing equations are asserted as an explanation of this data. We will

also present a reverse model to attempt to explain anomalous protein expression

using a mechanical-constraint sensory model in Chapter 5.

Mathematical models are able to aid in biological investigations, but also, biology

can inform mathematical investigations [94]. In the modeling of microbial commu-

nities, there are calls to the importance of close collaboration between theory and

experiment in designing, categorizing, and improving these models [175]. We hope

to present in this dissertation models that will further the collaboration.

1.5 Outline of the dissertation

The dissertation is organized into a sequence of chapters that present modeling frame-

works and their application to the study of mechanical interactions of bacteria in the
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context of synthetic biology experiments. In Chapter 2, we present an agent-based

model (ABM) of bacterial growth and division for study of bacterial consortia in mi-

crofluidic traps. Our model differentiates itself from other published models by the

direct incorporation of mechanical constraint measurement into the ABM. We find

that tying various cellular dynamics to constraint-driven growth inhibition can direct

emergent properties of bacterial consortia in a microfluidic environment, and we ar-

gue for the continued exploration and awareness of the role mechanical interactions

can play in close-knit bacterial communities.

In Chapter 3, we explore how a decrease in cell aspect ratio can confer a compet-

itive advantage to a bacterial strain by increasing its stochastic, lateral invasion rate

in the columnar structures that exist in open-walled microfluidic traps. We suggest

that the ability to dynamically control aspect ratio can help optimize synthetic biol-

ogy experiments by effecting changes in cell strain ratio, and that cell-cell signaling

via quorum-sensing (QS) communication can be used with aspect ratio changes to

manifest a self-regulating population via negative-feedback control.

In Chapter 4 we present an alternative approach to bacterial growth modeling:

We develop a continuum model using a system of partial differential equations (PDE)

that govern cell growth pressure, the resulting volume-exclusion velocity field, and

ordering dynamics. We develop a Poisson’s equation for the cell pressure and an

advection-reaction equation for the ordering dynamics, where the latter borrows from

theory of liquid crystal nematogens under shear flow. We find that our continuum

model can predict spatiotemporal ordering of bacterial cells grown in an open-walled

microfluidic trap, and that regions of persistent order and disorder can be identified

10



under the assumptions of the model.

Lastly, in Chapter 5, we explore a mechanical-interaction model that attempts to

explain experimental data with anomalous bacterial protein expression. We find our

model is consistent, under minimal assumptions, with reproducible anomalies that

occur over a large and varied array of experimental conditions. Using the model,

we conjecture that a mechano-biosensory response of the cells to mechanical growth

inhibition leads to an increased production rate of protein. We suggest that further

study of this anomaly is warranted, since such a behavior could be captured as a

modular, biosenory component, among the toolkits for synthetic biology research.
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Chapter 2

Agent-Based Modeling of

Mechanical Interactions in

Bacterial Populations

The material for this chapter stems from previously published content by Winkle et

al. in the journal Physical Biology [171].

2.1 Introduction

Agent-based modeling is a technique whereby individual cells, or agents, interact

spatially using predefined rules for each agent, with the goal to discover emergent

behavior that is not easily predicted by analysis of the rules per se. This type of

modeling allows one to explore a larger parameter space by modulating various levels
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of interactive or environmental complexity [47], for example. Although in some cases

ordinary or partial differential equations (ODE or PDE, respectively) can be used

to model cell behavior, these models often fail to capture dynamics due to the large

numbers of discrete particles (or agents) and inherent heterogeneity of cell behavior

due to stochastic effects [61].

As mentioned briefly in the Introduction, bacterial collectives’ spatiotemporal

dynamics are determined by complex interaction mechanisms that involve both in-

dividual and consortial behaviors. Agent-based modeling provides an attractive ap-

proach for uncovering these mechanisms: such models can capture behaviors and

interactions at the single-cell level while remaining computationally tractable. The

cost and time required for experiments make it difficult to explore the impact of

inhomogeneous population distributions and gene activity under a variety of condi-

tions. Agent-based models are far easier to run and modify and they thus provide a

powerful method to generate and test hypotheses about gene circuits and bacterial

consortia that can lead to novel designs [171].

Importantly, we believe agent-based models of microbial collectives growing in

confined environments, such as microfluidic traps, should capture the effect of me-

chanical interactions between cells in the population. Forces acting on the con-

stituent cells play a critical role in the complex dynamics of cellular growth and

emergent collective behavior [44, 142, 143, 152, 38, 146, 48, 14], and biological

evolution [49]. We argue that agent-based models, therefore, shoud be able to

model the force exerted by growing cells, as well as the mechanical interactions in-

duced by cell-cell contacts or contact with environmental boundaries. Further, it

13



has been shown that the environment of an individual cell can influence its growth,

which in turn influences the cell collective’s behavior through mechanical communi-

cation [34, 40, 52, 135, 153]. In particular, mechanical confinement can cause cells

within the collective to grow at different rates [34, 40]. Current agent-based models

of microbial collectives (e.g. [74, 79, 132, 67, 93]) typically do not allow cells to alter

their growth rates in direct response to mechanical sensory input. Adding such ca-

pability is challenging, due to the complex relationship between cell growth and the

extracellular environment.

As mentioned in the Introduction, the appropriate number and range of param-

eters in a model affect analytical and computational tractability. We must consider,

therefore, the different challenges introduced by modeling mechanical interactions in

bacterial colonies. One inherent difficulty is accurately capturing effects that stem

from a large number of cell-cell interactions over successive periods of time: Local

and global interactions can combine in a highly non-linear way, and the effects of

these interactions may not be captured realistically in models of reduced complexity.

In particular, growth effects (for example, a modulation of growth rate) in bacterial

cells can stem from both competitive and cooperative forces in multicellular com-

munities [133]. Ultimately, the success of a model depends largely on its ability to

predict and explain experiments, and adjustments to an agent-based model’s com-

plexity must be made to manage the compromise between realism and tractability.

Our knowledge of complex systems, however, can remain incomplete while still ben-

efiting from incremental knowledge in reduced-order models of complex, interacting

systems.
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Figure 2.1: Single-cell construction and dynamics. (a) A schematic depiction
of the components of a single cell in our model. Two symmetric cell halves with
semicircular poles and long edges are constrained to align using a ball-and-groove
type connection. Each cell half has mass m (assumed to remain constant during cell
growth) and center of mass located at the center of its semicircular pole. Growth
expansion forces are generated by connecting the two cell halves to a virtual linear
spring (with spring constant k) along the cell’s long axis, and then extending the rest
length, R, of the virtual spring. (bc) Expansion speed (magnitude of the difference
between the velocities of the two cell halves) and spring compression (difference
between rest length R and cell length `) for a single cell with Ṙ = 0.1µm/minute
and a 10-fold increase in normalized resistive damping parameter γ (see Appendix
A.4 for normalization details). Simulation data (boxes) match analytical solutions
(curves). Increasing γ (orange traces) lengthens the time required for expansion
speed and spring compression to reach steady state (τ = γ

2k
is the time constant

for the first-order system). Larger steady-state spring compression monitors the
increased mechanical load felt by the growing cell when the damping coefficient is
higher.

Here, we describe an agent-based cell model [171] that focuses on a specific aspect

of bacterial growth: the ability to detect and respond to the mechanical environment

that emerges in a growing population of bacteria. We show that our model can be

used to make predictions about the spatiotemporal dynamics of consortia growing in

two-dimensional microfluidic traps. Further, we demonstrate that emergent collective

behavior can depend on how individual cells respond to mechanical interactions.
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2.2 Modeling framework

To understand the behavior of growing bacterial collectives, we must develop numeri-

cal tools that can capture the mechanisms that shape their spatiotemporal dynamics.

Here, we propose an agent-based model of bacterial assemblies, using a framework

that takes into account mechanical constraints that can impact cell growth and influ-

ence other aspects of cell behavior. Taking these constraints into account is essential

for an understanding of colony formation, cell distribution and signaling, and other

emergent behaviors in cell assemblies growing in confined or crowded environments.

Our framework differs from other published models in an important way: We as-

sume that each cell comprises two axially independent cell halves that attach through

a compressible, stiff spring, whose rest length increases to induce cell growth (Fig-

ure 2.1(a)). The expansion rate of spring rest length sets the target growth rate

for the cell. However, in our model the target growth rate will not be achieved due

to mechanical constraints, such as resistive damping, cell-cell contact, and contact

with trap boundaries. Differences in rest length expansion and actual cell growth

result in sustained spring compression, whose energy can be thought of as a stored

growth potential for the cell. As we will show, spring compression serves as a mea-

surement of mechanical constraint in our model, and we remark that it will normally

increase even while the cell continuously expands (see e.g., Figure 2.1(bc)). Spring

rest length expansion is meant to serve as an imperfect model for cell expansion

via turgor pressure, and not as a direct model of peptidoglycan cell wall stiffness

[161, 78, 77, 34].
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Most published models require that cells grow exactly at a priori prescribed rates.

An exception is a model introduced to study the organization of crowded bacterial

colonies growing in confined niches [34]. As a result, most models do not capture

mechanical constraint detection and resultant growth modulation. Our approach

introduces greater flexibility than, for example, assuming that growth rate is deter-

mined by the position of a cell in a trap [23]. We illustrate the impact of mechanical

interactions by starting with simple one-dimensional configurations and then moving

to more complex, two-dimensional geometries. In addition to serving an illustrative

purpose, one-dimensional configurations allow us to validate our numerical imple-

mentation. Our model is explicitly solvable when cells are constrained to grow in

one dimension, which allows us to validate our simulation environment by comparing

numerical and analytical solutions in this case. Further, our 1D results provide a

benchmark for the interpolation of 2D dynamics.

When constructing our simulations and diagrams, we took advantage of two open-

source software resources: the physics engine Chipmunk 2D [3] for cell dynamics, and

the cell simulation platform gro [79] (which itself uses Chipmunk 2D). We initially

modified gro to implement our new cell model within the physics engine, while taking

advantage of the gro visualization environment and image capture capability (Figs

1–4 in our manuscript each contain images generated using this feature). We then

developed and used an independent command line version (run on server computing

resources) for larger parameter sweeps, as well as to generate data for statistical

analysis.

17



2.2.1 Cell construction

We model each bacterium as an assembly of two independent cell halves. To model

cell growth, we assume that these two halves expand symmetrically along the long

axis of the bacterium (Figure 2.1(a)). Each cell half consists of a mass m at the

center of a semi-circular pole, which connects to straight, long-body edges (as shown

by different colors in Figure 2.1(a)). The two masses connect through a virtual spring

with linear spring constant k. Importantly, the rest length of the spring increases

in time. In confined environments, extension of the rest length induces forces on

neighboring cells, microfluidic trap boundaries, and any other obstacles the cell may

encounter.

In order to ensure the cell halves act as a single, well-defined cellular unit (for

example, upon collision with other cells or fixed barriers), we use a pair of symmet-

ric ball-and-groove type connections so that the cell halves remain aligned and resist

bending [77]. This also ensures that any off-axis or rotational impulses are transmit-

ted equally to both halves of the cell. Thus, cell growth forces are designed to act

independently in the axial direction, whereas off-axis, cell-external forces act on the

cell as a whole. We remark, however, on a caveat of our model: Sufficiently large on-

axis components of external forces could result in a cell-length compression, but we

mediate this using a rigid-body, back-filling “ratchet” algorithm (details about the

implementation are provided in Appendix A.5). Thus, although spring compression

is an integral component of our cell model, we intervene separately to prevent cell

compression by using a nonlinear technique.
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2.2.2 Growth model

We induce axial cellular growth by extending the rest length, R, of the virtual spring

that connects the cell halves (Figure 2.1(a), top panel). Induced expansion force

can be felt by all neighboring objects (see Figure 2.1(a), bottom panel). Cho et

al. [34, Figure 4] used a related model to study how mechanical constraints lead to

self-organization in bacterial colonies grown in confined environments.

Crucially, rest length extension is an adjustable component of our model that

captures the growth tendency of each cell. As we will see, altering how rest length

extension dynamics respond to constraint can impact global dynamics of collectives.

To start, however, in Sections 2.2 and 2.3 we assume that the rest length grows at

a constant rate, Ṙ = a. In this case, mechanical constraints can result in unphys-

iologically large potential energy stored in a highly compressed spring, an issue we

address in subsequent sections.

We assume cells grow in an extracellular fluid with a resistive damping parameter,

γ, and that our system is in the non-inertial dynamics regime (see Appendix A.1).

Fluid damping resists cell growth via a damping force γẋ, where ẋ is the lab-frame

speed of a cell half through the extracellular fluid. We explicitly model this parameter

to explore the effects that fluid damping variations have on cell dynamics. Although γ

defines non-inertial dynamics over a broad range of values, we will see that it directly

governs response dynamics under the assumptions of our growth model. We make

the simplifying assumption that γ captures all sources of resistive damping, including

extracellular fluid damping and dissipative (non-Hamiltonian) damping forces within

19



the cell itself. In particular, γ serves as an imperfect but computationally manageable

proxy for cell-internal spring damping.

Many published agent-based models treat bacterial cells as unitary rigid bodies

under non-inertial dynamics that achieve cell growth by a process we will call the

Expansion, Overlap, Relaxation (EOR) method. In these models, forward Euler in-

tegration of the growth rate a expands (E) a cell by increasing its length by a · dt,

where dt is the time discretization step. If a cell is sufficiently near, or in contact

with, another object (for example another cell or a trap wall) just before this time

step, expansion will result in overlap (O). A relaxation algorithm (R) is then asserted

that resolves (or prevents) overlaps of all cells and objects using repulsion forces [34],

constraint [132], iteration [79], or a related algorithm [67, 93]. EOR methods have

thus been used in a wide variety of contexts. However, these methods handle me-

chanical interaction in an opaque way, whereas our framework allows us to model a

measured cell response to mechanical constraint in an explicit, transparent way.

In our model, we prevent cell overlap by using collision dynamics to resolve com-

peting growth expansion under the constraint of cell-cell or cell-barrier contact (see

Appendix A.4). Importantly, by constructing a cell with two axially independent

halves, we do not have to assume that each cell reaches a predetermined size, de-

termined by the growth rate, at the end of each time step. In contrast to the EOR

method, this allows us to determine the impact of mechanical constraints on the

growth of a cell by comparing the achieved cell length ` to spring rest length R at

each time step. We can then link this measurement (which is made by the cell agents

themselves), to other aspects of the cell model. As we will see in a later section in
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this Chapter, emergent assembly behavior can depend on how cells modulate growth

in response to constraints.

2.2.3 Equations of motion for an isolated cell

We develop an analytical description of our cell growth model in order to study the

behavior of interacting cells in confined environments. We first derive the equations

of motion for an isolated cell in an extracellular fluid with resistive damping param-

eter γ. Cell growth results from a linear spring force computed from the difference

between ` and the rest length R of our virtual spring (R− ` is thus spring compres-

sion) and applied equally to each cell half. Using linear spring constant k, we have

the inertial equation of motion for an isolated cell,

m῭

2
= k(R− `)− γ ˙̀

2
. (2.1)

Assuming non-inertial dynamics (see Appendix A.1), Eq. (2.1) yields a differential

equation for expansion velocity,

˙̀ =
2k

γ
(R− `). (2.2)

In order to close Eq. (2.2), we must describe the dynamics of the rest length, R. Bac-

teria grow approximately exponentially (see [10] and references contained therein).

However, for simplicity we let R extend linearly at rate a, independent of cell length.

This assumption can be relaxed, and does not affect the main points below. In

Section 2.4, we will introduce mechanical feedback by modulating Ṙ in response to

mechanical constraint.
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Setting R(0) = 0, we have R(t) = at, so Eq. (2.2) becomes

˙̀ +
2k

γ
` =

2k

γ
at. (2.3)

Defining τ = γ
2k

, setting initial cell length, `, to zero, and solving Eq. (2.3) gives the

length of an isolated cell, and the rate of its expansion,

`(t) = a(t− τ + τe−
t
τ ), ˙̀(t) = a(1− e−

t
τ ). (2.4)

The parameter τ acts as a time constant for growth dynamics. Eq. (2.4) shows

that ˙̀→ a, and that τ governs the time required to reach steady state. Because τ is

proportional to resistive damping γ for fixed k, resistive damping therefore governs

this lag. Using Eq. (2.4), the compression of the spring that drives the growth of the

isolated cell is given by

R(t)− `(t) = at− a(t− τ + τe−
t
τ ) = aτ(1− e−

t
τ ). (2.5)

Notice that Eq. (2.5) implies that (R−`)→ aτ , a measure of the sustained mechanical

constraint felt by an isolated growing cell at steady state due to resistive damping.

As described in Appendix A.4, we have implemented this model using the Chipmunk

2D environment. To validate our implementation, we first compared the growth of

an isolated cell to that given by Eq. (2.4). We varied resistive damping γ by an

order of magnitude, while using units such that k = 1, and γ was changed from

1 to 10. Figure 2.1(bc) shows close agreement between theory and simulation for

spring compression and expansion speed. The timescale at which both approach

their equilibrium values increases with γ.
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Figure 2.2: 1D mother machine trap simulation. (a) A schematic depiction of
the mother machine trap setup. Four cells were placed back-to-back from the closed
top of the trap and grew toward the open end (c). (b) Spring compression depends
on cell position. In equilibrium, compression is lowest for the lead cell and highest for
the mother cell. Higher equilibrium spring compressions near the back of the trap
reflect the higher mechanical inhibition detected by cells close to the mother cell.
Equilibrium spring compression is a quadratic function of position in the trap (see
Figure A.1). (d) Expansion speed depends on cell position. Although all four cells
eventually reach the same steady-state expansion speed, cells near the back of the
trap take longer to do so. Rest length expansion rate was set to Ṙ = 0.1µm/minute
and initial cell length was 2µm. Spring constant k and damping parameter γ were
set to 1.0, as in Figure 2.1.

2.3 Behavior of cells in a mother-machine

To bridge the divide between a single, isolated cell and collectives growing in gen-

eral two-dimensional geometries, we now study a one-dimensional ‘mother machine’

configuration, where cells are constrained to grow in long, narrow traps. Mother ma-

chines are microfluidic devices developed to study bacterial cell growth and division

over hundreds of generations (see [1, 167]). They consist of an array of impermeable,

three-walled narrow channels, each just wide enough to hold a line of cells. The

open end of each channel is perpendicular to a ‘trench’ through which fresh nutrient
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medium flows. Cells exiting the narrow channels are carried away by this flow.

We simulated a mother machine using a single three-walled barrier that allowed

cells to grow in a single file. We initialized cells in the channel by placing them pole-

to-pole, with the ‘mother cell’ placed against the back wall (Figure 2.2(a)). As cells

grew, they were constrained to move toward the open end of the narrow channel.

Using the model of cell growth described in Section 2.2, we simulated an array of four

cells with constant rest length extension rate, Ṙ = a, and recorded their resulting

spring compressions (Figure 2.2(b)) and cell-frame expansion speeds (Figure 2.2(d)).

We see that cell growth rates and spring compressions equilibrate after a tran-

sient time determined by the spring constant, resistive damping parameter, and cell

position in the mother machine. This model predicts that the growth rate of the

lead cell (the cell closest to the open end of the trap) equilibrates most quickly, and

is the least compressed. This is intuitive, since cells deeper in the trap must over-

come the cumulative resistive drag of those nearer the open end. A similar point

is raised in [62] for cells exhibiting frictional forces in a chain, where the first cell

in the chain is shown to experience the maximal horizontal stress. Analytically, we

describe the growing line of cells as a coupled mass-spring system (see Appendix

A.4), whose dynamics match the simulations illustrated in Figure 2.2. Solving our

analytical model shows that steady-state spring compression in a 1D line of cells is

a quadratic function of cell position, as Figure 2.2(b) suggests.

These simulations illustrate cell behavior resulting from competing growth and

resistive forces of neighboring cells in a simple geometry. We note that steady-

state compressions are relatively small in this example, due to the small number of
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interacting cells. Compressions can grow substantially, however, in larger traps due to

increased cell confinement and resulting interaction forces, as we will see in the next

section. Local constraint detection can significantly influence the global dynamics of

growing collectives in two-dimensional geometries, as we now demonstrate.

