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Abstract

Learning in the brain is thought to be accomplished by changes in the connectivity

between cells. There is evidence for regulation of the strength of existing synapses, as

well as growth and pruning of synaptic contacts. One common learning rule, deemed

Hebbian synaptic plasticity, declares that a synaptic connection between two cells will

become stronger if the two cells are repeatedly co-activated. The back-propagating

action potential, bAP, is thought to convey the necessary feedback to the synapses

required for this coincidence detection.

We study the behavior of bAPs by initiating them from the soma, while measuring

the degree of activation from many points on the dendrites, using the fluorescent

calcium indicator, OGB-1. As expected, we see a wave of calcium fluorescence that

extends deep into the dendrites. The amplitudes of the bAP-associated calcium

transients exhibit several behaviors which reflect its dependence on the bAP. The

calcium transients decrease in amplitude with distance from the soma, and on the

dendrites, they also show a decrease in amplitude with successive spikes in a train.

Furthermore, it is responsive to the transient K+ channel blocker, Ba2+. We also

see amplification of the bAP evoked calcium signal, which is restricted to the distal

dendrites, in response to pairing with presynaptic stimulation. This is consistent with

extending the distance of propagation of the bAP.

To analyze these data, I have developed two new strategies for time series anal-

ysis of the fluorescent response to a train of action potentials. Furthermore, I have
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implemented a method for functional data analysis that works for data defined on a

branched domain. The end result of this analysis is a smooth functional representa-

tion of the degree of activation for all parts of the cell within the field of view of the

microscope.

In another experiment, we examine the abstract neuron model called the clusteron,

which learns to recognize specific input patterns by structural rearrangement of its

synapses. We demonstrate that the model can also learn sequences of input patterns,

and perform an exclusive-or operation: two tasks not typically solvable by single

neuron models.
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Chapter 1

Introduction

Neuroscience embodies many of the great mysteries that are still unsolved by modern

science. At very small temporal and spatial scales, the human brain is governed by

chemical reactions. Ion movement is controlled by local electrical and concentration

gradients, which drive them in one direction or another. Lipid molecules align their

non-polar tails and form bi-layer membranes. This happens because of the favorable

energetic relationship of avoiding the polar aqueous solvent. Molecules form ionic

bonds with other molecules, based on electrostatic interactions.

Altogether, the adult brain consists of approximately three pounds of water, lipids,

proteins, salts, and sugars, etc., interacting in countless chemical reactions of this sort.

The result is an organ that integrates information from at least five major senses, to

generate a three-dimensional, object-oriented representation of the world. Another

emergent property of this three pound lump is an ability to recall previous events and

to predict possible future events. It enables internal visualization and dialog, concept

abstraction, setting goals, and long term planning.

Much is known about the first stages of information consolidation and processing.
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For example, the signal transduction pathways that enable sensory input to enter the

brain are very well studied and understood. In the retina, light energy is converted to

a change in the concentration of cyclic GMP and subsequently a change in membrane

voltage of the photoreceptor. Photoreceptors drive bipolar cells and horizontal cells,

which in turn stimulate amacrine cells and retinal ganglion cells. The ganglion cells

then send the information out of the retina and into the central nervous system. (For

basic neuroscience, See Kandel et al. [44] or Squire et al. [76] )

Sensory input at the early stages is closely related to the nature of the organ which

detected it. Neurons in the early stages of visual cortex are highly sensitive to light

input in one specific region of the visual field, but in many cases, they have already

developed a preference for bars of a specific orientation. Higher levels of visual system

processing yield neurons which are most sensitive to more complex features, such as

faces or objects. Amazingly, these neurons have even lost their spatial sensitivity,

insofar as they can respond to a specific object, regardless of the size of its projection

on the retina, or the location within the visual field.

As in the example above, the behavior of many types of neurons has been studied

and described in detail. What lacks in our understanding is how the neurons have

attained their specific firing preferences, and what features of the input are most

important. Specifically, one area where knowledge of the system is lacking is in

the connectivity between individual neurons, and the subcellular locations of the

connections. Learning at the level of single neurons may indeed reflect changes in both

the strength and the spatial pattern of synaptic connections (For a review see [8]).
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Recent experimental and theoretical studies have helped establish the importance

of active dendritic properties in information processing (For reviews see [24, 34, 53]).

It is now well known that dendrites contain a host of voltage-dependent conductances

(see [30, 36, 39, 55, 91, 93] and [43] for review), which play an important role in co-

incidence detection [79] and normalization of temporal summation [55]. Moreover,

theoretical work has suggested that nonlinear summation of inputs greatly increases

the memory capacity of neurons [62, 63].

Nonlinear summation of synaptic conductances by active dendrites, along with

the decay of synaptic potentials with distance from the site of transmitter release,

imparts the cell with a sensitivity to the distribution of their inputs [49,54,60,64,90].

Spatial patterns of synaptic inputs containing clusters of nearby synapses can activate

voltage-dependent currents more strongly than patterns with distributed synapses.

Thus, a rearrangement of synaptic positions along the dendritic tree can profoundly

alter the response of the postsynaptic neuron even when other characteristics of the

presynaptic input are unaltered [60,63].

Despite these observations, systems that learn by synaptic rearrangement have

received little attention. An exception is the clusteron [60]. The clusteron abandons

all changes in synaptic weights in favor of learning by synaptic rearrangement. It is

thus an excellent choice to evaluate the strengths and limitations of synaptic reor-

ganization as a learning paradigm. Chapter 2 presents our theoretical work on this

abstract neuron model.