2.4 Two-dimensional microfluidic trap geometries:

results and predictions

We next study bacterial assemblies in two-dimensional geometries. We start with

a two-strain microbial consortium growing in a long, narrow trap with open sides.

Our model predicts that, after a transient period, strains grow in vertically-oriented,

curvilinear stripes perpendicular to the longer edge of the trap. Each stripe behaves

as a collection of quasi-mother machines. Defects in the stripes form close to the

shorter edges of the trap. While boundary geometry is known to direct the collec-

tive orientation of bacterial colonies growing in traps with hard walls [34, 165], our

prediction of emergent spatiotemporal patterning in open traps is perhaps surpris-

ing. In a final study (Section 2.4.2) of an assembly growing in a trap with three

walls, we examine how allowing target growth rate to depend on spring compression

affects both the global dynamics of cell alignment and a generic protein expression

model. Our model predicts that both protein expression and the nematic (angular)

ordering of the cells depend on how rest length extension rate Ṙ varies with spring

compression.
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2.4.1 Two-strain consortium growing in an open trap

Agent-based models of cellular growth have provided insights into the spatiotemporal

dynamics of collectives [14, 79, 23, 131, 93, 146, 48, 49]. Here, we use our agent-

based model to examine the evolving distribution of two non-interacting strains in

a microfluidic trap open on all sides (see Figure 2.3(a)). Once a cell reaches the

boundary of the trap, we assume that it is rapidly carried away by the flow of the

media through a channel surrounding the trap. We simulated this by removing such

cells from the simulation. We initialized the simulation by randomly placing several

seed cells of each type into the empty trap. Cell growth forces in this example were

induced by a constant rest length extension rate, Ṙ = a.

Figure 2.3(a) illustrates a typical spatiotemporal pattern that emerges after cell

growth and resultant colony expansion of the initial seed cells. Cells organize into

vertically-oriented, curvilinear stripes, each composed of a single strain (except for

cells near the left and right boundaries, which tend to flow horizontally toward their

nearest exits). Each curvilinear column of cells operates as a quasi-mother machine:

Cells at the center of the column act as ‘mother cells,’ while descendants form outer

components that flow vertically toward the trap boundary.

Our simulations predict that strain ratio is relatively stable once these stripes

emerge. What determines this stable ratio and the width of the stripes remains un-

clear, since the transient dynamics that precede this quasi-steady state are complex.

The strain type of the central cell in a given curvilinear cell column determines the

strain type of all of the cells in the column. To predict the stable strain ratio, it
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is therefore sufficient to predict how the distribution of central cells emerges. How-

ever, this depends sensitively on the initial distribution of cells, the relative growth

rate of the two strains, and other factors [122]. Stability of the strain ratio in

our simulations emerges from the stability of the quasi-mother machines and their

columnar flow, which inhibits cells from lateral motion; notably, only lateral dis-

placement at the mother cell position by a different strain can influence the strain

ratio non-transiently.

Figure 2.3(b) illustrates the empirical distribution of normalized cell compression

over the duration of a simulation. Each horizontal cross-section of this heat map

represents the empirical probability density for compression at a given trap depth.

As expected, the empirical compression data is consistent with the behavior of a

one-dimensional mother machine. In particular, mean compression is highest in the

center of the trap, and tapers quadratically as one moves to either of the horizontal

trap boundaries (we will see that deviations from this quadratic behavior emerge in

three-walled traps). Relatively sharp peaks of the distribution at the long edges of

the trap indicate the low variability of spring compression for cells at the boundary

of the columnar flow.

2.4.2 Varying the rest length extension program

Thus far we have assumed that rest length extension rate is constant. We now

explore the global implications of allowing rest length extension rate to vary with

spring compression in our model. This study is motivated by experimental evidence
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a b

Figure 2.3: Emergent behavior in a long, narrow microfluidic trap. We sim-
ulated a two-strain consortium growing in a two-dimensional trap open on all sides.
Cells were removed from the simulation once center of mass crossed a trap bound-
ary. We initialized the simulation by randomly placing several seed cells from each
strain into the trap. Strains are non-interacting, with yellow and blue colors repre-
senting strain type (yellow and blue colors chosen arbitrarily to elucidate emergent
striping patterns). (a) After the trap filled, the strains organized themselves into
vertically-oriented curvilinear stripes consisting of curvilinear columns of cells. Each
such column functioned as a quasi-mother machine. (b) Empirical distribution of
normalized cell compression over the length of the simulation. Each horizontal slice
represents the empirical probability density for compression at a given trap depth.
Heat map coloring reflects normalized probability for each horizontal slice. Mean
compression is highest in the center of the trap and tapers quadratically, as our
theoretical analysis of a mother machine predicts. The dimensions of the trap were
40µm× 200µm. All other parameters were set as in Figure 2.2. Spring compression
is normalized to set the quadratic peak near 0.5.
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supporting the thesis that mechanical forces shape the dynamics of collectives [159,

135, 52, 48, 49, 146]. In particular, it has been shown that mechanical forces can

become sufficiently large to slow cell growth [40]. How to best model the impact

of such mechanical constraints on cell growth remains unclear. Here, we therefore

consider a simple model of how cells modulate their target growth rates in response

to mechanical forces, and explore the impact of such growth modulation on the

emergent properties of the collective.

We introduce a simple growth rate dependence by setting Ṙ to a constant value

for low values of spring compression C = R − `, while decreasing it linearly to zero

after compression crosses a threshold, T . More precisely, we set

Ṙ(C) =



a, if C 6 T ;

a(2− C
T

), if T < C < 2T ;

0, if C > 2T.

We simulated a three-walled trap geometry, as illustrated in the left column of Fig-

ure 2.4. The first row of Figure 2.4 shows simulation results for a high threshold Th

of spring compression, the second for a low threshold Tl.

The center column (panels (c) and (d)) shows normalized spring compression dis-

tributions over the lifespans of the simulations. The spring compression is normalized

(independently in each case) such that Th,l = 0.5. As before, a horizontal slice rep-

resents the empirical probability density for cell compression at a given trap depth.

Three regimes emerge: In the bottom section of the trap, the compression profiles

are quadratic, suggesting behavior akin to the quasi-mother machine dynamics we
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examined previously; mean compression levels off beyond the bottom section of the

trap before spiking in the back. The sharply increased spring compression at the

back wall emerges from the horizontal alignment tendency of cells in this area. Cells

parallel to the back of the trap have no open trap boundary in their axial growth

direction, which results in marked mechanical confinement as evidenced using both

thresholds in our simulations.

Implications for protein accumulation

Spring compression in our model can thus cause cells within the population to grow

at different rates. This heterogeneity has implications for protein accumulation in

growing collectives. Although the mechanisms of coupling are largely unknown,

mechanical deformations are known to influence protein enzymatic activity [152].

We considered a simple case in which the amount, x, of some protein in each cell

obeys the differential equation

ẋ = α`− βx,

where α denotes basal production rate and β is the rate of chemical degradation.

When a cell divides, protein is distributed to the daughter cells in proportion to their

lengths. The left column of Figure 2.4 contains snapshots with cells shaded according

to x/`, i.e. protein per length of cell. As we assumed volume is proportional to

length, the shading represents protein concentration within the cells, with brighter

cells having a higher concentration of protein.

Protein concentration is highest in the back of the trap, consistent with the fact
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Figure 2.4: Emergent dynamics as a function of rest length extension rate
versus spring compression profile. Single-strain collective growing in a three-
walled trap. Rest length extension rate Ṙ is constant when spring compression
is small, but decreases linearly after compression crosses a threshold. First row:
high threshold; second row: low threshold. (ab) Concentration of a constitutively-
produced protein (brighter color indicates greater concentration.) Protein concen-
tration is highest in the back of the trap because typical cell division time is longest
there. Lowering the compression threshold leads to a significant increase in protein
accumulation. (cd) Distribution of normalized compression over the lifespans of the
simulations. Each horizontal slice represents the empirical probability density func-
tion for compression at a given trap depth. Heat map coloring reflects normalized
probability for each horizontal slice. (ef) As in (cd), but for cell angle instead of
compression. Notice that nematic disorder in the back half of the trap is greater
with lower compression threshold. Trap dimensions: 65µm× 65µm.
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that spring compression is highest there. Significantly more protein accumulation

occurs when the threshold T is low (bottom snapshot). We remark that compres-

sion dynamics can be ‘faster’ than protein dynamics in the following sense: When

a cell under significant constraint and expressing a large amount of protein sud-

denly becomes dislodged (unconstrained), it may take several generations for protein

concentrations in descendant cells to return to levels consistent with equilibrium in

unconstrained cells.

Implications for nematic order

We finish by examining how nematic order is affected by altering the rest length

extension rate vs. spring compression profile. The right column of Figure 2.4 shows

cell angle distributions over the lifespans of the simulations. An angle of π/2 corre-

sponds to a vertically oriented cell. Each horizontal slice in the figure represents the

empirical probability density function for cell angle at the given trap depth. When

the threshold T is high, as in Figure 2.4(e), cells show strong vertical alignment

throughout the trap. We observe significantly more nematic disorder with a lower

threshold (Figure 2.4(f)).

Boyer et al. [23] have shown that nematic disorder in three-walled trap geometries

can be caused by a buckling instability. Under the assumption that cells in the back

of the trap both slow their growth and are smaller due to nutrient depletion, they

further show that nematic disorder will be more prevalent there since small cells

are more likely to buckle (Figure 5 of [23]). By reducing T in our simulations, we
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observe that reduction of cell growth rate alone leads to strong nematic disorder in

the back of a three-walled trap geometry. Consequently, we have recapitulated the

Boyer result. However, in our case the mechanisms are different: Nematic disorder

emerges solely from slowing cell growth rate, which follows directly from detection

and response to mechanical interactions, and not from postulated nutrient depletion.

2.5 Discussion

The growth of cells, both in natural environments and experimental conditions, is

modulated by a number of factors. These include mutations, nutrient depletion,

extracellular forces, and environmental signals. Cells actively respond to mechanical

forces, which implies they are capable of sensing and transducing these signals to a

biological response [72]. Here, we have described a simple model of how bacteria can

effect changes in their growth in response to mechanical interactions. We have shown

that such changes can impact the spatiotemporal dynamics of bacterial collectives

growing in microfluidic traps.

However, our model is certainly an oversimplification. We do not address the

biological accuracy of our spring constant k with respect to bacterial cell wall models

that also use springs (for example [161, 78, 34, 77, 152]). Our spring model generates

expansion forces using a simple, linear dynamical equation, but model parameters

are constrained by computational cost (see Appendix A.4). We attempt to strike a

balance between physical realism and simulation time, while arguing for inclusion of

a mechanical constraint measurement in a simple, agent-based model.
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Further, we did not attempt to describe the other factors that modulate cell

growth and can lead to emergent dynamical phenomena. For instance, assume that

the growth rates of two co-repressing strains in a consortium depend on their tran-

scriptional states, so that the strain that has the higher level of expression grows

more slowly. This type of interaction between cell growth, strain competition, and

protein expression can lead to relaxation oscillations in both transcriptional and

growth rates [136]. We expect that a variety of mechanisms that affect growth rates

of single cells, directly or indirectly, can lead to emergent phenomena at the level of

the bacterial population.

Our agent-based model stands in contrast to most previously developed models:

We allow cells to follow first-order dynamics rather than assuming cells achieve their

target growth rates in each time step. Thus, cells can monitor the environment and

respond to mechanical interactions by modulating growth and, potentially, other

aspects of their interior dynamics. It is unclear whether a cell that is prevented from

growing stores this potential. However, mechanical interactions certainly impact cell

growth even when nutrient supply is adequate. This is confirmed by experiments

performed in osmotic shock, where not only do cells no longer grow, they also return

to the cell length they would have achieved, had shock not occurred [77].

Although our model is an oversimplification, it shows that mechanical interactions

can play an important role in the organization and dynamics of growing bacterial

collectives. We have described a flexible platform for understanding these effects.

But much work remains: The predictions of these models, such as the organization

of colonies in microfluidic traps and the impact of crowding on gene expression, will
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need to be validated experimentally. A deeper understanding of the emergence of

order and disorder in these bacterial populations will require the development of

effective continuum models of collective cell dynamics [165]. Agent-based models of

the type we describe can serve as a starting point for these further developments.
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Chapter 3

Competition of Bacterial Strains

through Changes of Cell Aspect

Ratio

We now study how bacterial cell aspect ratio can affect cell-cell interaction dynamics

between two strains of different aspect ratio in a microfluidic trap. We investigated

these dynamics by designing and observing simulations using the ABM and simula-

tion environment presented in Chapter 2. We conclude that a smaller aspect ratio

strain has a competitive advantage in a microfluidic trap: Given an ability to change

aspect ratio under induction within a single experiment of two strains, a smaller

aspect ratio strain can out-compete the other purely through mechanical interac-

tions, leading to total extinction of the wild-type strain from an initially stable and

well-mixed population.
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3.1 Introduction

Bacterial cells maintain precision and accuracy in their cell shape through multitudes

of generations of growth [57]. The exact mechanisms and machinery to this constancy

are widely unknown, but cooperation of hydrolase and synthase enzymes acting on

a cross-linked biopolymer known as peptidoglycan is known to play a role [75]. One

bacterial protein known as MreB participates in the control of cell shape and can

determine whether, for example, a cell takes on a more “coccal” (spherical) or a more

rod-like shape [81, 82, 145]. Another bacterial protein known as FtsZ is a tubulin

homolog, which is required for daughter-cell separation (cytokinesis) in most species

of bacteria [140, 152].

Mechanical interactions of bacteria have been widely studied in the context of

biofilm development [19, 26, 43, 102, 118, 105] and specifically, cell shape has received

increasing attention for studying consortial dynamics in biofilms [131, 146, 4, 49]. In

Rudge et al., fractal patterns were studied with respect to the anisotropic, axial

growth forces of bacteria. They demonstrated that changes in cell aspect ratio can

change a self-similarity measure of resulting colony growth, with a reduced aspect

ratio leading to reduced fractal dimension [131]. In Smith et al., cell strains of dif-

ferent morphologies were competed to study how cell shape affects patterning and

evolutionary fitness in growing colonies. In 2-D and 3-D simulations, they showed

that rounder, more “coccal-shaped” cells could travel to the front of growing colonies,

which gives them a selective advantage in some environments [146]. Similarly, Farrell
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et al. showed that cells of smaller length have a higher probability for “surfing muta-

tions” at the front of a growing colony to form a macroscopic, surviving sector [49].

Acamel et al. showed that clusters of cells in a model of growing biofilms showed

different degrees of ordering as a function of cell aspect ratio in what they refer to

as a “Brownian Dynamics” environment [4].

In each of the studies described above, computer models were used alongside

experiments to reinforce and help explain behavior of two strains interacting me-

chanically. Also in each case, the strains were what we shall call aspect ratio static,

where each strain was, up to variation due to cellular noise, fixed in aspect ratio

throughout a single experiment. We aim to extend the above studies by introduc-

ing dynamic aspect ratio control : We will explore consortial behaviors when one cell

strain changes its aspect ratio. For example, we can change a strain’s aspect ratio

from being equal to that of another strain to being smaller, which we will see provides

a competitive advantage in a microfluidic trap.

Our model has been realized neither in experiment nor in simulation, as far as we

know from the published literature. The bacterial cell transformations necessary to

effect a cell aspect ratio change dynamically, however, have no known limitation to

their realization as an experimental design. We omit in our presentation any detailed

discussion of the laboratory procedures or genetic transformation techniques neces-

sary to achieve the dynamic aspect ratio control we are proposing in this Chapter.

Instead, we limit our model to the expression of a single protein (which may be MreB

or FtsZ, for example), whose expression in a bacterial cell strain leads to a decrease

in the average cell aspect ratio of that strain.
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Of particular note in our study as compared to the aspect ratio static studies

cited above is the timescale at which we can observe dynamics in a simulation of a

microfluidic trap experiment: We attempt to explore these dynamics through mech-

anisms of temporal and spatial control (i.e., epigenetically) rather than through fixed

changes in the bacterial genome. This allows us to observe interaction dynamics on

a much faster time scale than that of iterative experiments themselves. We will show

that — in the experimental environment of microfluidic traps — dynamic modula-

tion of cell aspect ratio leads to radical changes of cell strain ratio, and that these

population dynamics stem from a purely mechanical competition between strains

that manifests directly from differences in their cell shape.

3.2 Simulation results

3.2.1 Simulation model

To explore predictions of consortial behaviors of bacterial strains in microfluidic

traps with dynamic changes of aspect ratio, we again turned to our agent-based

model (ABM) presented in Chapter 2. Our simulation model is exactly as presented

in Chapter 2, except for the following:

1. At a fixed time in the simulation, we changed the division length for one strain

in a two-strain microfluidic trap experiment simulation to be smaller by a fixed

ratio that we shall call Γ, where Γ ≤ 1.

2. We replaced our uniform growth rate with an exponential growth rate such
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Figure 3.1: Lateral invasion by a strain with altered aspect ratio A 2-strain
simulation in an open-walled, 20 x 100 µm trap shows dynamical effects from a
change of aspect ratio in one of the strains, with all other parameters identical in
the strains. (a) Cell striping that nearly stabilized from an initial random seeding
of cells. (b) Shortly after the blue strain (now colored cyan) was modulated to grow
and divide at approx. 2/3 its original length, cyan cells began to laterally pierce
vertical stripes of yellow cells at random locations (cell growth rate did not change
in the cyan strain). (c) Cyan cells eventually dislocated mother-cell positions of
yellow cells, which ejected the yellow stripe from the trap under symmetric volume-
exclusion cell flow. (d) The cyan strain had nearly taken over the middle section of
the trap before the aspect ratio switch was turned off. (e) Blue color indicates the
return to identical length parameters for the 2 strains. A few isolated, non-ejected
yellow mother cells re-extended to vertical stripes.
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that the doubling time of a cell was 20 minutes, irrespective of its length.

3. We omitted any growth-rate dependence on the cell growth pressure (see Chap-

ter 2, section 2.4.2).

3.2.2 Aspect ratio change leads to lateral invasion

In Figure 3.1, we show the results of a simulation experiment in an open-walled

microfluidic trap. The simulation was seeded (as in Chapter 2) by randomly placing

an equal number of each of the two types of strains in the trap. The two strains are

colored yellow and blue, where yellow is the wild-type (WT) strain that remained

at a constant aspect ratio, and blue is the “invading” strain, whose aspect ratio

decreased at a predetermined time in the simulation. When the invading strain was

“induced” to change aspect ratio, we indicate this change in the figure by changing

its color to cyan. In this simulation experiment, the aspect ratio was changed by a

factor Γ = 0.7.

As seen in the figure, as soon as the invading strain changed aspect ratio, it

aggressively invaded the WT strain by “clipping” it laterally. We explain this be-

havior in the following way: If the invading strain rotates into an adjoining column

and successfully invades the all-important positions in the middle of the columnar

structures of cells, it establishes itself as a mother cell locally (see the discussion in

section 2.4.1). The invading strain can also invade laterally at other positions in

the columns, but these will be transient and not directly result in an invasion of the

entire column since, due to the columnar expansion flow of cells in vertical alignment
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in this trap geometry, the invasions will be flushed by the cell flow.

This phenomenon is caused by an apparent increased rotational mobility of the

smaller aspect ratio strain, which allows it to align its growth axis perpendicularly

to the adjacent columns of cells to effect the lateral invasion. Close inspection of

the image sequences revealed that this behavior is stochastic. The large number of

cell-cell mechanical interactions that exist among the ≈ 103 cells in close-packing in

the trap is consistent with this observation.

Subsequent panels in the figure show the continued decimation of the WT strain

until, in this simulation experiment, the invading strain was “switched off” by re-

turning it to its original aspect ratio such that both strains were again identical in

phenotype. The last panel in Figure 3.1 shows that stabilization of columns returned

after the equilibration of the aspect ratio.

3.2.3 Discussion

Bacterial cells typically grow and divide with a 20-30 minute division period: a cell

extends from ≈ 2 → 4 µm in this time, divides, and continues the process with the

daughter cells in an exponential growth phase (as long as nutrients are available to the

growing colony) [69]. In microfluidic trap experiments, this colony size (by design)

stabilizes by ejecting cells out of the trap at the same average rate that they double

within it. Sufficient nutrients are then provided to a relatively constant population of

cells, which allows the experimentalist to observe a continuously regenerating colony

and perform experiments with a stabilized population number. However, one issue
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in the study of consortial behaviors in microfluidic traps is the stability of strains

with respect to strain-width distribution and overall strain ratio. Studies with two

or more strains require the cells to be within a maximum strain-to-strain signaling

distance and to be sufficiently well-mixed (so that one strain does not dominate the

study or fix the population, for example).

Looking again at Figure 3.1, we see that initially (in panel a) strains were fairly

well-mixed and the average stripe width was relatively small (compared to the width

of the trap). After the decimation, however, we see that the blue strain had a

significantly larger average stripe width (panel e) and the yellow strain remained in

only a few, isolated stripes. We can now, however, think of this process in reverse:

given panel e in Figure 3.1 as an initial condition, could the yellow strain invade the

blue strain through dynamic aspect ratio control to recover a well-mixed population

in the trap?

We consider this compelling idea in the final discussion section of this Chapter.

We first continue, however, with a more systematic study of the dynamics of bacterial

consortia

3.2.4 Strain ratio dynamics vs. aspect ratio change

In another simulation experiment, we systematically changed the aspect ratio over a

range of values to observe the differences in invasion rate of the smaller strain into

the columns of the WT strain. In order to isolate these differences and eliminate

effects from variations of initial seeding or strain striping width distribution that
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Figure 3.2: Strain ratio dynamics vs. aspect ratio of the invading strain. A
2-strain simulation using the ABM framework from Chapter 2. Four examples of an
open-walled, 20 x 100 µm trap show dynamical effects from a change of aspect ratio
at time t = 250 min. in one of the strains (all other parameters being equal). In
contrast to Fig. 3.1, the aspect ratio change is persistent after initiation. Γ represents
the scaling of aspect ratio in the invading strain as compared to the wild-type (WT)
strain (Γ = 1 represents identical strains). The WT strain divides at length ` ≈ 4.5
microns and division is stochastic per our ABM framework from Chapter 2. Variant
strains in the three other examples divide at length Γ`. Each plot shows 10 iterations
of 32 randomly-seeded initial cells randomly chosen of each strain, with each of the
10 iterations using identical seeding for each value of Γ. The control simulation with
Γ = 1 shows stabilization of strain ratio after an initial transient, which is typical of
our open-walled trap simulations and in experiments. Decreasing Γ shows marked
increase of the rate of decimation of the WT strain. The sharp decreases at time
t = 250 mins. are due to the rapid change of cell number after initiation of the
dynamic aspect ratio change. Y-axis of each plot represents WT fraction of cells.
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would result, we initialized our pseudo-random number generator to an identical

value for each aspect ratio value simulated. For each aspect ratio we simulated

multiple realizations; however, each enumerated realization was then identical in

initialization and random-number generation to that of the corresponding realization

for each aspect ratio. This uniformity across realizations allowed direct comparison

and isolation of the effect of aspect ratio on strain ratio dynamics.

In Figure 3.2, we show results of 10 simulation realizations across 4 changes of

aspect ratio in an open-walled microfluidic trap. We asserted the change in aspect

ratio to the invading strain at time t = 250 min., which allowed sufficient time for

strain ratio and columnar organization of the strains to stabilize. As can be seen in

the figure, each of the 10 initializations were identical in behavior up to the initiation

of aspect ratio change of the invading strain.

In the control simulation (Γ = 1), strain ratio was consistently stable: mechanical

interactions among WT strains of identical aspect ratio did not favor rotation and

lateral invasion. However, a decrease in aspect ratio corresponded to an increase

in the invasion rate, as evidenced by the increased rate of decay of the WT strain

fraction in each of the realizations. These results clearly show that aspect ratio can

dynamically control strain ratio.

In order to compare these results with differences in aspect ratio at the beginning

of an experiment, we also simulated two-strains that grew at a fixed aspect ratio

throughout the experiment. We have referred to this framework as “aspect ratio

static” and our simulations are similar to those presented by Smith et al. [146]. In

Figure 3.3 we show results from an initial seeding of cells where the aspect ratio
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Figure 3.3: Strain ratio dynamics vs. aspect ratio of both strains. A 2-
strain simulation using the ABM framework from Chapter 2. Five examples of an
open-walled, 20 x 100 µm trap show dynamical effects from an initial aspect ratio
difference between the two strains. In contrast to Fig. 3.2, the aspect ratio change
was present from initiation of the simulation. Each plot shows 10 iterations of 32
randomly-seeded initial cells randomly chosen of each strain. Decreasing aspect ratio
showed marked increase of the rate of decimation of the larger strain. Y-axis of each
plot represents fraction of strain B cells.
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was fixed throughout the experiment. As can be seen from Figure 3.3, the larger the

difference in aspect ratios between the strains, the higher the probability of extinction

of the larger strain. Of the six simulations shown in Figure 3.3, the middle two

(0.5 : 1 and 0.5 : 0.9) showed either complete extinction or a significant decimation

of the smaller strain (strain ‘B’). Interestingly, in these simulations the initial strain

B fraction increased from 0.5 at the beginning of the simulation. Because the traps

are seeded with only a small number of cells (16 of each strain), the initial trap-filling

phase evidently has different dynamics than those of a close-packed, full trap, as in

Figure 3.2. We conjecture this is due to the initial establishment of columns, where

on trap filling and establishment of full expansion flow, large patches of the smaller

strain that are not centrally located will be flushed out by the cell flow. This is,

however, at least partially due to our strain fraction being computed by number of

cells and not by their volume: for the same amount of volume ejected from the trap,

a smaller aspect ratio cell will have a larger ejected cell count, which can affect the

strain fraction more strongly.

3.2.5 Aspect ratio control via cell-cell signaling

In this section, we present a simulation that demonstrated one strain signaling the

other to change aspect ratio. We model our signaling architecture after quorum-

sensing (QS) circuits that are used extensively in bacterial communication in syn-

thetic biology [168, 13, 166]. For this purpose, we extended our simulation environ-

ment described in Chapter 2 to include a diffusion solver so that we could model

production, diffusion, and reception of a QS molecule within our agent-based model.
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Figure 3.4: Aspect ratio dynamic control via cell-cell signalling. A sender-
receiver simulation experiment demonstrated dynamic aspect ratio control. Two
strains were grown in a 20 x 40 µm, two-walled microfluidic trap: The WT strain
(the “sender,” white outline) produced an HSL that diffused out of the cell, through
the trap and into the invading strain (the “receiver,” blue outline). Image “dots”
recorded cell centers (cell outline not shown) and intra-cell HSL concentration of
each strain. Upon induction, sufficient HSL signal in the invading strain activated
transcription of a protein whose expression resulted in a decreased aspect ratio in the
simulation model. Strength of the received HSL signal was indicated by amount of
blue coloring in the invading strain. (a) Simulation time point where vertical stripes
had stabilized and cell flow was vertically symmetric from the center of the trap . The
strains were well-mixed and sufficient HSL signal reached all of the invading strain
population. (b) Time point after induction. The invading strain with sufficient HSL
concentration changed its aspect ratio dynamically and began stochastic invasion of
the WT strain. On the left-hand side of the panel, mother-cell positions of the WT
strain became occupied by the invading strain. Due to the ejection of the WT strain,
HSL signal strength diminished (indicated by fading blue coloring) in the invading
strain on the trailing-edge of the invasion. (cd) Invasion continued into the rightmost
columns of WT strain. Invading cells’ HSL concentration was now diminished on the
trailing edge: the dynamic aspect ratio change was switched off for these cells due
to insufficient HSL signal to activate transcription of protein. Areas of background
color only are occupied by “receiver” strain with aspect ratio the same as WT, (cells
not shown).
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We base our model on that presented by Chen et al. in [32] (Supplementary Informa-

tion). We used a finite-element software known as Fenics to implement our diffusion

solver (see also the use of this software in Chapter 4 for further details).

As mentioned at the beginning of the present Chapter, we shall omit details of

the genetic construction of our model circuit and limit our model to that of a single

protein, whose expression is proportional to the concentration of received QS signal

from another strain (see also the sender-receiver architecture in Chapter 5 and [16]).

In our simulation, we constructed a two-strain consortia where a wild-type (WT)

strain remained at a constant aspect ratio but produced a signal that diffused to

a receiver strain (that we will call the “invading strain”) whose aspect ratio was

changed upon sufficient concentration of received signal from the WT strain. We

outline the simulation experiment in Figure 3.4.

3.3 Discussion

Our results in Figure 3.2 are perhaps not surprising. A smaller aspect ratio cell

has a higher percentage of its surface area composed of the cell poles, which are

hemispherically shaped [29]; hence, these cells are able to rotate more freely and

stochastically invade adjacent columns in a microfluidic trap experiment. However

unsurprising its mechanism, the ability to alter strain ratio in experiments is of

significant interest when one considers the difficulties of studying bacterial consortia

as outlined above (see section 3.2.3). The ability to modulate strain ratio dynamically

could allow an experimentalist, for example, to observe an initial strain ratio or strain
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width distribution and make an adjustment to one (or both) of the populations by

inducing a change in aspect ratio. As evidenced from the results of Figure 3.2 and

the images of Figure 3.1, a bacterial cell strain population in a microfluidic trap

can be readily decimated by a strain of reduced aspect ratio. Such a change in the

population balance via dynamic gene expression can facilitate synthetic control over

the composition of synthetic consortia and add to the expanding set of engineering

tools necessary for further advancements in synthetic biology [22].

We have also shown that such dynamic control can be asserted among competing

strains by illustrating a simulation experiment where one strain signaled another to

induce a change of aspect ratio, which led to the eventual extinction of that strain.

In the simulation of Figure 3.4, we also witnessed the creation of a negative-feedback

loop in which the resulting decrease in strain population directly decreased the signal

that induced the population change itself. This suggests that populations could be

self-regulating, and extends the ideas of population control by strategies that use,

for example, orthogonal quorum-sensing systems [22].

Population control should play an ever increasing role in synthetic biology con-

texts and we believe that mechanical interactions will continue to be a rich source of

experimental investigation to further its advance.
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Chapter 4

Continuum Modeling of Bacterial

Growth

4.1 Introduction

Agent-based models provide many advantages in simulations of dynamical biological

systems; however, there are also times when granular resolution of agents is simply

not necessary or desired. A principal challenge to an ABM is the computation

time required for tracking a large number of interacting agents. Although we have

presented evidence of the continued expansion of both computing power and software

for the simulation of biological systems (see Chapter 1), choosing the appropriate

model and scale of simulation is always of concern, since any increase in simulation

efficiency directly translates to the availability of extended parameter sweeps and

more realistic simulations.
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In this chapter, we present a different approach to modeling cell growth. Rather

than modeling cells as individual agents, we will treat cells as a continuum of points

using a partial differential equation (PDE). The growth model we present derives

directly from that presented by Volfson et al. [165]. In their paper, they present a

continuum approach for the growth of bacterial cells that uses modified fluid dynam-

ics equations with cell ordering governed by liquid-crystal dynamics theory. They

present experimental data and both a continuum and agent-based model to describe

emergent cell ordering in a confined, growing 2D population of bacteria. In their

continuum model, however, the dynamical equations are reduced to a 1D system

and several ad-hoc assumptions are made for further simplification. Their model

was used in subsequent publications (Boyer et al. [23], and Mather et al. [104]), but

no significant extensions to the theory were presented in these papers.

The stated purpose for their study is “to elucidate the mechanism of cell order-

ing and quantify the relationship between the dynamics of cell proliferation and the

spatial structure of the population” [165]. In their paper, Volfson et al. compare

experimental evidence of this ordering with the results of their agent-based model

(ABM) and continuum model. The principal conclusion of the paper is that “...or-

dering of cells is mediated by the expansion flow generated by cellular growth” [165].

That is, the phenomena of nematic ordering, (meaning here the 2D alignment of

rod-shaped bacteria in a microfluidic trap) is driven by the volume expansion of cell

growth. In the conclusion of [165], Volfson et al. note that nematic ordering of grow-

ing bacterial cells is in contrast to that of liquid crystals, polymers, and vibrated

granular rods, where the latter are ordered primarily by the combination of steric
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and thermodynamic effects [165].

We have found the dynamical equations presented by Volfson et al.to be very

valuable to begin a study of a continuous (PDE-based) bacterial cell growth model.

Specifically, the model introduces PDE for:

• the treatment of a 2D colony of growing bacterial cells as an expanding cell

fluid, and

• ordering dynamics based on dynamical equations of liquid crystal theory.

Although these PDE are presented by Volfson et al. (in the Supporting Information

of [165]) in full 3D generality, the equations are reduced in the main text to a one-

dimensional system that, although appropriate for the two-walled microfluidic traps

in their study, does not elucidate more complicated behaviors of cells in more general

microfluidic trap geometries.

In this chapter, we will consider the cell growth PDE model presented by Volfson

et al. with some re-derivations of the equations for use in two dimensions. We will

also perform simulations that use the full 2D system. We consider our presentation

in this chapter to be a significant extension to the model as presented in [165].

Specifically, in this chapter, we present extensions to the Volfson et al. PDE that

comprise:

1. restructuring the cell fluid equation into a Poisson’s equation PDE for the “cell

pressure,”
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2. use of the liquid crystal theory for full 2D dynamics, and

3. simulations of the 2D system using an open-source finite element solver.

We will begin by summarizing the continuum model as presented by Volfson et al. in

[165]. We will then introduce the model extensions and present 2D simulation results

of the extended model.

4.2 Mathematical model

4.2.1 Cell fluid model of Volfson et al.

4.2.1.1 Overview

Volfson et al. [165] present a continuum “cell fluid” model that is derived from a

mass conservation equation, Newton’s second law, and theory borrowed from liquid

crystal dynamics. They establish a core set of vector equations to model cell growth

and nematic ordering in a microfluidic trap. Specifically, the PDE are a model for

the spatiotemporal evolution of:

ρ: a normalized, coarse-grained cell density that represents the degree of close-

packing of cells in a microfluidic trap (with ρ ∈ [0, 1]),

Q: a tensor order parameter that measures both a local average cell angle (a

unit vector known as the director, n) and a degree of uniformity (distribution)
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of cell angles locally about this average (which we will notate q or q-scalar,

with q ∈ [0, 1]), and

v: the cell velocity measured in the laboratory frame.

The PDE are presented by Volfson et al. in [165] in a one-dimensional reduction,

which we detail in the following section.

4.2.1.2 1D dynamical equations

We now describe the 1D dynamical equations of motion and ordering as presented

by Volfson et al. in [165]. The definitions of the 1D equations’ scalar parameters and

variables are:

ρ: cell density

v: cell velocity

α: cell growth rate

q: q-scalar order parameter

B: a kinetic constant for cell ordering

p: the cell pressure, where p ∝ exp[s(ρ − ρc)], s is a scalar rate, and ρc is a

critical packing density

µ: velocity-based damping parameter
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In the 1D equations, spatial derivatives are taken with respect to the z-axis, which

in their presentation is the long axis of a two-walled, 2D microfluidic trap (i.e., the

long walls are oriented parallel to the z axis). Thus, their equations are a reduced

1D system that uses the z-axis as the single dimension.

The reduced equations are [165]:

∂tρ+ ∂z(ρv) = αρ, (4.1)

∂tq + v∂zq = B(1− q2)∂zv, (4.2)

∂t(ρv) + v∂z(ρv) = −∂zp− µρv. (4.3)

Eq. 4.1 is a continuity equation for mass with exponential growth of cell mass at

rate α (the growth rate of the cell). Eq. 4.2 is the evolution equation for the q-order

parameter (here a scalar), where B is a kinetic constant and the factor (1− q2) is a

heuristic to uphold the condition that q ≤ 1. Eq. 4.3 is the equation for momentum

balance (derived from Newton’s second law) whose right-hand side consists of a term

for the spatial derivative of the pressure, and a term for velocity-based friction force

(damping constant µ, scaled by the cell density ρ).

The equations 4.1 – 4.3 are further reduced in [165] to a set of three ordinary

differential equations (ODE) for the amplitudes of ρ, q, and the velocity gradient ∂zv,

where ρ and q are assumed spatially invariant. The equations are simulated in 1D

and compared with data from an agent-based model, with which, they claim, their

continuum model shows suitable agreement. This is the extent of the continuum

results in their paper.
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4.2.1.3 Discussion

Although Eqs. 4.1 – 4.3 have provided valuable insights into modeling the dynamics

of bacterial populations, they have certain shortcomings. Specifically:

1. The pressure p is modeled by an additional, ad hoc equation that is an expo-

nential function of the difference between the density ρ, and a critical packing

density ρc:

p ∝ exp[s(ρ− ρc)].

If the rate s is “large” (as they claim for this equation), then the pressure is

exponentially small (large) when ρ < ρc (ρ > ρc), respectively. We find that

this ad hoc equation is too simplified: it fails to capture pressure dynamics

from the equation 4.3 and results in unrealistically large pressures if ρ > ρc.

Further, a pressure gradient can (and does) exist even if cell density is spatially

uniform, and this effect cannot be captured by this equation.

2. The scaling of the order parameter q by the term ad hoc term (1 − q2) keeps

q ≤ 1, but we find this term unnecessary if the simulations include a noise

term.

In our simulations, we will show that a phenomenological noise term added to

the cell director n keeps q bounded without adding a heuristic penalty term to the

rate equation. In our model, pressure will be a fundamental variable in our PDE

formulation of continuum cell dynamics. Further, we will show that cell density is

not the primary driver of ordering dynamics in a 2D microfluidic trap. Rather, it is
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the spatial velocity gradient of cells that drives nematic ordering. Cell velocity, as

we will show, is itself driven by a pressure gradient, and we believe that modeling

pressure directly through the PDE formulation provides the necessary coupling of cell

growth, cell pressure, and cell ordering to properly explain and predict the dynamics

of bacterial cells in a microfluidic trap. We now derive our extension of the Volfson

et al. 1D model to a system of coupled 2D vector equations.

4.2.2 Re-derivation of the cell fluid model

4.2.2.1 Overview

We begin by re-deriving the equations of motion for cell growth and ordering from

first principles. For simplification, we will not consider the spatiotemporal evolution

of the cell density ρ. We justify this for the following reasons:

1. Considering transport of a spatially expanding colony of cells complicates the

equations without elucidating the complicated behavior that can occur at a

growth front [48, 49]. In particular, advecting growth fronts would require

advection of the resulting spatially discontinuous fields of density, pressure and

velocity, which is numerically challenging.

2. Ordering dynamics due to trap-filling are transient, and although cell seeding

distribution can affect initial strain ratios (see Chapter 3), experimental data

with respect to cell ordering and transport is dominated by full-trap dynamics.
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3. This simplification allows a firm foundation from which to build more compli-

cated models.

Also, as was done in Chapter 2, we will ignore inertial effects in the momentum

balance equations. This simplification is justified by the large separation of time

scales between inertial acceleration and cell growth rate, as detailed in Appendix

A.1.

4.2.2.2 Momentum balance

The following is the initial vector equation for momentum balance (the vector form

of Eq. 4.3, as presented in [165]):

∂t(ρv) + v · ∇(ρv) = −∇p− µρv. (4.4)

This equation is Newton’s second law, where the left-hand side is the total derivative

of momentum density, and the right-hand side is a sum of two force density terms:

the pressure gradient and the damping force. By zeroing the inertial terms, we

eliminate the left-hand side and then have:

∇p = −µρv. (4.5)

We recall ρ ∈ [0, 1] is a quantity reflecting the normalized density of the cell

fluid. As mentioned above, we will ignore the evolution of cell density and set

ρ = 1 throughout. This differs from the model presented by Volfson et al. [165],

where ρ evolves temporally (but is set uniform spatially). We find that a spatial

evolution of ρ would be prohibitive, and that temporal evolution is only transient and
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uninformative, as mentioned above. By setting ρ = 1, Eq. 4.5, upon rearrangement,

then becomes:

v = −µ−1∇p. (4.6)

This equation provides, upon generation of a pressure solution p, the direct compu-

tation of the resulting velocity field and will be referred to in the sequel.

4.2.2.3 Cell density continuity equation

We next consider the vector equation for Eq. 4.1, which is a continuity equation for

cell density [165]:

∂tρ+∇ · (ρv) = αρ. (4.7)

Under our assumption that cell density is spatiotemporally invariant (with ρ = 1),

this equation reduces to a “modified incompressibility condition” given by:

∇ · v = α. (4.8)

(The quotation marks above are used since this equation accounts for the exponential

growth of cell mass and is not a term for the compressibility of cells). Under an

assumption of uniform cell density, cell velocity must diverge at the growth rate since

the continuous creation of cell mass due to growth requires continuous transport of

the mass outward from every point and at a rate equal to that at which it is created.

We note that Eq. 4.8 is also presented in Mather et al. [104] and Boyer et al. [23].

With the simplification that ρ = 1, we differ from the model presented in [165] by

forcing 4.8 from the onset of all dynamics. We justify this simplification by assuming
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a “full trap” scenario and that cell growth rate is uniform spatially. In fact, by re-

introducing ρ into our equations, we can recover cell density evolution if desired, but

this does not affect the results presented here. Because we are assuming spatially

homogeneous density, temporal changes in ρ will uniformly affect dynamics, which

will only affect quantitative (rate) behavior and not qualitative behavior.

Now, under the assumptions noted, and by rearranging 4.6 and using 4.8, we

generate the key equation for cell growth with our continuum model:

∇ · ∇p = −µα, (4.9)

which is Poisson’s equation for the cell pressure. Further, if we have a solution for

the pressure p with this equation, we then readily compute the vector velocity field

using 4.6.

These equations are extremely simple to formulate; however, they lead to imme-

diate results to describe steady-state pressure and velocity fields when considering an

open-walled microfluidic trap, for example, as we will see in the results section below.

We note, importantly, that cell growth in these equations is isotropic: there is no

concept of cell angle or directed axial growth along this angle. The only requirement

with respect to growth, namely, Eq. 4.8, is that the divergence of the velocity equals

α, irrespective of the direction of v. Thus, the 2D spatial solution of this equation

will be governed primarily by the boundary conditions. However, we will see in the

next section that we can still describe the dynamics of cell ordering, which implicitly

measures the angle of a local region of cells.
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5 µm 

Figure 4.1: A small bacterial cell colony. A mesoscopic scale of cells in our model
is ≈ 10′s of cells. Unpublished image courtesy of the Bennett Lab, Rice University.

4.2.2.4 Discussion

The continuum model we present in this Chapter relies on a mesoscopic scale suitable

for a cell dynamics description that is neither too fine nor too coarse. Specifically,

we do not consider a resolution of our continuum model at the individual cell level;

rather, we consider a mesoscopic scale, which can be thought of as on the order of

10’s of cells (see Figure 4.1). Likewise, we do not zoom-out so far that we lose the

description of behavior on the scale of the geometry of the microfluidic traps used in

experiments (≈ 103−104 cells). At our intermediate, mesoscopic scale, we let growth

be isotropic while still considering the director n to evolve using Q-tensor theory, as

we will show below.

In this sense, our model is partially incomplete, as it does not address an axial
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growth direction. Yet, it models the spatiotemporal evolution of an angle order

parameter (q-scalar) and director n. We can (perhaps, in a more advanced theory)

consider anisotropic growth using a growth tensor that helps direct “anisotropic

pressure diffusion” in a favored direction. Anisotropic diffusion is a technique used

in such fields as image processing [109] and MRI analysis [116]. Although we have

considered such complexity in our model, we reserve this advanced development for

future work.

The Poisson’s equation for the pressure (Eq. 4.9) can easily be solved using readily

available PDE software. We have implemented this equation and system using the

finite-element PDE software toolkit Fenics [8, 97, 98, 99]. Results from simulations

of these equations are given in section 4.3, below. To close our system of equations,

however, we must present the third dynamical equation: that of Q-tensor dynamics

theory.

In the next section, we will give an overview of liquid crystals, and detail the

structure and use of the Q-tensor for the special case of a 2D geometry. We will then

describe the equations of “nemato-hydrodynamics” that we use with the Q-tensor

theory to describe ordering of close-packed colonies of bacterial cells in a microfluidic

trap.
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4.2.3 Liquid crystals and Q-tensor structure

4.2.3.1 Overview of liquid crystals

Q-tensor theory is used to describe what are known as liquid crystal nematogens,

which are a phase of liquid crystals typically characterized by the alignment of elon-

gated, anisotropic entities [39]. Liquid crystals are an intermediate phase of matter

(a ‘mesomorphic phase’) where order exists not in the center-of-gravity of the con-

stituents (as in a solid lattice), but rather, only in their orientation. In order for ori-

entation of an entity in a liquid crystal to be well-defined, it must have a non-isotropic

geometry, and examples include polymer molecules, organic cholesterol esthers, the

tobacco mosaic virus, and bacteria [39, 170] .

The transition from a disordered to ordered state of the liquid crystal is a phase

transition that is a function of the temperature in thermotropic liquid crystals, or

the concentration in lyotropic liquid crystals. The spatial scale of the constituents

of the liquid crystal are typically on the order of nanometers (molecular scale), and

thermal energy is a significant contributor to the motion and alignment of a liquid

crystal composed of these entities. In our study, we consider motion and alignment

of bacterial cells on the spatial scale of microns; hence, thermodynamic effects will

be ignored. This simplification is also done in the model presented by Volfson et

al. [165], although the equations are there initially presented in their full generality,

as given in Olmsted and Goldbart [117].
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4.2.3.2 Q-tensor description

The Q-tensor is a symmetric, traceless tensor by definition and is meant to capture

both an average direction and distribution of cell angles of liquid crystal nematogens

on a mesoscopic scale (mesoscopic scale is of course, context dependent). The average

direction is specified by a unit vector n, which is known as the director, and the degree

of ordering is specified by a scalar parameter that we will notate as q, or for clarity,

‘q-scalar’ (to distinguish from the tensor Q and from Q, the principal eigenvalue of

Q, as defined below).

As the notation can be confusing, we gather the conventions we use in our pre-

sentation with a short description of each variable:

1. Q: in boldface, Q refers to Q-tensor, which is a rank-two tensor in two di-

mensions in our usage. The use of boldface Q marks this variable as a tensor

without qualification, whereas in non-boldface, we qualify this variable as ‘Q-

tensor.’ Q is a symmetric, traceless tensor, which constrains its structure such

that (in two dimensions) it has only two degrees of freedom: the unit vector

director n , and the scalar order parameter q. However, the entries of Q are

not these quantities explicitly. We will show, below, how to extract these pa-

rameters given Q, and also how to construct Q from them. In both cases, the

transformations are unique.

2. Q: in plain-text font (and without qualification), Q refers to the principal eigen-

value of Q.
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3. q: lower-case and non-boldface, q is ‘q-scalar’ and we will use both terms

interchangeably. For our usage, this term represents a local degree of nematic

ordering of bacterial cells. We note that q ∈ [0, 1]: q = 0 represents an isotropic

state (complete disorder of orientation), and q = 1 represents perfect ordering

of cells (all cells point in the direction n). We will also show below that q = 2Q.

The traceless structure of the Q-tensor ensures that q = 0 in an isotropic state, as

we will also show below. Because we are studying bacterial cells growing in quasi

two-dimensional traps, we will only describe the structure of the Q-tensor in two

dimensions, although the theory is presented most generally in three dimensions

[28, 39, 117].

We note that, under the assumption that nematogens are symmetric along their

long axis (which we assume true for bacterial cells as in our ABM in Chapter 2), the

Q-tensor must be of even symmetry with respect to n [5]. That is,

Q(n, q) = Q(−n, q) ∀q ∈ [0, 1].

This in fact motivates the use of a second-rank tensor order parameter, because a

vector order parameter is insufficient to capture this required property [28].

4.2.3.3 Q-tensor definition

In two dimensions, let us consider a mesoscopic scale of bacterial cells and notate

an individual cell’s axial direction by a two-component unit vector with components

(ux, uy). We will then notate the mesoscopic average direction by n = 〈ux, uy〉. The
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component definition Qij (with i, j ∈ {x, y}) of the Q-tensor is then:

Q = Qij := 〈uiuj −
1

2
δij〉, (4.10)

where δij is the Kroneker delta with δij = 1 iff i = j and 0 otherwise, and 〈·〉

represents spatial averaging on a mesoscopic scale [165, 28, 117, 42].

Example 4.2.1. As a simple example, consider perfect ordering of cells (q = 1) in

the direction n = (1, 0). The Q-tensor is then:

Q =

1
2

0

0 −1
2

 =
q

2

1 0

0 −1

 =
q

2

cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

 , (4.11)

where we have shown in the right two equalities alternate structures of Q (see Propo-

sition 4.2.3, below), and where θn = 0 is the angle argument of n = (1, 0).

Example 4.2.2. Consider an equal distribution of director angles θn ∈ [0, π], which

represents a purely isotropic state of the director n. We compute Q-tensor using

Eq. 4.10 and set (ui, uj) = (cos(θn), sin(θn)). By even symmetry of cos(θ) across

θ = π
2
, we have 〈uxuy〉 = 〈uyux〉 = 0. Computing 〈uxux〉,

〈uxux〉 =
1

π

∫ π

0

cos2(θ)dθ =
1

π
·
(
π

2

)
=

1

2
.

Similarly, 〈uyuy〉 = 1
2
. From Eq. 4.10 the result Q= 0 folows. Thus, q = 0 in

an isotropic distribution of the director n, which represents complete disorder of

orientation.

In order to work with the tensor Q, we must specify how to generate Q given

n and q-scalar. If one were given the positions and angles of an ensemble of nemato-

gens, one could readily compute Q from 4.10 (one must also define the spatial region
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over which to average and a suitable probability measure). Similarly, one could com-

pute these quantities from a probability distribution of the cell angles in the spatial

region of interest. However, we require a means to directly assemble Q and also

extract n and q-scalar if given Q. Volfson et al. give a second definition for Q that

clarifies this construction:

Q = Qij := 2Q(ninj −
1

2
δij), (4.12)

where ni,j are the components of n and Q is the principal eigenvalue of Q [165]. We

note that, in the Volfson et al. paper (Supporting Information), they confusingly call

Q the scalar order parameter; in fact, it is one-half this quantity, as we will show

below.

Proposition 4.2.3. The following results hold:

a) Q is traceless and symmetric for all q ∈ [0, 1] and all directors n in the circle

group T.

b) Q can be diagonalized by a rotation matrix Rφ, where φ is the angle of rotation.

More precisely, ∃φ ∈ [0, π] s.t. RφQ= D, where D is a diagonal matrix.

c) The structure of Q is equivalent to: Q

cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

, where Q ∈ [0, 1
2
] is

the principal eigenvalue of Q, 2Q = q-scalar, and θ is the angle of the director n.

d) The principal eigenvector of Q is n, and the principal eigenvalue is:

Q =
√
Q2
xx +Q2

xy =
√
Q2
yy +Q2

yx

. The two eigenvalues of Q are equal and opposite.
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Proof.

a) From Eq. 4.12, we have:

trace(Q) = 2Q(n2
x + n2

y − 1).

Because n is a unit vector, trace(Q) = 0 for all q = 2Q (see item c) below). Because

nxny = nynx, Q is symmetric, and the claim follows.

b) Consider the product of a rotation matrix (with rotation angle φ) with Q, using

the structure for Q proved in c), below:

RφQ = Q

cos(φ) − sin(φ)

sin(φ) cos(φ)


cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

 .

Then , in order to have the off-diagonal entries of this matrix product be zero, we

require:

i) Q(cos(φ) sin(2θ) + sin(φ) cos(2θ)) = 0, and

ii) Q(sin(φ) cos(2θ) + cos(φ) sin(2θ)) = 0

for the upper-right and lower-left off-diagonal entries, respectively. These two con-

ditions are equivalent, and employing the double-angle identity

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y)

with ii), we reduce the requirement to:

sin(φ+ 2θ) = 0,
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which is satisfied by φ = nπ− 2θ, n = 0, 1, 2, .... We choose the smallest n such that

φ is positive, which then gives φ ∈ [0, π]. Thus, Q can be diagonalized by rotation,

as claimed.

c) From the definition of Q in 4.10, let q = 1, n = 〈ux, uy〉 = (cos(θ), sin(θ)),

where θ is the angle-direction of n, and brackets represent the same mesoscopic-scale

averaging as in the definition. Then:

Q =

 cos2(θ)− 1
2

cos(θ) sin(θ)

cos(θ) sin(θ) sin2(θ)− 1
2

 .

By using the identities:

sin(2θ) = 2 sin(θ) cos(θ),

cos(2θ) = 2 cos2(θ)− 1, and

− cos(2θ) = 2 sin2(θ)− 1,

we then have:

Q =
1

2

cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

 .

Because q-scalar was set to one, and by the definition of Q in 4.12, we see that

q = 2Q. The general case for q ∈ [0, 1] follows by linearity and the definition in

Eq. 4.12. Thus:

Q =
q

2

cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

 . (4.13)
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d) Consider the product of Q (using 4.12) and n:

Qn = 2Q

n2
x − 1

2
nxny

nxny n2
y − 1

2


nx
ny


= 2Q

n3
x − nx

2
+ nxn

2
y

n2
xny + n3

y −
ny
2


= 2Q(n2

x + n2
y −

1

2
)

nx
ny


= Q

nx
ny

 .

The last equality follows since n is a unit vector. As per the definition in Eq. 4.12,

Q is the principal eigenvalue of Q; thus, n is the principal eigenvector. Now, again

using Eq. 4.12, we have

√
Q2
xx +Q2

xy = 2Q[(n2
x −

1

2
)2 + (nxny)

2]
1
2

= 2Q[n4
x − n2

x +
1

4
+ n2

xn
2
y]

1
2

= 2Q[n2(n2
x + n2

y − 1) +
1

4
]
1
2

= Q,

where the last equality follows again since n is a unit vector. Substituting Q2
yy for

Q2
xx, we obtain the same result. Now, from a), Q is symmetric; thus, its eigenvectors
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are orthogonal. Computing the matrix-vector product Qn⊥, we have

Qn⊥ = 2Q

n2
x − 1

2
nxny

nxny n2
y − 1

2


−ny
nx


= 2Q

−n2
xny + ny

2
+ n2

xny

−nxn2
y + nxn

2
y − nx

2


= 2Q(

1

2
)

 ny

−nx


= −Q

−ny
nx

 .

The two eigenvalues of Q are then equal and opposite, as claimed.

We consider Eq. 4.13 to be an intuitive definition of Q that directly extracts both

n and q, and clearly shows the π-symmetry of the director with respect to Q, i.e.,

that Q(n, q) = Q(-n, q).

4.2.3.4 Q-Tensor nematodynamics

We now describe the dynamical equation of Q, the tensor order parameter of liquid

crystal theory, which is used to describe ordering of bacterial cell “nematogens.” The

equation of nematodynamics presented by Volfson et al. is derived from Olmsted

& Goldbart in [117]. The vector form of the reduced (neglecting thermodynamic

effects), governing equation for Q is given in component form [165] as:

∂tQij + v · ∇Qij = βκ
(s)
ij , (4.16)
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where β is a kinetic parameter, and κ(s) is the symmetric, traceless part of the

strain-rate tensor ∇v. The left-hand side of Eq. 4.16 is the total derivative of the

component Qij and the right-hand side is the forcing term that depends on the

symmetric, deviatoric spatial gradient of the cell velocity. In our model, we use the

velocity solution (computed from Poisson’s equation for the pressure, i.e., Eq. 4.6

following 4.9) for the transport velocity v on the left-hand side, and we compute

the tensor ∇v (which is then converted to a traceless, symmetric tensor) on the

right-hand side of this transport equation.

This governing equation for Q dictates that increased ordering results from the

non-isotropic part of the strain-rate tensor. We recall that a symmetric tensor (or

matrix) can be separated into an isotropic part, and a non-isotropic or deviatoric

part. The isotropic part represents uniform expansion (or contraction) in all dimen-

sions of the tensor; however, the deviatoric part represents an anisotropic shear. We

find it intuitive that an isotropic expansion of the velocity gradient tensor should

not influence ordering dynamics, since rotation of the director n of a nematogen

requires a shear-type force (i.e., a purely isotropic velocity gradient cannot rotate a

cell). Indeed, Eq. 4.16 comes from [117], which is a study of shear flow effects of

the isotropic-nematic transition of liquid crystals. Wegner et al. [170] also study the

effects of shear on elongated cylinder dynamics.

We conclude this section with a necessary and sufficient condition for a locally

spatially invariant q-scalar to increase with respect to the principal eigenvector di-

rection of the symmetric, traceless strain-rate tensor κ(s). We also claim that the

director n will rotate towards this eigenvector direction unless these two vectors are
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orthogonal or parallel.

Proposition 4.2.4. Let ∇Q = 0 in Eq. 4.16 (i.e., let Q be spatially uniform in a

local region), and let ek be the principal eigenvector of κ 6= 0. Then:

a) q-scalar increases iff the director n points within ±π
4

of ek,

b) if n · ek 6= 0 and n 6= ek, n rotates towards ek.

Proof. Recall the total derivative of Q, per Eq. 4.16, is proportional to κ(s), the

symmetric, traceless strain-rate tensor. Let an initial state of Q be Q(0), and by

assumption let Q(0) be spatially invariant. Then Eq. 4.16 becomes:

∂tQ
(0)
ij + v · 0 = βκ

(s)
ij .

From part b) of Proposition 4.2.3, we rotate our reference frame such that Q(0) is

diagonal, with a positive entry a in the (1, 1) position of the tensor. Then, without

loss of generality, the director angle in our new frame of reference is 0 by Proposition

4.2.3 c), and a = q
2
. We define Q

(0)
D to be the resulting diagonal tensor. That is,

Q
(0)
D =

a 0

0 −a

 ,

where a ≤ 1
2

is equal to one-half q-scalar at this initial time.

Now, we consider the most general form of a 2D symmetric, traceless tensor (in

our new, rotated frame of reference), and let κ be

κ =

k1 k2

k2 −k1

 = k

cos(2φ) sin(2φ)

sin(2φ) − cos(2φ)

 ,
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where the latter equality follows trivially from Proposition 4.2.3 c), k > 0, and φ is

the principal eigenvector direction of κ (i.e., φ = argθ ek). By our frame of reference

rotation (i.e., because argθ n = 0), φ represents the difference in angle between n and

the principal eigenvector direction of κ(s); thus, the proposition holds iff |φ| < π
4
.

Now, let Q
(0)
D evolve for an infinitesimal time dt under Eq. 4.16, and let the

resulting Q-tensor be

Q′ =

a′ b

b −a′

 = Q′

cos(2dθ) sin(2dθ)

sin(2dθ) − cos(2dθ)

 ,

where: dθ is the resulting angle of the director in Q′, we have used Proposition 4.2.3

c) to form the second equality, and Q′ > 0 is the resulting principal eigenvalue of Q′.

We now consider the two independent components of Q′. Under our assumption of

a spatially invariant Q
(0)
D , and for an infinitesimal time dt, Eq. 4.16 gives:

a′ − a = dt · βk1

b = dt · βk2.

Now, from part c) of Proposition 4.2.3, we have:

q ↗ ⇐⇒ Q↗ .

Let Q0 = a be the principal eigenvalue of Q
(0)
D , and Q′ =

√
(a′)2 + b2, the resulting

eigenvalue after time dt (using Proposition 4.2.3 d)). Then

q ↗ ⇐⇒ Q′ > Q ⇐⇒ (Q′)2 > Q2 ⇐⇒ (Q′)2 −Q2 > 0.
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Now, from the definition of the eigenvalue Q′, the definition of Q′, and the immedi-

ately preceding centered equalities above, we have:

(Q′)2 −Q2 = [(a′)2 + b2]− a2

= [(a+ dtβk1)
2 + (dtβk2)

2]− a2

= 2dtaβk1 +O(dt2).

Omitting terms of order dt2, and since all of dt, a, β, k > 0 by definition or assump-

tion, we have:

q ↗ ⇐⇒ k1 > 0 ⇐⇒ k cos(2φ) > 0 ⇐⇒ |φ| < π

4
.

This proves the first claim. Now, without loss of generality, and by using the same

definition for φ as above, let us assume 0 < φ < π
2
. Then, from the definition of

dθ above, n rotates towards ek iff dθ has rotated towards φ, i.e., iff dθ > 0 by our

assumption of φ. From the definition of Q′ above:

dθ > 0 ⇐⇒ 2dθ > 0 ⇐⇒ tan(2dθ) > 0 ⇐⇒ b

a′
> 0,

where we have required 2dθ to be in the first quadrant. Now, from the definitions of

a′, and b, above, we have:

b

a′
=

dtβk2
a+ dtβk1

.

By assumption, a > 0 and 0 < φ < π
2
, where the latter implies k2 > 0, by the

expression for κ, above. Because both β and dt are positive, the result follows.
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4.2.4 Discussion

This completes the derivation of our cell fluid model. We have extended the theory

presented by Volfson et al. in [165] to form a full 2D PDE model for growth and

ordering of bacterial cells in a microfluidic trap. The key extension in our model is

the formation of a Poisson’s equation PDE for the cell pressure, which, in contrast, is

an ad hoc, spatially invariant scalar equation in the 1D model presented by Volfson

et al.

In the statement of our model (and in our simulations), we have set the cell

density to unity. We argue that this does not alter the conclusions of our model,

since cell ordering is driven by the velocity gradient (per Eq. 4.16), which is negligible

until a trap is at, or near, a close-packing density. We observe that, if cells are not

in close contact, they mainly only fill available space; thus, they cannot collectively

exclude cell mass to form velocity gradients. Further, although cell ordering dynamics

are active during a trap-filling phase of a microfluidic experiment, the ordering is

transient, since cells are continuously pushed towards the open boundaries once the

trap fills. Thus, any initial defects in cell ordering, for example, will be rapidly

flushed by the volume exclusion of cell growth once the trap reaches a close-packing

density, and the resulting steady-state velocity gradient, from this time forward, will

dominate cell ordering.

We have also included in our continuum model the full vector equation for the

dynamics of Q, as presented in the Supplementary Information of [165] (a reduced

equation of that presented by Olmsted & Goldbart in [117]). In contrast to Volfson et
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al. (in their 1D model), we do not include the penalty parameter 1−q2 for the rate of

Q dynamics (a heuristic to ensure q ≤ 1). Rather, as we will see in the results of our

simulations, we introduce a phenomenological noise term to the director n that keeps

q bounded. We believe that this is more realistic physically, since it helps capture

the random cell-cell, cell-wall and cell-flow (i.e., media flow) interactions that exist

among the order of 103 − 105 cells in an actual microfluidic trap experiment. This

is, in our opinion, closer to the intent of the dynamical equation for Q as presented

in [117], since it captures stochastic interactions that, in the case of liquid crystals,

are due to thermodynamic effects.

In the next section, we will present results of the continuum model in a study

of bacterial cell growth and ordering in an open-walled microfluidic trap. We limit

our simulations to this trap geometry; however, our model (in contrast to Volfson et

al.) is generalizable to traps of other geometries with boundary configurations that

include one, two or three-walled traps, for example. Some of our conclusions will

serve to confirm results from our agent-based model (Chapter 2), while others will

extend our understanding of the spatial inhomogeneity of the rate of ordering in an

open-walled trap.
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Figure 4.2: Pressure field of the continuum model. Scalar, cell-pressure field
solution for an open-walled microfluidic trap simulation that used the continuum cell
growth model. The parabolic pressure profile in the vertical center is expected by the
theory. Aspect ratio of the trap 1:3. Boundary conditions were homogeneous Dirich-
let for pressure: p = 0 at the four trap walls. Model parameters: α = 0.03 min−1,
γ = 1, ρ = 1. A spatially variant pressure field is not possible in the reduced 1D
model presented by Volfson et al in [165].

Figure 4.3: Velocity field of the continuum model. Velocity vector field of the
continuum model for an open-walled, microfluidic trap. Boundary conditions were
homogeneous Neumann: ∇v · ~n = 0 (where ~n here refers to the outward normal of
the boundary). The velocity field was computed as: v = −µ−1∇p, where p is the
scalar pressure field from the previous figure, and µ is the velocity-based damping
parameter. Velocity direction is indicated by arrows, velocity magnitude by arrow
color. Velocity direction is straight up-down in the middle of the trap, as observed
in experiments and ABM simulations in Chapter 2. Velocity direction rotates to the
nearest open wall as one moves horizontally (center-out) in either direction.
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4.3 Results

4.3.1 Cell pressure and velocity fields

We now present results of our continuum model dynamical equations to study growth

and ordering in an open-walled microfluidic trap. We note our equations allows us to

capture the cell pressure and resulting cell velocity field in the open-walled geometry

using extremely simple assumptions:

• cell forces are a balance between cell growth expansion, and a velocity-based

friction (Eq. 4.5).

• Cell growth is isotropic, and the velocity field diverges at the cell growth rate

(Eq. 4.8).

• Boundary conditions at the edges of the trap are zero stress, p = 0, and zero

normal velocity derivative, ∇v · ~n = 0 (where ~n here is the outward normal

direction).

In Figure 4.2, we show a heat map of the cell pressure field in an open-walled trap sim-

ulation that used our continuum model (simulations were performed using the open-

source finite-element software Fenics and are visualized using Paraview). Boundary

conditions in this realization were set such that the pressure p = 0 on the boundary.

Similarly to the cell spring compression field presented in Figure 2.3 in Chapter 2,

the cell pressure result is parabolic in the middle of the trap in a vertical section.

In Figure 4.3 we show the resulting velocity field that was generated (using
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Eq. 4.6) directly from the pressure solution to the cell growth PDE, Eq. 4.9. As

observed in our ABM simulations of an open-walled trap (Chapter 2), we see verti-

cal cell flux in the middle of the trap, and lateral expansion near the left/right ends.

In the next section, we will see the implications for cell ordering of this velocity field

solution in an open-walled trap. We recall that the Q-tensor component dynamics

are directly proportional to the symmetric, traceless (i.e., non-isotropic) components

of the strain-rate tensor ∇v.

Importantly, we can directly observe areas of the velocity field in Figure 4.3

where the strain-rate is in anisotropic shear. For example, where the horizontal

and vertical centerlines of the trap meet (with the convention of positive direction

upwards), the velocity gradient appears to be upwards only (the change in velocity

moving left or right is, in contrast, vanishing). Also, we can deduce where the velocity

appears to expand (in magnitude) uniformly in both the x and y directions, which

indicates an isotropic expansion of the cell velocity. For example, as one moves

from the middle of the trap outwards along the horizontal centerline, the velocity

expansion direction transitions from an approximately purely vertical (at the trap

center) regime, to an approximately purely horizontal one (at the left-center or right-

center edge). Assuming this transition is continuous and monotonic, we expect the

existence of a single location on the horizontal centerline where the ordering rate is

zero, since the spatial velocity derivatives in the x and y directions must at some

point be equal, under these assumptions.

Therefore, we expect (based on the ordering dynamics of Eq. 4.16) that cells in

the middle and edge-regions of the trap will experience a relatively strong rate of
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ordering, due to the observed anisotropic shear of the velocity in these locations.

Likewise, we expect a region somewhere near the left and right boundaries (along

the horizontal centerline) to experience a relatively weak ordering rate

These expectations will be confirmed in the next section, where we will show

simulation results of the dynamics of q-scalar and n that used the advection/reaction

equation Eq. 4.16. We further comment on another region where we expect a high

degree of ordering, according to Eq. 4.16: at the four corners of the trap, where the

velocity field transitions sharply from vertical to horizontal (or vice-versa).

4.3.2 Q-tensor scalar order parameter and director

In this section, we will show results from the simulation of Eq. 4.16 We state here

for reference the parameters used in this equation:

• Qij: the (i, j) component of the Q-tensor; in our 2D formulation, only two

entries are independent. We computed both q-scalar and n from these entries,

according to Proposition 4.2.3.

• v: the velocity field under which Q-tensor is advecting. We used the velocity

solution from Figure 4.3. The velocity field was temporally constant in our

simulation.

• β: a kinetic parameter that scales the rate of ordering. We set β = 0.5

• κ(s)ij : the (i, j) component of the symmetric, traceless strain-rate tensor. The

strain rate was computed from the velocity solution from Figure 4.3, and was
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converted manually (in the simulation code) to the traceless, symmetric form.

Only two components of κ
(s)
ij are independent.

4.3.2.1 Simulation without noise

For our simulations, we again turned to the finite-element solver Fenics. Our initial

results for q-scalar do not include any phenomenological noise added to the system,

and we will see that this leads q-scalar to become unbounded according to Eq. 4.16.

In the following section, we will introduce a phenomenological noise to the director

angle n in our simulations, which we will see bounds q.

We initialized each of the two independent components of Q to zero, and evolved

these Qij according to 4.16. At each time step, we recorded the resulting order

parameter q-scalar (computed according to Proposition 4.2.3) from the two indepen-

dent components of Q. In Figure 4.4, we show the resulting heat map for q-scalar

after one timestep.

Because the velocity field was constant in our simulation, the forcing term for

Eq. 4.16 was also constant; thus, this initial heat map reflects the relative rate of

ordering of q-scalar (i.e., advection had not yet influenced the spatial mapping of

q-scalar) in different regions of the trap. From the horizontal centerline section in

the second panel of this figure, we see that indeed a cusp appears near the left and

right boundaries, which indicates a region where the cell ordering in fact vanishes

(referring to the left-axis scale of the figure). We expected the existence of this

point from our discussion in the previous section, where we argued that, along the
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horizontal centerline of the trap, the velocity expands in a purely vertical direction

in the center, and in a purely horizontal direction at the left and right boundaries,

and that (under continuity and monotonicity assumptions) this implies the existence

of a point of purely isotropic velocity expansion; hence, the ordering rate vanishes,

according to our model.

4.3.2.2 Simulations with noise added to the director angle n

We recall that in the 1D reduced model presented by Volfson et al. in [165], a heuristic

penalty term 1−q2 was added to the q-scalar rate equation in order to keep q ≤ 1. In

our next simulation, we will explore adding a phenomenological noise to our system,

which allows us to both capture stochastic effects in our model, and also, to avoid

use of the heuristic penalty term for Q dynamics. The results of a simulation with

an added Gaussian noise to the director angle is shown in Figure 4.6. The Gaussian

noise was mean-zero and variance ≈ π
64
rad2 (standard deviation ≈ 3 deg.), and

was added every time step to the computed angle of the director n (our time step

in simulations was fixed). In the figure, we show a heat map of the q-scalar order

parameter at a time when the dynamics had stabilized in the trap. A time series is

shown for a central patch that shows that q-scalar remained bounded and stationary.

In the heat map of Figure 4.6a, we see that the cusp regions advected slightly

towards the left and right edges, but the minimum of q-scalar in this region remained

within the bounds of the trap in steady-state. This is in contrast to the no-noise

simulation case, where the cusp was completely advected outside the boundary (not

shown). Indeed, in the case of a no-noise simulation, q-scalar will increase without
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Figure 4.4: Rate of ordering for q-scalar. Heat map and horizontal cross-section
result of the continuum model for the q-scalar order parameter in a simulation of an
open-walled microfluidic trap. a. The heat map reflects the rate of q-scalar ordering
as governed by the symmetric, traceless strain-rate tensor κ(s) in our model. A region
of low ordering rate exists near the middle centerline and close to the left/right
boundaries of the trap. A relatively high ordering rate exists at the four corners of
the trap. This is due to the large off-diagonal terms of the strain-rate tensor: at the
corners a small change in x(y) gives a large change in velocity in the y(x) directions,
respectively. b. Horizontal cross-section represented by the white line in panel a. A
cusp is evident near the left and right boundaries on the horizontal centerline and
relatively strong ordering exists in the middle and edges of the trap along this line.
The model predicts that perturbations to Q-tensor will recover slowly in the areas
of low ordering rate, and that persistent disorder will therefore result with sufficient
continuous perturbation strength. Trap aspect rato is 3:1.
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Figure 4.5: Director angle field of Q. Heat map of the continuum model for
the director field n in a simulation of an open-walled microfluidic trap. The heat
map reflects the initial spatial mapping (at the first simulation step) of the director
angle as governed by the symmetric, traceless strain-rate tensor κ(s) in our model.
Because n is π-symmetric by definition, the direction angles 0 and π are equivalent.
Singularities exist in the heat map at the transition between these two values, but
the director angle is continuous (the visualization discontinuity is an artifact of the π
symmetry of n and cannot be avoided). The model predicts that the director angle is
horizontal at the center point of the left and right edges, and vertical at the middle of
the upper and lower edges, as expected from the velocity field solution of the model
and ABM simulations in Chapter 2. A cusp appears near the left/right edges along
the horizontal centerline where the strain-rate tensor has no anisotropic shear (i.e., it
is purely isotropic). Angle convention is increasing clockwise from angle zero (= π)
oriented horizontally. Trap aspect rato is 3:1.
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bound at all regions in the trap (though at different rates, as indicated by Figure 4.4).

It is for this reason that Volfson et al. (according to their paper) added the penalty

term: to keep q ≤ 1 heuristically.

We find that the addition of a phenomenological noise term to the cell angle

helps capture the stochastic behavior — in a very simplified way — that such a large

number of interacting agents in a biological system may exhibit. We have chosen

parameters (both the variance and kinetic parameter β) ad hoc, but we believe, given

experimental data, that these parameters could be fit to the data, and provide good

agreement with the ordering dynamics in a trap.

4.4 Discussion

We have presented a continuum model for bacterial growth and ordering in microflu-

idic traps that uses equations from fluid dynamics, and the Q-tensor theory of liquid

crystals. This model is in contrast to the ABM presented in Chapter 2: We re-

laxed the modeling of cells as individual agents, and studied the resulting pressure

and velocity fields that emerge from an assumption of isotropic growth in a PDE

formulation. We briefly review our development in this Chapter:

1. Under the assumption of a non-inertial dynamics regime, we established a

Poisson’s equation PDE for the cell growth pressure, with isotropic cell growth

parameterized by the growth rate α, and a velocity damping factor µ.
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b

Figure 4.6: q-scalar order parameter and time series. Heat map and time
series from a simulation of the continuum model for the q-scalar order parameter in
an open-walled microfluidic trap with added noise to the director angle n. a. The
heat map reflects the value of q-scalar throughout the trap at a the final time point
in panel b. The region of low ordering advected slightly along the middle centerline
towards the left/right boundaries of the trap, but stabilized and was persistent. This
is in contrast to the no-noise case where the cusps were completely advected out the
side boundaries. High ordering remained persistent at the four corners of the trap
due to the sharp transition of vertical-horizontal velocities in these regions. b. Time
series of the q-scalar order parameter in a central region indicated by the magenta
patch in panel a. The spatial average of the patch is indicated by the solid line, and
quartiles by the shaded area. The simulation shows that q-scalar remained bounded
and stationary in distribution in the selected region. Similar stationarity was seen
in all regions of the trap. The simulation predicts that perturbations to Q-tensor
director n lead to stabilization of the order parameter. This result contrasts to the
model presented by Volfson et al., where a heuristic penalty term 1− q2 was added
to keep q finite. Mean-zero Gaussian noise of standard deviation ≈ 3 deg. was added
to the director angle n at each time step. Other simulation parameters were as in
the previous figures.
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2. We solved the PDE for the cell pressure using Eq. 4.9:

∇ · ∇p = −µα,

and using boundary conditions that depend on the trap geometry (where we

have considered an open-walled microfluidic trap). We then computed the

resulting vector velocity field using Eq. 4.6:

v = −µ−1∇p

3. We then computed the strain-rate tensor ∇v and converted it to a symmetric,

traceless tensor κ(s) to serve as the forcing function for our advection/reaction

equation for Q-tensor:

∂tQij + v · ∇Qij = βκ
(s)
ij ,

4. With the velocity field fixed, we then advected/reacted the Q-tensor compo-

nents (with mean-zero Gaussian noise to the director angle) according to the

above equation and recorded the results for the q-scalar order parameter and

director n.

Our choice to use an open-walled microfluidic trap for our simulations is based

on our experience with this geometry from experimental data. However, our model

is general, and we claim it can be used with any number of walls in a trap, as well as

possibly non-rectangular traps. The extensibility of our model relies on its simplicity:

We solve a well-known PDE under simple assumptions of cell growth, damping forces

and boundary conditions.
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Our theory and simulations lead us to a deeper understanding of the mechanisms

of ordering and persistent disorder of bacterial cell nematogens in a microfluidic trap.

We see that ordering dynamics can be directly inferred from the velocity solution of

the model, and that a phenomenological noise is an essential ingredient to capture

the bounded order and persistent disorder in the simulation. We believe that adding

a phenomenological noise to our simulations is essential to capture the dynamics

accurately. In ABM simulations we saw a persistent disorder of cell alignment near

the left/right (in our convention) boundaries of the trap as well as a strong vertical

ordering in the middle region of the trap. The disorder we observed would not

be captured by the model presented by Volfson et al., since the heuristic penalty

term 1 − q2 would only keep q-scalar bounded uniformly in the trap, and not show

regions where disorder should persist. We believe this is a significant extension to

the understanding of the dynamics of ordering in an open-walled microfluidic trap.

Whereas Volfson et al. presented a 1D model to describe the mechanism for order-

ing of cells in a two-walled microfluidic trap, we have presented a more general system

of PDE that captures both the mechanism of ordering, and the persistent existence of

disorder in an open-walled microfluidic trap. We conclude that the boundary condi-

tions of the cell growth pressure play a significant role in the mechanism of ordering.

In our model, the pressure field drives the velocity field and the resulting velocity

gradient, whose anisotropic shear then drives cell ordering, according to Eq. 4.16.
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Chapter 5

A Model for Protein Expression

Modulated by Mechanical

Constraint

5.1 Motivation and experimental evidence

In synthetic biology modeling, the creation of predictive mathematical models as-

sists in testing and optimizing various experimental designs before making the time-

consuming (and often, costly) efforts of performing experiments. Models are often

the result of enhancements or extensions to other models: We have, for example,

presented an extension to a continuum cell model in Chapter 4. Other models are

created anew in an attempt to explain observed phenomena, and based on the ac-

curacy and precision of these models, they can be used predictively to help design
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experiments and further the scientific investigation at hand.

In this chapter, we will present a de novo bacterial protein expression model

that modulates a protein production rate by mechanical constraint. This model

attempts to explain anomalous experimental data examined from a collaboration

with the Bennett Lab at Rice University. The experimental data are fluorescent-

channel images of bacterial cells in microfluidic traps. The experiments were designed

to measure bacterial cell fluorescent protein (FP) expression in response to various

measured concentrations of an inducing protein known (generally) as a homoserine

lactone, or HSL [17], that was present in the cell media. The cells were genetically

modified to respond to HSL protein concentration by producing a fluorescent protein

marker that could be measured using standard fluorescent microscopy techniques

[45, 32] . Experiments were performed using a gradation of HSL concentrations in

the media with the intent of generating a calibration curve that mapped the measured

FP signal to the inducing concentration of HSL.

To clarify the setup for this experiment, we consider an analogy: Imagine a set of

identically manufactured temperature sensors that emit light with an intensity that

depends on the temperature. In order for the sensors to be used to measure temper-

ature in experiments, their light intensity output must be calibrated by measuring

their output under known temperature conditions. After acquiring a sufficient set of

(temperature, intensity) points, a model is constructed to fit the measured intensi-

ties to the calibration temperatures, and one generates what is called a calibration

curve. Assuming similar conditions and operation of the sensors, one uses them

“in the field” by measuring their light intensity in unknown temperature conditions,

92



reading from the calibration curve, and inferring the temperature data point. Such a

procedure is ubiquitous (and necessary) in a wide range of scientific instrumentation.

Problems can easily arise in a calibration procedure, and the following are exam-

ples of concern in a general calibration setting:

1. The instrument or technique used to establish the known measurement value

(e.g., temperature, concentration, etc...) must itself be in calibration, i.e., it

must be sufficiently accurate and precise.

2. The environment of the sensors during calibration should be uniform under

the calibration value. For example, in a temperature bath, there should be no

“hot spots” or other temperature gradients: all devices should be uniformly

exposed to the calibration data point.

3. The device(s) used to measure the output of the sensors must also be considered

for accuracy, and as a source of noise. Both random and systematic errors can

occur in the measurement device(s).

4. A distribution of outputs from the sensors under (assumed) accurate and uni-

form conditions is expected. This is true both across sensors and across time in

any single sensor device. Depending on the application, one calibration curve

may be made for use in all sensors, or each device may be calibrated indepen-

dently. The distribution of sensor outputs is usually taken into account in this

decision.

With respect to the last point above, it is important when performing a calibration
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procedure to have an expectation of the distribution of measured values. Measure-

ments with significant deviations from expectations should be noted and investigated

for sources of error or as anomalous (and potentially interesting) data. However, this

is not possible without establishing the expectations before the calibration per se.

In this Chapter, we will investigate experimental calibration data whose measure-

ments were bacterial cell FP expression, and whose calibration values were inducing

HSL concentrations in the bacterial media. The expectation from this data is that

FP expression should increase with increasing HSL concentration.

Both visually and quantitatively, these experiments showed increasing mean-field

FP expression of the bacterial strain “devices” under study in response to increasing

HSL concentration in the media. However, all calibration experiments also exhibited

significant spatiotemporal variation in FP expression, such that the measured signal

was up to 2x larger than an “expected” signal, as determined by sampling an early

frame of cells from the experiment. The appearance of spatial variation in the FP

expression is anomalous since cells were assumed to be in temporally constant and

spatially homogeneous conditions of HSL inducer.

We conjecture that the anomalous data from these images contain information

whose patterns cannot be attributed to experimental noise, systematic error, or in-

trinsic or extrinsic noise, within the context of biological variation. We aim to show

that this signal can be well modeled by a pressure-induced increase of protein produc-

tion rate. We are not aware of any published paper that observed the phenomena we

shall present, nor any that introduces a model for an increase of protein expression

under mechanical constraint.
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As inspiration for this model, we quote from [64]:

Patterns are observations of any kind showing nonrandom structure and there-

fore containing information on the mechanisms from which they emerge.

5.2 Experimental data

5.2.1 Overview

Calibration experiments were performed where FP response was measured in a bac-

terial strain that we shall call the “receiver-strain.” The architecture of the ge-

netic signaling circuit is shown in Figure 5.1, where in the calibration experiments

a sender-strain was replaced by a constant C4HSL concentration (we omit details of

this circuit and refer the reader to [32] for a similar architecture). Experiments with

various concentrations of HSL were made with the intent of generating a calibration

mapping from measured FP to received HSL in the receiver cells. Calibration runs

were performed under concentrations of: 0, 1, 1.5, 2, 3, and 5 µM C4HSL.

5.2.2 Example 2 µM calibration experiment

An example calibration experiment (2µM) is shown in Figures 5.2 – 5.5. Figure

5.2 shows a typical observed spatial variation of FP expression under constant (and

assumed uniform) HSL in the media. The following were typical of all calibration

experiments, and were exemplified in the 2µM experiment of Figures 5.2 – 5.5:
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Figure 5.1: Sender-Receiver cell signaling. Example genetic circuit that uses
HSL signaling between strains. In calibration experiments, the sender-strain was re-
placed by a measured HSL concentration in the aqueous growth media. The receiver
strain responds to the local concentration of HSL, which is a diffusible molecule
through the cell membrane. The HSL binds with a transcription factor, and the
complex activates the promoter that drives FP expression (in the receiver strain, the
FP is Cyan Fluorescent Protein). Details of a similar circuit can be found in [32].
Figure courtesy of R.Alnahhas, Rice University.

50 µm 

Figure 5.2: FP Expression under constant HSL. Image data showing FP re-
sponse from a 2 µM C4HSL receiver-cell calibration experiment in a narrow extended
trap (8-8-17, frame 33/161). Spatial heterogeneity was typical of all microfluidic trap
experiments that were observed. Sharp spatial gradients in measured FP response
occured across and around regions of occluded cell flow. The spatial variation of
FP expression in this image is anomalous: the cells were assumed to be under a
uniform concentration of inducing HSL. Unpublished image courtesy of the Bennett
Lab, Rice University.
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Figure 5.3: Early-frame CFP Image and Histogram. Image frame showing
CFP response from the same experiment as in Figure 5.2. A histogram is shown
(left image) from a small patch (yellow outline, right image) in an early frame from
the experiment. Mean CFP expression in this area correlates with specific regions
later in the experiment (see Figure 5.4). Before the trap filled, cells in small colonies
did not show sharp spatial variation in expression of FP. Unpublished image courtesy
of the Bennett Lab, Rice University.

5.2.2.1 Cell occlusions inhibit cell flow

Cell occlusions often appeared near a boundary of the trap. Cell exponential growth

and division resulted in volume-exclusion cell flow that was inhibited by these occlu-

sions and cells had to exit the trap by flowing around them. These formed canonical

(inverted) “U-shapes” outlined by a sharp FP expression gradient that appeared

across the occlusions. Occlusions appear to be the result of “sticky” cells, larger

than average cell size, and/or a multi-layering of cells that resulted in increased

cell-trap friction at these locations.
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Figure 5.4: CFP response underneath an occlusion. Image frame showing CFP
response from the same experiment as in Figures 5.2, 5.3. A histogram (left image)
of CFP is shown in a small patch (yellow outline, right image) of the trap where
cells were underneath an occlusion of cell flow. CFP histograms in these regions
correlate with those of the early-experiment frames, as can be compared here with the
histogram of Figure 5.3, which shows approximately the same mean CFP expression.
This correlation was typical across all occlusions within all calibration experiments
analyzed. Unpublished image courtesy of the Bennett Lab, Rice University.

5.2.2.2 Spatiotemporally heterogeneous FP expression

The cell blockages outlined above were easily visible because cell FP expression out-

side of a cell occlusion was grossly higher than that of cells underneath an occlusion

(by underneath we mean on the trap-boundary side of the occlusion, whether the

boundary is “up” or “down” in an image). The heterogeneous expression cannot be

explained by optical effects since it is independent of any fixed location in the trap.

This large variation in FP expression under assumed uniform HSL is a significant

anomaly that appeared in all calibration experiments.
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Figure 5.5: CFP response outside of an occlusion. Image frame showing CFP
response from the same experiment as in Figures 5.2-5.4. A histogram (left image)
of CFP is shown in a small patch (yellow outline, right image) of the trap where
cells were outside of an occlusion of cell flow. CFP expression in these regions were
sharply higher than areas underneath occlusions. These large, spatiotemporally vari-
ant CFP gradients were typical across all calibration and sender-receiver experiments
analyzed. Unpublished image courtesy of the Bennett Lab, Rice University.

5.2.2.3 Spatiotemporal correlations of FP expression

Importantly, mean FP measurements taken underneath an occlusion consistently

matched those taken at an early time-point of the same experiment, when cells had

not yet filled the entire trap, and only small isolated colonies had formed from seed

cells. Figure 5.3 shows such an early time-point (2µM, frame 6/161) FP image,

where a histogram is shown of an early seed colony, well before the trap filled.

Figure 5.4 shows a histogram of cells in an underneath area of an occlusion later

in the same experiment. Mean FP expression in this boxed region matches closely

that of the early-time frame (see histogram data in left parts of the images). This

matching was typical across all calibration experiments and all occlusions therein.

See Figure 5.5 for a comparison of FP expression outside of an occlusion, where mean

expression was ≈ 2x higher. This scale factor was also typical across all occlusions
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in all calibration experiments. We form a conjecture as to a possible cause of the

observed over-expression later in this chapter.

5.2.2.4 Asymmetric cell expansion flow

Cell flow often runs top-to-bottom or bottom-to-top in various, apparently random

regions of the trap. Our agent-based cell and trap modeling predicts that cells should

exit the trap symmetrically, in a vertical striping pattern, in what we often call some

variant of: “symmetric quasi-mother machines.” When watching time-series of the

experimental images, cell flow could also be seen to change rapidly from one direction

to another within the same region, and at a time-scale much faster than the growth

rate of the cells. This spatiotemporal variation is, decidedly, not an expected result

of any cell-growth or trap model that we have formed to date, and we conjecture

that this variation is due to asymmetries in fluid pressure, and other hydrodynamic

effects of media flow.

In Figure 5.2 cell flow is a mixture of top-bottom and bottom-top flows. Cells

typically exited the trap in regions where FP appeared “funneled” at the boundary

of the trap. In the right-most regions of the narrow-extended trap (not shown in the

figures, but at the “bowtie”), cell flow could also often be seen funneled out the right-

hand side from up to ≈ 250µm away, which implies the existence of a large pressure

differential. The unidirectional cell flow was also seen to govern a repeatable, spatially

variant FP expression, where cell FP becomes brighter as cells moved toward their

exit boundary. We shall show that this spatial gradient of expression is consistent

with a conjectured cause of FP expression gradients, and with the application of a
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uniform velocity field that drives the cells to exit the trap unidirectionally with the

field.

5.2.3 A second experiment

We now discuss analysis from a separate experiment: a three-strain (X-Y-Z) cascade

that cycles an inducing signal in the media, which cycles on-off the X strain and

subsequently, the entire X-Y-Z, three-strain circuit (we omit details of the experi-

ment). Using the data of this experiment (file name: 161208-xyz-cascade-daw001),

we originally attempted to fit a response curve of each strain with a simple protein

production model.

However, after analyzing data from the calibration and sender-receiver experi-

ments outlined above, we recalled that the XYZ experiment also showed significant

and interesting spatial variation of FP under an assumption of uniform inducing sig-

nal (IPTG in the inducing molecule in this case, which de-represses the X strain, the

first in the circuit, thus activating the cascade), which is a similar situation to that

of the calibration experiments (where the inducer is a constant HSL). However, for a

significant part of the XYZ experiment, and in more than one spatial region, the cells

did not show the anomalies outlined in sections 5.2.2.1 and 5.2.2.4 (cell occlusions

and asymmetric flow, respectively). Rather, cells in the X strain sustained expansion

growth in “symmetric quasi-mother machines” that we expected from our simulation

modeling of open-walled traps. An example image (frame 321/419) of the X-strain

yellow fluorescent protein (YFP) channel is shown in Figure 5.6, which comes from
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the left side of the trap.

This experiment gave us a valuable opportunity to study the anomalous pro-

tein expression in a different environment, and further, to validate the behavior of

our model under different behaviors from the experiments. Importantly, the genetic

circuit construction (plasmids), the experimental methods, and the measurement

devices closely matched (or were identical to) those of the calibration experiments;

hence, we were able to analyze additional experimental data under comparable ex-

perimental conditions.

5.2.4 Spatial heterogeneity of the FP expression

From Figure 5.6 we can see a clear spatial distribution of YFP that is brightest

in the middle-region and tapers vertically to the horizontal boundaries of the trap.

On taking a time and space average over several image frames of a cycle from this

experiment, we can see that the spatial distribution is “bell-shaped” in nature. Figure

5.7 shows a plot of an average of a sequence of images from the experiment, where

a rectangular region similar to the image shown in Figure 5.6 was divided into 30

horizontal slices, each of which was averaged for YFP for each frame (thus forming an

numeric array of length 30 for each image frame, and the entries run top-to-bottom

as the average of each horizontal slice). The rectangular region selected for this plot

includes regions outside of the trap; thus, the sharp edges are visible (which decay to

“black” and are low numbers numerically), and the trap proper is in the middle of the

plot. This average is over 5 sequential frames of one of the cycles in the experiment
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10 µm 

Figure 5.6: Example XYZ cascade experiment frame A high-resolution images
is shown of the YFP channel, which is the X strain marker (the same promoter
for production of C14HSL) under de-inhibition of the lac promoter by the inducing
IPTG in the media. A spatial gradient is clearly visible, where YFP is brighter in
the middle of the trap and tapers vertically to the boundaries. Noticeably absent in
this image is the appearance of cell occlusions and asymmetric cell flow. Cell flow
for this strain in this experiment was primarily middle-out in a “symmetric mother-
machine” structure. This symmetry isolates spatial variation, on average, to the
vertical dimension. Also clearly visible is discrete cell-to-cell and lineage-to-lineage
expression variation, which belies any conjecture that the average variation is due to
optical effects. We analyzed the one-dimensional spatial variation by taking space
and time averages (over one cycle of IPTG induction in the experiment) in Figure
5.8. Unpublished image courtesy of the Bennett Lab, Rice University.
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Figure 5.7: Example space and time average of the XYZ cascade experiment
during an IPTG cycle. A plot of mean YFP expression from horizontal slices of
an image segment similar to that of Figure 5.6. Each data point in the plot represents
the spatial average of one of 30 horizontal slices in a fixed, rectangular image frame
area that was further averaged over 5 sequential frames (image frames were taken 6
minutes apart; thus, this is a 30-minute average of YFP in each sliced spatial area).
The 30 data points are numbered from top-to-bottom in the image, and the image
segment selected includes regions outside the boundary of the trap (which appear
dark as in Figure 5.6). The middle slices (approx. slices 7-25) show an average
YFP expression that appears “bell-shaped” in distribution. YFP image data at the
boundary of the trap is slightly brighter due to an optical change resulting from edge
effects, which results in a curling-up of expression at the boundary. YFP then decays
to noise levels as the top and bottom segment slices are well outside the trapping
area of the cells as in Figure 5.6.
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(frames 315:319) in the YFP channel (strain X). The “bell-shaped” nature to the

expression of YFP in the trap is clearly visible. Edge effects lead to a brightness of

FP and curling-up of measured value near the trap boundaries.

We claim that this spatial distribution is not due to optical effects, since on

close inspection of the images, the variation is clearly seen as a discrete, fine-grained

variation from cell-to-cell, and not as a coarser, region-to-region variation. However,

on average, the cells show a distribution of FP that peaks in the middle region of the

trap, and appears as a normal distribution as the distribution tapers to the edges.

We conjecture (in a following section) that the brightness distribution is due to

increased protein expression that is caused by a stochastic event-chain that leads to

an increase of protein production machinery. By protein production machinery, we

mean anything that increases the production rate of FP (for example, increased tran-

scription rates, increased plasmid copy number, decreased transcription/translation

inhibition,...). We believe that the observed gradient of expression seen in Figures

5.6, 5.7 is due to an increase in protein production and not to a decrease in growth

rate or degradation. The evidence to support this claim is presented in Figure 5.8.

In Figure 5.8 we show two plots of a single cycle of the XYZ experiment, where we

outlined (not shown) a region near the inside-edge of the trap (blue color in Figure

5.8), and a second region centered in the middle of the trap (orange color). The

time points are spatial averages over the rectangles selected for each image in the

sequence (frames 311:360 are shown, which was one of six cycles of inducing IPTG

being switched on/off, which switched on/off the X strain, shown in its YFP reporter

channel). In the left image of the figure, we show each time series separately in its
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Figure 5.8: Example XYZ cascade experiment time-series Two data plots are
shown of the same time-series of one IPTG cycle of the XYZ cascade experiment.
The left plot shows the time-series displayed in its original relative scale, where the
blue trace is a spatial average of a rectangular area just inside the boundary of the
trap, and the orange trace is a central rectangular region of similar size. The left
plot clearly shows that as cells responded to the step change of IPTG, production
rate of protein of cells in the middle of the trap was, on average, sharply higher
than that of cells closer to the trap boundary (this is indicated by the higher initial
dYFP/dt in the orange trace). The right plot shows the same time-series but now
normalized to the peak expression of each trace in the cycle. This plot clearly shows
that the normalized rates of expression (and subsequent decay) are nearly identical
for cells in the two regions. This data is strong evidence to support the theory that
spatial differences in expression stem from differences in protein production rate
(as indicated by the difference in slope in the left figure) rather than differences in
dilution/degradation rate (which would show a difference in the decay time constant
in the right figure).
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original relative scale (in arbitrary units of stacked YFP pixel data), whereas in the

right image we show the two curves normalized to the peak point of the cycle. These

two plots show strong evidence that the difference in expression in these two regions

of the trap (the middle area and an outer area) is due to a production rate difference

and not a dilution or degradation rate difference for the following reasons: in the

left figure the initial slopes are different (which suggests different production rates

when YFP concentration is small), and in the right figure the time-constants appear

identical (the two curves approach their peak values, and decay to their final values

at the same rate when normalized to the peak value). If dilution or degradation were

to be all or part of the observed difference in expression, we would expect the time

constant to be different in the two expression curves since these parameters govern

its value. The right part of the figure shows this not to be the case. Further, if

production rates were not different in the two regions, then the initial slopes in the

left part of the figure would be the same initially, which also is clearly not seen to be

the case.

Later in the document, we explore the causal relationship between observed spa-

tiotemporal cell dynamics, and resulting cell FP expression. We conjecture this is due

to a growth constraint that cells experience that is amplified by the sub-cell diameter

height of the microfluidic device of these experiments (a low 0.9 µm gap exists in

the “narrow-extended trap” from these experiments, where a bacterial cell diameter

is ≈ 1 µm). We suggest that, by some probabilistic event (or perhaps some chain

of events), the production rate of protein markedly increases in the middle region of

the trap (in the XYZ experiment), and that protein production relaxes as the cells
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move toward the exiting boundary (after several division cycle time periods).

This theory is consistent with the observed, anomalous FP expression behavior

that occurs in the previous experiments shown. For example, when cells are rapidly

expanding (initially in the experiment as the trap fills), rapidly changing direction

(due to the sudden appearance of an occlusion), or exhibiting top-bottom (or bottom-

top) cell flow that also may involve an occlusion near the exiting boundary. Although

we realize this is only a conjecture, and that verifying the hypotheses may be chal-

lenging, we emphasize that the observed behavior suggests an experimentally repro-

ducible increase of protein expression via an apparent mechano-biosensory response

of the cells. We suggest in the concluding section of this chapter that, if this behavior

could be verified and captured, it could represent a compelling contribution—as a

mechano-sensory module—to the synthetic biology toolkit.

5.3 Mathematical model

5.3.1 Protein expression

We begin by setting-up a simple ordinary differential equation (ODE) to model

the cellular concentration of a protein vs. time (the protein here is non-specific).

We use as a model the following common production/degradation ODE for protein

expression P :

Ṗ = α− βP, (5.1)
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where α is the production rate, β is the dilution rate, and over-dot signifies derivative

with respect to time. This is a simple first-order model with no spatial component,

time-delays, stochastic component, or scaling of alpha with respect to any other

cell parameter (for example, growth pressure). We assume that dilution dominates

degradation of protein in this case; thus, β is equal to the growth rate of the cell.

We will study more general models, which will include modulation of growth rate

and active degradation of protein, below. The steady-state solution is:

Ṗ = 0 =⇒ P =
α

β
. (5.2)

The steady-state solution for this first-order system is the ratio of production rate

to dilution rate. It is easy to calculate also the time evolution of P :

P (t) =
α

β
(1− eβt). (5.3)

5.3.2 Pressure-modulated production rate

To extend this model and to explain observed experimental protein expression vari-

ation (as mentioned above), we now incorporate a spatial pressure field under the

conjecture that increased growth constraint on a cell will trigger an increase in pro-

tein production rate. From previous studies of cells in an open-walled microfluidic

trap (see Chapter 2), we set the pressure field to be a quadratic function of position:

p(y) = 1− y2, (5.4)

where p is the pressure, and where y is the vertical direction, which represents the

dimension of interest — in 2D microfluidic traps — when cells tend to align in vertical
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columns (see, for example, Fig. 2.3 in Chapter 2). We normalize the peak pressure

to 1 in the middle of the trap. We set the middle position of the trap to y = 0, and

the absorbing boundaries (for cells) at y = ±1 (top of the trap is y = 0). Boundary

conditions for the pressure field are Dirichlet with zero stress; thus, the pressure field

is continuous at the horizontal boundaries (p = 0) in this model.

We model the pressure effect on protein production by scaling the production

rate α using a Hill function on the pressure [137]. We define the Hill function as a

function of p:

H(p) =
pn

pn +Kn
, (5.5)

where K is the pressure such that H(K) = 1/2, and n is the Hill exponent. We note

that the Hill function in our model is implicitly a function of y by using Eq. 5.4.

We now define a modulated protein production rate:

α̂ = α[1 + aH(p)], (5.6)

where a is a scaling parameter that models the intensity of the protein production

rate increase (modulated by the pressure field via the Hill function, above). This first

model extension is meant to represent a simple, spatially-mapped, and time-invariant

link between pressure and protein production that, for simplicity, does not include

stochastic effects, growth-rate modulation, or spatial transport of the cells. We can

again solve for the steady-state and time evolution of protein expression levels as in

Eqs. 5.2, 5.7, but now as a function of the spatial dimension y, by using Eqs. 5.4, 5.5

and by simply substituting Eq. 5.6 for α in Eqs. 5.2, 5.7. These two equations for
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the pressure-modulated protein dynamics are thus:

P (t) =
α̂

β
(1− eβt), and Ṗ = 0 =⇒ P =

α̂

β
(5.7)

with α̂ given by Eq. 5.6.

5.3.3 Spatial transport

Because we are modeling cells that grow in idealized columns (in a quasi-mother

machine fashion), cells will grow, divide, and be transported vertically from the

center of the trap towards the open boundaries (see Chapter.2). Thus, as cells travel

along their paths towards the trap exit, they experience different pressure profiles

under the assumption of our quadratic pressure model. We now include in the model

the advection of cells toward the open boundaries to account for cells integrating

protein expression under a spatially varying production rate via the spatial pressure

field model given above. To incorporate cell advection, we replace the left-hand side

of Eq. 5.1 with the total derivative,

D/Dt = ∂t + (v · ∇),

to obtain the spatially-advecting protein PDE. Thus, on inclusion of advection and

the pressure-modulated production rate α̂, Eq. 5.1 becomes:

∂tP + v · ∇P = α̂− βP. (5.8)

Now, our model from Chapter 2 (see also [165]) showed that we can set v = βy,

the 1D velocity solution for exponential-growth of expanding cells with exponential
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growth rate β (the same value as the dilution rate in this case). This will greatly

simplify the solution to this equation. In 1D, we have ∇P = ∂yP , which then gives:

∂tP + βy · ∂yP = α̂− βP. (5.9)

We solve for the time-invariant spatial solution by setting ∂tP = 0. After re-

arrangement, Eq. 5.9 becomes:

∂y(yP ) =
α̂

β
, (5.10)

To solve for the 1D steady-state solution, we assume each cell “point” is derived from

a mother-cell at y = 0 (the center of the trap’s vertical column). Thus, we can solve

Eq. 5.10 by integrating the right-hand side from 0 to y, which gives (for steady-state

protein expression):

P (y) =

1
y

∫ y
0
α̂(x)dx

β
. (5.11)

By incorporating cell mass transport into our pressure-modulated protein pro-

duction model, we generated a closed-form solution for the time-invariant protein

expression, as a function of the 1D spatial dimension y. This solution informs us to

use an average value of α̂ over its course of travel from the center of the trap (y = 0)

to the position of interest y, and to divide this value by the dilution rate β. Thus,

this solution is identical in form to that presented in Eq. 5.2, with the numerator re-

placed by the spatial average (along the path of cell transport) of protein production

rate (at each point on the path).

This equation is easily solvable numerically, and (more importantly) it is easy

to see thequalitative behavior of the steady-state protein expression as we vary n or

K, for example. For instance, in the limit for n large, the Hill function becomes
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a step function at p = K = 1 − ŷ2, where ŷ is the value of y at which the step

function transitions 0 → 1. It is a simple matter to compute the average value of

H(y) depending on how far we are past the value of ŷ =
√

1−K for which p = K

(solved using Eq. 5.4) :

H̄(y) =


1, if 0 ≤ y 6

√
1−K

√
1−K
y

, if
√

1−K ≤ y 6 1

(5.12)

Then P (y) = P (H̄(y)) upon substitution of Eq. 5.12 into Eq. 5.6, and upon using

Eq. 5.11.

5.3.4 Degradation added to model

We now add to our model a more complicated framework that includes a possible

separate rate of protein degradation. That is, we now assume that protein is degraded

in addition to being diluted, and we introduce the term βdeg to represent this active

degradation of protein. By including this new term, we update Eq. 5.9 to:

∂tP + βy · ∂yP = α̂− (β + βdeg)P. (5.13)

For notational simplicity, we introduce the term δ to represent the ratio of degrada-

tion to dilution:

δ :=
βdeg
β
.

This ratio thus represents the relative strength of active protein degradation to di-

lution alone (thus δ = 0 is the case of vanishing degradation vs. dilution). We again
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solve for the steady-state solution (Ṗ = 0) using an integrating factor, which gives:

∂y(y
δ+1P ) =

α̂

β
· yδ. (5.14)

Again integrating both sides with respect to the spatial variable from the center of

the trap to the position y of interest, we write the solution in the form:

P (y) =

1
yδ+1

∫ y
0
xδα̂(x)dx

β
. (5.15)

Note in the case δ = 0, we recover Eq. 5.11.

5.4 Results

In Figure 5.9, plots of the steady-state solution of Eq. 5.16 are shown for two different

cases: one for symmetric mother-machine expansion flow, and another with an added

velocity flow-field on the cells such that the cells at the bottom of the trap (position

y = 1) have zero net velocity, and all other cells move bottom-to-top. In the latter

case, we alter the cell velocity field in Eq. 5.9 from βy to β(y−1) (with the convention

that cells flow in the negative y direction). This leads to the steady-state solution

under unidirectional flow as a function of y ∈ [−1, 1] as:

P (y) =

1
1−y

∫ y
1
α̂(x)dx

β
. (5.16)

The latter case is observed frequently in the experimental data we have analyzed

(i.e., this is not an isolated case). Importantly, in this case of unidirectional cell flow

in our model, the analytical solution recovers the experimentally observed rounding

of steady-state protein expression that occurs before the upper trap boundary. We
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Figure 5.9: Steady-state protein expression with and without flow fields.
Left sub-plot: normalized steady-state protein expression with no external velocity
field and symmetric mother-machine expansion flow (trap center: y = 0). Right sub-
plot: normalized steady-state protein expression with a bottom-to-top flow field such
that the bottom of the trap cell has lab-frame velocity v = 0, and all other cells have
net lab-frame velocity bottom-to-top (positive direction convention is downwards,
and trap center is 0 in both plots). The pressure field p in both cases is p = 1− y2,
where y is the vertical trap position and y = 1 is the bottom of the trap. Quadratic
pressure field represents growth inhibition to cells in a one-dimensional, back-to-back
alignment of cells as developed in Chapter 2. Different values for the K value of the
Hill function are shown (K is the value of pressure for which the Hill function is
one-half its peak value). In the symmetric flow case, different K values show little
change in steady-state protein expression. In the asymmetric flow case, peak value
scales inversely with K. The decrease of expression near the upper trap boundary
(position y = −1.0) in the right sub-plot is observed in the experimental data with
the anomalous, non-symmetric cell flow in the open-walled trap (see Figure 5.10). In
both plots, α = 1, a = 2, n = 2, δ = 0.
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Figure 5.10: Anomalous protein expression gradient with unidirectional cell
flow. Experimental image and time-average fluorescent protein (FP) expression for
a bottom-to-top cell flow anomaly. Left sub-plot: high-resolution FP experimental
image for a sender-receiver experiment. Right sub-plot: spatiotemporal average
taken over horizontal slices as in Figure 5.7. Curvature in the expression at the top
trap position matches the model prediction from Eq. 5.11 with the addition of a
uniform velocity field, as seen in Figure 5.9. The unidirectional cell flow anomaly
and protein expression profile shown were ubiquitous in experiments. Unpublished
image courtesy of the Bennett Lab, Rice University.
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believe that this gives substantial strength to this model as an explanation of the

data and we comment further on this in the discussion.

5.5 Discussion and conclusions

In this chapter, we have presented a model that attempts to explain anomalous

data from experiments. Our model comprises a counterintuitive increased protein

production rate under increased mechanical constraint of bacterial cells growing in

open-walled microfluidic traps. We have analyzed a significant volume of experimen-

tal data (available from an experimental lab collaboration with Rice University) and

have observed, repeatedly, evidently reproducible patterns of anomalous spatiotem-

poral fluorescent protein (FP) expression under conditions where uniform expression

is expected. We believe our model provides strong evidence for the hypothesis that

the anomalous FP expression stems directly from an increased rate of production of

protein, and we suggest that further experiments should be designed to test the con-

jecture that this increased rate follows from a mechanical constraint response from

the cells.

5.5.1 Bacterial stress response

That bacterial systems can alter their protein expression under conditions of stress is

well-studied. Environmental perturbations to bacteria that inhibit growth are known

to lead to pronounced changes in gene expression [157]. Response pathways can be
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induced by growth-inhibiting stresses that include nutritional deprivation, damage to

DNA, temperature change and antibiotic exposure, all of which have mechanisms to

increase genetic variability through, for example, up-regulation of error-prone DNA

polymerases or down-regulation of error-correcting enzymes [56]. For example, a

bacterial response pathway known as the “SOS response” is a DNA damage repair

network that allows bacteria to withstand toxic DNA damage [110]. Induction of

the SOS response can result in cell filamentation, increased levels of mutagenesis, or

DNA rearrangements (see [6] and the references therein) .

We presented in this chapter a mathematical model of a conjecture as to the cause

of anomalous experimental data. In the experiments we have analyzed, bacterial cells

showed significant spatiotemporal variations of protein expression: we find that this

is consistent with a “stress” response due to mechanical constraint, as detailed in

our model.

Our model, however, is an oversimplification of the cell dynamics: We have

omitted stochastic effects, shifts of symmetric center, distributions of transcrip-

tion/translation delays, asymmetric protein/plasmid partitioning, and discretization

of protein/plasmid copy number, for example. These should contribute to spatial

smoothing of the response curves (when averaged over an ensemble), but the overall

character of the solutions should remain the same.
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5.5.2 Synthetic biology context

We find the suggestion that the reproducible, anomalous protein expression we have

observed could be controlled to be intriguing. If indeed a mechanical inhibition is

triggering an increase in protein production rate, one could envision experiments

where the mechanical environment is varied so as to induce this response; hence,

this could provide a front-end mechano-biosenory module that could be connected

to other components of a cellular or consortial synthetic circuit. For example, as the

result of the ≈ 2X increase in protein expression observed in Figure 5.5, a synthetic

circuit could be tuned such that this level of expression is sufficient to throw a switch

(for example, through an AND-gate topology), and then serve as an input to another

part of the genetic or consortial network. This type of connection would then provide

bacterial cells with the ability to sense their mechanical environment and produce

actionable output. We believe this ability has the potential to vastly expand the

toolkits available in synthetic biology.

5.5.3 Conclusions

We assert that the anomalous experimental data we have studied has signal and it

is not noise. Further extensions of this model could couple, for example, growth

rate variations to mechanical constraint or intra-cell metabolic cost coupled to the

pressure field. The parameter δ (the ratio of protein degradation to that of dilution)

could have biological significance if, for example, an increased production rate is

accompanied by an increased degradation rate. Our model could perhaps be partially
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verified (experimentally) by introducing an increased protein degradation rate [63]

to see any change of character in the steady-state behavior, and to compare this

behavior to that predicted by the model. Our understanding of this phenomena is

incomplete; however, we present a quasi-framework from which to study this problem

and suggest that further experimental investigations should be designed to further

uncover the nature of the anomalies.
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Chapter 6

Conclusions

Cellular systems rely on the physical separation of intracellular and extracellular

environments, yet cells often exist in close mechanical contact, which gives form

and function to cellular organization at several levels of description. Bacterial cells

in nature, for example, organize into close-contact communities known as biofilms,

a mode of growth that enhances survival in hostile environments, and that allows

them to colonize new environments [70]. The prevalence of bacterial biofilms lies in

the advantage that bacteria gain from their communal self-organization, and some

experiments show that mechanical properties are a key factor in their degree of resis-

tance and protection [43]. The organization, extent, and complexity of mechanical

interactions of bacterial systems is largely unknown; however, even at the initiation

of biofilm formation, bacteria require mechanical contact with the surface on which

the biofilm community is formed [118].
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That bacterial communities rely on mechanical interactions in natural environ-

ments should be an inspiration for their study in the context of synthetic biology.

Indeed, synthetic biology concerns — among many different approaches — the engi-

neering of synthetic circuits designed as simplified testing grounds to help discover

how similarly structured natural networks function [113]. In this dissertation, we

present models for mechanical interactions of bacteria in the experimental environ-

ment of microfluidic traps. We believe that mechanical effects are a rich area of

exploration in the context of synthetic biology, and that research should continue to

uncover more of their function in biological systems.

In Chapter 2 of this dissertation, we presented an agent-based model (ABM) of

a bacterial cell that measures mechanical growth inhibition directly in the model.

Our model relies on a mass-spring construction of a cell, whose growth is induced

by extending the spring’s rest-length; hence, we assert a cell’s tendency to grow and

not its growth via direct overlap at a predetermined growth rate. This allows us to

capture a cell’s resistance to growth in the complex interaction environment typical

of bacterial cells in close-packed environments and is in contrast to most published

bacterial cell models where cells grow not only irrespectively of their mechanical

environment, but also without even measuring it.

In Chapter 3 we presented how a bacterial cell can be conferred a fitness advantage

by dynamically changing a purely mechanical property: its aspect ratio. According

to our simulation model results, a smaller aspect ratio cell in a columnar structure

in a microfluidic trap will have a higher rotational mobility, which will lead to an

increased, stochastic, lateral invasion tendency that can eject a neighboring strain
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from a mother-cell position (and thus eject it from the column). Continuous assertion

of the smaller aspect ratio can lead to a radical change in strain ratio in a consortia

of cells in a microfluidic trap experiment. This assertion can be induced via cell-cell

signaling and can be designed in a negative feedback-loop: one strain can signal

another to decrease aspect ratio, which leads to ejection of the signaling strain and a

concomitant decrease in signal strength. In this case we see how a purely mechanical

property can significantly affect population dynamics in these experiments.

In contrast to the discrete-element nature of the ABM presented in Chapter 2

(and used in Chapter 3), we presented in Chapter 4 a continuum model for cell

growth that relies on a mesoscopic scale for cells: a scale that is larger than that

of an individual cell, but small enough to capture the dynamics of cells grown in

close-packing in a microfluidic trap experiment. Our continuum model gives us the

advantage of reduced computational complexity while still capturing pressure and

velocity fields using a Poisson’s equation PDE formulation, and capturing ordering

dynamics using modified dynamics equations of liquid-crystal theory.

Compared to the ABM, we do not need to track on the order of 103 − 104 in-

dividual cells (which significantly reduces the computational load); however, within

this model it is challenging to attach, for example, cellular concentrations, since each

such scalar field must be advected with the cell flow. Thus, a limitation of our con-

tinuum model is that it is difficult to model the stochastic nature and variability of

individual cells that are common in biological systems [164]. However, we are able to

capture mesoscopic-scale effects. In particular, we demonstrated that experimentally

observed cell ordering and persistent disorder can be predicted from our model.
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In Chapter 5 we presented a model based on a conjecture that mechanical con-

straint can induce an unexpected increase in protein production rate. We formed

our conjecture from observations of anomalous experimental fluorescent protein (FP)

image data from an array of experiments. In each of the experiments, an increase of

protein expression is observed. However, in one particular experiment, we were able

to identify that protein production rate was being increased, rather than a decrease in

the protein dilution rate. This is in contrast to our presentation in Chapter 2 (Figure

2.4) where we speculated on how an increase in cell division time could lead to an

increase in protein expression. We argued in Chapter 5 that the protein expression

anomaly should be investigated further, since it presents a potential opportunity to

capture a mechanical biosensor as a modular element in the synthetic biology toolkit.

In conclusion, we emphasize that the vast complexity of nature stems — at least

partially — from a hierarchical organization of components and layers, and from the

bio-molecular interactions between them [30]. Among the interactions, mechanical

effects are perhaps least understood; however, the prevalence of cell-cell contacts in

nature should invite us to study them deeply, and carefully. Advances in synthetic

biology, we believe, will be the result of novel strategies and combinations of tech-

niques from the variety of disciplines of which the field is comprised. We hope to

further the study of form, function, complexity, and organization of cells in nature

by furthering the study of mechanical interactions of cells in synthetic biology.
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Appendix A

Agent based model simulation

framework

In this appendix, we state assumptions and details of the agent based model (ABM)

simulation framework discussed in Chapter 2.

The material for this chapter stems from previously published content by Winkle

et al., in the journal Physical Biology [171].

A.1 Non-inertial dynamics assumption

The non-inertial dynamics assumption is satisfied in a regime defined by the value of

a a fast-scale time constant ξ, which we define with respect to the inertial dynamics

equations of motion for an isolated cell in our model. We begin with the assumption
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that the expansion force on a cell is constant. In our model, this translates to a fixed

compression R − ` of our expansion spring. The validity of this assumption for our

simulations is validated by the scale difference between ξ and the discretization time

step dt (during which we assume expansion force is constant). We will see that dt is

much larger than ξ.

Referring to Eq. (2.1) in Section 2.2, we set F exp := 2(R − `) as the constant

expansion force. Assuming the mass, m, is constant, the inertial equation of motion

for an expanding cell in our model is then:

῭=
F exp

m
− γ

m
˙̀. (A.1)

We define ξ := m
γ

as our fast-scale time constant. Solving this equation with initial

velocity ˙̀(0) at time t = 0, we obtain the expansion velocity solution,

˙̀(t) = (1− e−
t
ξ ) · F

exp

γ
+ e−

t
ξ · ˙̀(0). (A.2)

Thus, for times t under which our constant force assumption holds, the cell expansion

velocity is a convex combination of its terminal velocity and initial condition. We

can now compute an explicit equation for the acceleration of the cell by taking the

time derivative of (A.2):

῭(t) =
d

dt
˙̀(t) = e−

t
ξ (
F exp

m
− γ

m
˙̀(0)) (A.3)

Thus, at t = 0, the acceleration is inertial and decays exponentially. From equation

(A.2), we thus see that non-inertial dynamics holds to the extent that F exp can

be assumed constant over a time interval t of interest, such that (conservatively)

t ≥ 10ξ (the exponential decays to < 10−4 in this time). If we take the mass of a
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cell as mcell = 10−15 kg and a fluid damping parameter γ = 10−8 kg/sec, we have

ξ = 10−7 sec, or 0.1µ sec. Our computer simulations use a time discretization on

the order of dt = 0.001 min = 0.06 sec. We then have dt/ξ > 105.

Thus, during a simulation time interval dt (under which we assume spring rest

length and cell mass are constant), our non-inertial dynamics assumption holds.

Indeed, assuming the given cell mass and fluid damping values, non-inertial dynamics

holds whenever system forces and masses can be assumed constant over time intervals

of µsec or greater.

A.2 Time discretization requirements

Under the non-inertial dynamics assumption (see Section A.1) , expansion velocity

is proportional to expansion force. In order to prevent overshoot of the expansion

velocity for an isolated cell in our simulations, we must observe an upper bound for

our discretization time step dt. To see this, we require that ˙̀ < a. That is, the

achieved expansion speed of a cell (starting from rest) should be less than the cell

growth rate a. In the RHS of equation (2.2), we set t = dt to perform a forward

Euler integration of the rest length (thus = adt). We set `(0) = 0 and conclude:

˙̀ < a =⇒ 2k

γ
adt < a =⇒ dt <

γ

2k
= τ (A.4)

Thus, dt < τ is a necessary condition in our discretization to prevent expansion speed

overshoot from rest. Importantly, this directly links the lower range of γ (for fixed

k) to computation time: increased computation time is the result of a smaller dt,
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which is required by a smaller γ. Thus, simulations that explore smaller values of τ

(equivalently, smaller values of γ for fixed k) will engender higher computational cost

under the model described in this paper. However, a more sophisticated, nonlinear

control scheme to regulate expansion velocity could be implemented to mitigate

this restriction. Here we retained a simple open-loop growth algorithm to validate

agreement between theory and our simulation environment, leaving the development

of more advanced control algorithms for future work.

A.3 Coupled mass-spring matrix equations

The following analytical framework governs our cell model in a “mother machine”

geometry and serves as a basis for verifying our simulation implementation. We now

derive the equations of motion for a 1D line of bacterial cells using our model’s mass-

spring system. In this derivation, we also include the possibility of spring damping,

which is a cell-frame dashpot damping added to the expansion spring of our model.

We analyze the impact of this damping on the resulting dynamics, and note that

Expansion-Overlap-Relaxation model behavior can be obtained via a certain limit.

A.3.1 3-cell mother-machine

We assume a 1D line of 3 cells in a mother machine configuration (see Section 2.3)

where cells are in contact pole-to-pole and are constrained to motion in the axial

direction only. Since each cell is composed of two axially-independent halves, the
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mother machine configuration will identify positions of the contacting cell halves of

adjacent cells. The mother cell’s trap-walled half will not move in this configuration,

thus the equations of motion are determined for the identified positions of each

successive cell-cell contact (i = 1, 2) and lastly for the free-end cell half (i = 3),

where i is the index number for the equations given below.

We assume a spring constant k, fluid damping parameter γf , and introduce a

spring damping parameter γs. The matrix-vector equations for an example 3-cell

mother-machine system are generated by a stiffness matrix K and damping matrix

Γ, which are second-difference matrices that follow from force-balance analysis [151]

of the 1D line of masses and springs that represent a back-to-back line of cells in a

mother machine using our model. We find

K =


2 −1 0

−1 2 −1

0 −1 1

 , and Γ =


2γs + γf −γs 0

−γs 2γs + γf −γs

0 −γs γs + γf

 . (A.5)

We let the vector x represent the positions of the cell-ends, where xi is the identified

position of each successive cell-cell contact (i = 1, 2), and x3 is the position of the

free-end cell half, with x = 0 their initial positions. The equations of motion for the

coupled system from Newton’s 2nd Law are:

mẍ = −kKx− Γẋ + k


0

0

1

 at (A.6)

where a is the cell growth rate. Cell 1 is the mother cell and cell 3 the open-end

cell in the mother machine. Internal force cancellation of adjacent cell halves results
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in the RHS of the above equation having a forcing term only for the outermost cell

half of the open-end cell. Expansion forces are then realized through coupling in the

stiffness matrix K. Assuming non-inertial dynamics (see Section A.1) and that Γ is

invertible, (A.6) becomes:

ẋ = −kΓ−1Kx + kΓ−1


0

0

1

 at (A.7)

Now, assuming the matrix product Γ−1K is diagonalizable with eigenvector matrix

Q, we have the equivalent system of equations in the eigen-basis (using the vector

variable y in this basis):

ẏ = −kQ−1(Γ−1K)Qy + kQ−1Γ−1


0

0

1

 at (A.8)

If we set b := kQ−1Γ−1


0

0

1

, with diagonal eigenvalue matrix D, the diagonalized

matrix-vector equation becomes:

ẏ = −kDy + bat (A.9)

The solution to the diagonalized system now follows as for the single-cell case given

by Eq.(2.4) in Section (2.2). For i ∈ {1, 2, 3}, we set τi := 1
kDii

, and have:

∂t(e
t
τi yi) = e

t
τ biat (A.10)
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Assuming each yi(0) = 0, we then have the diagonalized solutions:

yi = τibia(t− τi + τie
− t
τi ) (A.11)

ẏi = τibia(1− e−
t
τi ) (A.12)

We then convert the solution back to the standard basis using x = Qy and ẋ =

Qẏ. We thus have that the motion of each cell in the mother machine is a linear

combination of eigen-modes of the matrix product Γ−1K. We now explore the effects

of the spring damping on the equations of motion.

A.3.2 No spring damping

With no spring damping, the Γ matrix is diagonal and we can replace it with a scalar

parameter γ. Q,D are then the eigenvector, eigenvalue matrices of K, and we set:

τi :=
γ

kDii

, bi :=
kQ−1i3
γ

(A.13)

The solution is then given by (A.11 - A.12). We find that the steady-state solutions to

spring compression follow a quadratic profile vs. cell position in the mother machine.

This is readily derived without the matrix equations by analyzing the the force

balance necessary to achieve linear growth in cell-end speeds towards the open end of

the mother machine. If we assume each cell expands (in the cell’s frame of reference)

at a constant speed v, then each successive cell-end will move (in the laboratory

frame of reference) at i ·v, where i ∈ 1..N and N is the number of cells in the mother

machine, and i = 1 is the mother cell. Since the end-cell half of cell N is independent

and we are under non-inertial dynamics, this end-cell half must apply a force of γNv
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to achieve speed Nv in the laboratory frame. Each cell expands with symmetric force,

thus cell end (N − 1), which moves at (N − 1)v must have (by algebraic addition of

forces from adjacent cell halves): γCN−1v − γNv = γ(N − 1)v, where CN−1 is the

unknown scale factor for the pentultimate cell. Clearly, CN−1 = N + (N − 1).

Continuing in this manner towards the mother cell, we see that the successive cell

force differences lead to a quadratic expression for cell compression vs. cell position.

An example plot of the steady-state cell compression for N = 10 cells is shown in

Figure(A.1), where the quadratic profile is evident.

A.3.3 Large spring damping

With spring damping much larger than fluid damping, we then have for the damping

matrix:

Γ = γs


2 −1 0

−1 2 −1

0 −1 1

 , (A.14)

We note in this case that Γ = γsK. Importantly, increasing spring damping relative

to fluid damping leads to uniform dynamics of all cells in the mother machine.

However, to maintain responsiveness, the spring constant k must scale with spring

damping. For example, in the isolated cell case, spring damping and fluid damping

reference frames are the same, and the damping parameters add such that γ = γf+γs

to define τ in Eq. (2.4). Thus, to maintain the same first-order dynamics, k must

scale with the resulting additive γ such that τ = γ
k

remains constant. We find

that, in the limit of k, γs → ∞, while γs
k

= constant we recover the behavior of the
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Figure A.1: Normalized steady-state cell compression for N = 10 cells in a mother-
machine. The quadratic profile is predicted by the analytical solution.

.

EOR model described in Section 2.2, where cells achieve growth rates uniformly.

We believe inclusion of γs and a higher value of k than used in our simulations

(see Section A.6) would more accurately model biological cell growth (resulting in

faster transient behavior and more uniform dynamics). Our model thus serves as an

incomplete realization of the biology, while serving as a generalization of an EOR

model that includes mechanical constraint measurement.
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A.4 Simulation details

A.4.1 Chipmunk 2D simulation environment

We use the open-source physics engine Chipmunk 2D (see [3]) to define cell objects

and traps to simulate interactions and dynamics of cell consortia. The use of this

engine by gro (see [79]) was the original inspiration for its use in our model. We

detail in this section our simulation loop algorithm and the relevant components

from Chipmunk 2D.

A simulation step consists of the following. The 2D physics engine is assumed

to have just completed a time-step. An un-ordered list structure of cell objects is

then traversed to determine if a cell should divide or be removed from the simulation

(sub-routines would either add a new daughter cell or remove the cell from the list,

respectively; see subsection below for the cell division algorithm). Each remaining

cell’s physics model is then updated as follows:

1. The current cell length ` is computed by subtracting the positions of the cell

ends, which are obtained by querying the respective components from the 2D

physics engine. The current spring compression is then computed by subtract-

ing the cell length from the spring rest length.

2. As a function of the current spring compression, a growth rate is selected for

the following time step (the growth rate may also be constant, i.e., independent

of compression, or in general, it may be set algorithmically by the user). The

growth rate is then asserted in the discrete-time simulation by an increase of
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the spring rest length, with increment dR := a · dt, where a is the current

growth rate and dt is the discrete time step. Thus, R← R + dR.

3. The cell expansion force is computed as F exp = k(R − `) and this is set for

each cell half independently.

4. The 2D physics engine is stepped. This consists of 3 principal parts within the

Chipmunk 2D software:

(a) The current timestep velocity vi is forward-integrated to determine new

positions for all objects i in the space. Namely, each cell end is extended by

vi ·dt, where vi is computed at the end of the previous physics engine time

step (or otherwise altered by the user in steps 1-3 above). In general, cells

will not overlap each other as the result of a position integration. Rather,

objects in contact will move together with velocities that were resolved in

the previous time step (in part C below) by the physics engine via collision

dynamics.

(b) The force programmed in item (3) above is used to determine new inter-

action velocities for all objects in the space. The cell halves’ velocities in

the non-inertial regime are computed directly by v̂ = Fexp

γ
. (The previ-

ous velocity of the objects is set to zero in the non-inertial regime). In

general this velocity v̂ will not actually be achieved by the cell halves.

The impulse solver in part C will adjust velocities and positions based on

collision dynamics of objects in the space.

(c) The 2D physics engine’s impulse solver iterates over the space to resolve
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competing object velocities when two objects are in direct contact. The

impulse solver adds impulses to each object and the resulting actual veloci-

ties of cell halves are computed and will be used in the following timestep’s

position integration.

We note that collision dynamics is chosen to model cell-cell interactions simply

because this is how interaction dynamics are modeled in Chipmunk 2D. In Chip-

munk 2D, two cells that are in contact will initiate a “collision arbitration” (which

is a bit of a misnomer in our case since the objects are not ballistically colliding, but

are, typically, only in boundary surface contact). Each pairwise contact, however, is

resolved as an inelastic collision in the Chipmunk 2D code. Although inelastic colli-

sions are inconsistent with non-inertial dynamics, we concluded that it is a reasonable

implementation and, in fact, would be very time-consuming to modify.

A.4.2 Cell division algorithm

A cell divides when it reaches a volume of approximately ` = 4.5 microns. Upon

division, a ratio r is randomly chosen from a uniform distribution in [0.4,0.6], and

daughter cell A is assigned initial length r · `, while daughter cell B is assigned

initial length (1 − r) · `. Any contents of the mother cell, if explicitly modeled, are

divided beteween the two daughter cells according to the same ratio r. To ensure

continuity of expansion force across cell divisions, each daughter cell inherits the

parent’s spring compression. Since cells in our model are constructed in two halves,

we assert continuity of cell expansion velocity by assigning to daughter cells A and B
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a center-of-mass velocity equal to the corresponding cell-half velocity of the parent

(both in the lab frame). Thus each daughter cell moves apart from the other as the

two halves of the parent did before division. This is necessary since, at the time cell

divisions are created, cells in the model have not yet integrated positions based on

their current cell halves’ velocities, as resolved by the Chipmunk impulse solver (see

item (4) in the previous subsection).

A.5 Ratchet algorithm for cell back-filling

The ratchet algorithm is used to mitigate on-axis cell compression, which we realize

may not be clearly differentiated from use of the term spring compression in our cell

model and writeup. To add clarification, by cell compression we refer to the actual

potential shortening of cell length `, which may occur if neighboring cells exert an on-

axis compressive force that is larger than the cell’s current growth (spring expansion)

force in a time step. This would result in a compression of the cell length since the

two cell-halves are axially independent in this case. The ratchet algorithm prevents

excessive cell compression. By back-filling with a symmetric contact surface after

incremental growth steps (i.e. ratchets, which are counted by the integer n, below),

we limit possible compression to a small amount, which is a programmable parameter

that is adjustable by the user (we set it to 0.1 micron). We found this was much

simpler and more robust than implementing a nonlinear spring, although the results

would be similar. The idea is that a cell should not be compressed to a length

much smaller than a previously established length. We note that spring compression
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is a key component of our cell model (specifically, it is our measure of mechanical

constraint), and does not (normally) reflect a cell becoming smaller in length (i.e.,

cell compression). Our cell model’s spring compression will increase when a cell is

prevented from growing via mechanical interactions as developed in Sections 2.2 and

2.3 in our manuscript. Such increase can (and normally does) occur even when the

cell is continuously expanding.

Thus, to ensure that axial compression is accounted for in our model, we employ

an algorithm to back-fill contact area to each cell half, such that contraction of a

cell is limited to a compression gap and ratchet step, which we now detail. Each

cell half is constructed as in Figure 2.1 with a rectangular center and attached

“frontside pole” that defines the frontal contact area of a cell. In addition, however

(and not shown in Figure 2.1), there is a “backside pole” that is attached to a

ratchet-extended rectangular area, which is designed to keep the backside pole just

inside the frontside pole of the other half. Usually, this backside pole contact surface

is transparent to collision dynamics of a cell, since it lies inside the outer contact

hull of the cell. However, in case a cell becomes subject to constricting axial forces

(from other cells or trap walls) larger than cell expansion forces, the two halves

will contract, but only until the backside poles of each half align with the frontside

poles of the other, at which time the cell acts as a rigid body not subject to further

compression.

As a cell expands, this backside contact area must be extended to limit the amount

of compression before the poles are aligned from the two halves (thus forming the

rigid body). We employ a ratchet algorithm to achieve this extension, such that the
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backside pole is extended once the cell length passes a ratchet step rs. The algorithm

is summarized as follows:

Data: current cell length `; current ratchet count n; ratchet step rs; ratchet
gap rg;

Result: on next ratchet: back-filled cell contact area to `− rg;
Initialize each cell on birth with backside pole rg away from frontside pole of
other half and set n = 0;

For every cell in every time step:
if (` > (n+ 1)rs + rg) then

back-fill cell pole contact area to `− rg for each cell half;
n← n+ 1;

else
continue;

end

A.6 Table of parameter values

PARAMETER SIMULATION VALUE SCALE PHYSICAL VALUE

dt 0.001 min 1 0.06 sec

m 1× 10−10 1× 10−5 kg 1× 10−15 kg

γ 60 min−1 1× 10−5 kg 1× 10−5 kg sec−1

k 3600 min−2 1× 10−5 kg 1× 10−5 kg sec−2

ξ := mγ−1 1.7× 10−12 min 1 1× 10−10 sec

2τ := γk−1 0.017 min 1 1 sec

Simulation values are computed by dividing the physical value by the scale for each

parameter and converting units appropriately. We used mass m of a bacterial cell

as given in [2], and dimensionless mass units in our simulations. The scale value for
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mass is chosen to normalize k and γ to 1.0 in SI units. Our physical value for k is a

computationally realizable estimate to model turgor pressure. We chose γ such that

2τ = 1 sec. In Figure 2.1, panels (b),(c), we also used a value of 10γ for compar-

ison of the cell dynamics. Both k and γ simulation values use dimensionless mass

units. Two time constants are shown for reference: ξ defines a scale for non-inertial

dynamics as in A.1, and τ defines the first-order growth dynamics of our cell model,

as derived in 2.2.3. We note that γ overestimates a physical value, but it is chosen

as a convenient value for computational purposes (see A.2).
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Appendix B

Diffusion Signalling Model

In this appendix, we discuss the signaling model details used in Chapter 3 to effect

dynamic aspect ratio control. We describe a diffusion model for QS-HSL in an ABM

simulation of bacterial cells in an open-walled micro-fluidic device.

B.1 Mathematical model

B.1.1 HSL ODE

We use as a model (see [32], supplementary material) the following ODE for Hi, the

HSL concentration inside our bacterial cell:

d

dt
Hi = φR−Dc(Hi −He)− dcHi, (B.1)
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where φ is the production rate of HSL from its synthase concentration R (if an HSL

diffusing into/out of the cell is not synthesized in the cell, this rate is 0), Dc is the

diffusion rate across the cell membrane to/from the extracellular fluid, and dc is the

active degradation rate of HSL inside the cell. Dilution of HSL inside of the cell is

implicit with growth and division in the ABM and thus is not present here (if the

dilution rate � degradation, this term will be zero).

We discretize the diffusion of HSL across the cell membrane in time. We use

the cell center and the center of each pole as the points of spatial diffusion of the

cell to/from the surrounding fluid. This simplification is justified by the extremely

fast diffusion of HSL in the media, as compared to the growth rate of the cell.

Spatial discretization of the diffusion grid will require rounding the diffusion center

locations to the nearest grid point, thus (x, y)→ (i, j), where the latter is the nearest

grid location by some metric (slight abuse of notation for i – as a subscript for the

concentration it represents internal, not a spatial index). We use an implicit time

discretization, notating the intra-cell HSL concentration at the previous time step

n− 1 to be Hn−1
i and the to-be computed concentration at the current time step n

as Hn
i . The per-cell discretized equation is then (using time-step dt):

Hn
i −Hn−1

i = dt[φR−Dc(H
n
i −Hn

e )− dcHn
i ]. (B.2)

The discretized equation for the external HSL concentration at the grid point (i, j)

is:

Hn
e −Hn−1

e = dt[Dc(H
n
i −Hn

e )]. (B.3)
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This is a coupled system of equations for Hn
i , H

n
e . We rearrange:

[1 + dt(Dc + dc)]H
n
i − [dtDc]H

n
e = Hn−1

i + dtφR,

[−dtDc]H
n
i + [1 + dtDc]H

n
e = Hn−1

e .

(B.4)

This 2x2 system can be solved easily, with each time-step only updating the RHS.

Thus the matrix can be factored once for fast computation each time step (assuming

dt,Dc, dc constant).

B.1.2 Time-stepping algorithm

The diffusion model will be coupled into the ABM simulations, which also time-step

a 2D physics engine that updates positions, angles, velocities, etc.. of cells. There

will be an independent “grid layer” of HSL diffusion for each HSL molecule diffused.

We assume for simplicity that the HSLs diffuse independently and do not otherwise

interact. The high-level algorithm for the time-stepping of the ABM simulations is:

1. We assume the 2D physics engine and diffusion grid(s) have been stepped from

the previous time iteration. We read and update the cell positions, lengths,

etc..., and for each cell we extract the local external concentration of HSL at

the cell center. This value will be linearly interpolated if the cell-center does

not align on a diffusion grid point. We scale the concentration read by the

updated length of the cell (normalized to volume units) to obtain the average

external concentration of HSL for the entire cell.
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2. Non-diffusion protein ODE’s are updated according to their respective govern-

ing equations for each cell (using the previous time-step for HSL concentra-

tions). For example, the HSL synthase concentration R is updated according

to its ODE. This sets all values for the RHS of Eq. B.4 to be solved for the

current time step.

3. Eq. B.4 is solved, and the resulting local external HSL concentration is re-

scaled to a diffusion grid point and written to the grid. The internal HSL

concentration and all other protein concentrations are saved per cell in the

ABM model (including possibly into queue data structures for delay equations).

4. The diffusion grid is time-stepped using an implicit solver. Depending on the

target processor for the simulation, diffusion stepping will be performed in

parallel for each HSL grid and the 2D physics engine for optimal efficiency. We

then loop-back to the first step and continue.

B.1.3 Calculation for an explicit scheme

We rule out using an explicit (forward) Euler scheme for time-discretization as it

would place a burden on the minimum time-step needed for our spatial resolution.

We calculate the space-step resolution for an expected diffusion coefficient D and

time step dt by the requirement for explicit-Euler:

D
dt

∆x2
< 1/2. (B.5)

We use an est. value for D (see [32], SI) as D = 3e4µm2/min and a usual lower-

bound time step for 2D physics of dt = 0.001 min. This sets a spatial resolution of
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∆x >
√

2Ddt = 7.7µm, which is too coarse. Likewise, to reach a spatial resolution

of 1/2 µm would require dt < 0.125/D = 4.2e-6 min, which is prohibitively small (a

factor of 1/200 compared to dt=0.001). Thus, we use an implicit scheme.

B.2 Numerical simulations

We implement the implicit scheme for diffusion in the PDE solver software Fenics

in order to take advantage of its integrated sparse linear-algebra solver backends

and of its visualization tools (2D scalar fields are easily written to file for display in

Paraview software). We use a spatial resolution of 1/2 µm (recalling the extremely

fast diffusion rate compared to cell growth rate) given a bacterial cell width of 1µm.

An example trap size of 40µm x 160µm would then lead to approx. 80x320=25600

nodes (easily manageable for a sparse system).
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forti, Eulàlia De Nadal, Francesc Posas, and Ricard Solé. A Synthetic Multi-
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