As introduced above, we study neurons primarily from the point of view of a
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single cell. We ask such questions as: How does a neuron decide when to fire? What

patterns of input and output are ideal for inducing a change in the strength of specific

inputs?

Answering these questions is problematic in several ways, due to the small size of

the structures involved, and the rapid timecourse of the signals in question. Neurons,

especially the large pyramidal neurons of the hippocampus and neocortex, are not

isopotential [65]. Since the membrane potential depends on the location along the

dendrite, we must have the capacity to record the activity level at different points

of those structures. This can be problematic, since dendritic branches are often less

than 1µm in diameter. Furthermore, action potentials, and post synaptic potentials

are fast (an action potential occurs in about 2ms). The small structures and rapid

signals necessitate advanced instrumentation to record such events.

Some basic ideas have emerged from the large amount of research at this level of

questioning. For instance, Hebb’s rule, often paraphrased as “cells that fire together,

wire together” has been very influential since it was first introduced in 1949 [35]. This

idea, that the connection between neurons that are coincidently active will tend to

be strengthened over time has been well justified in many cell types, although some

cells follow different rules [61]. While very simple, this rule can be shown to result in

several known features of neural connectivity, such as cortical map formation [7]. At

a single cell level, Hebb’s rule may be defined in an even more concrete way. That

is to say, given a pair of cells, one presynaptic and one postsynaptic, the connection

between the two has been found to increase in strength when the presynaptic cell fires
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a short time before the postsynaptic cell [15]. In contrast, the connection between

two cells decreases in strength when the opposite pattern of firing occurs, i.e. post

before pre. This type of plasticity is referred to as spike-timing-dependent plasticity,

STDP.

Action potentials are usually thought to initiate at the soma, or nearby on the

proximal part of the axon, and then propagate down the axon to stimulate other cells.

However, it is known that the action potential can and will propagate “backwards”

through the cell, down the cell’s own dendrites [30, 80, 81]. This back-propagating

action potential, bAP, may be the messenger that conveys information about the

output firing of the cell back to the synapses [79]. In this model of neural behav-

ior, it is on the dendrites where there is a convergence of information regarding the

activity level of both pre and postsynaptic cells. Both requirements of coincidence

detection are locally available, and a decision regarding whether the synapses should

be strengthened or weakened can be made.

Several key pieces of information are known about the behavior of bAPs. First,

bAP propagation is different from axonal propagation, since the amplitude and shape

of the bAP change with distance. More specifically, bAPs propagate decrementally,

getting smaller (and wider) with distance from the soma. This has been attributed

to a change in the concentration and kinetics of a transient potassium current (the

A–current or A–type potassium current) that gets larger and faster with distance

from the soma [36].

Some have proposed, and there is some evidence, that the bAP can be amplified
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on the dendrites by appropriately timed presynaptic stimulation [29, 79, 89]. This

is thought to be mediated by the activation, and subsequent inactivation, of the

A–current. Inactivation of the A–current changes the balance of excitatory and in-

hibitory ion channels, thereby making it easier for a bAP to propagate. This is a

potential mechanism for coincidence detection, whereby only the nearly simultaneous

activation of presynaptic fibers, and the postsynaptic cell will result in a large am-

plitude bAP. Furthermore, the guidance of action potential propagation may even be

branch specific.

Another interesting phenomenon has been observed in measuring the response

of the dendrites to a train of action potentials. It is known that action poten-

tials recorded from the soma or axon are very reliable and their shape is nearly

immutable. On the dendrites, however, bAPs will dramatically decrease with suc-

cessive spikes [11]. That is, the second bAP will be smaller than the first, the third

smaller than the second, and so on. This has been attributed to a difference in the

behavior of the voltage-gated sodium channels between those on the axon and those

on the dendrites. More specifically, while dendritic sodium channels activate and

inactivate in a similar fashion to somatic sodium channels, they experience a slower

recovery from the inactivated state. This results in fewer and fewer sodium channels

being available for subsequent spikes in the train [11].

Some of the main questions addressed here in Chapters 3 and 4 are: What is

the spatial pattern of back-propagation, and how does it change with presynaptic

stimulation? How does the pattern of back-propagation change with spikes in a
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train, and how does it change the region of boosting when paired with presynaptic

input? If the region of boosting is different for different spikes in a train, the result

could be a fairly complicated learning rule that depends on the spiking history of the

cell, and the location of the synapses in question. This could change the rules for

spike-timing-dependent plasticity for each spike in a train.

Chapter 2 of this dissertation involves the theoretical analysis of the capabilities

of the clusteron model. Through the use of numerical simulation we describe two

interesting tasks that the clusteron can learn, which are learning of a sequence of

input patterns, and feature detection. Chapter 3 describes our experiments on the

back-propagating spikes of hippocampal pyramidal neurons. This includes a brief

description of the instrument that was developed for the task, and some novel anal-

ysis techniques developed to better make use of the exogenous information we have

about the data collection system. The result of our experimentation and analysis

confirms several findings about the behavior of bAPs, and extends our knowledge of

how bAPs respond to patterns of presynaptic and postsynaptic stimulation. Chap-

ter 4 extends the idea of maximizing our data analysis by including knowledge of the

system, through the use of a full model description of how our signal of interest is

manipulated by our experimental procedure, and corrupted by the noise imparted by

our equipment. The model is then used by a sequential Monte Carlo particle filter

for extracting the most likely signal, given the recorded output.
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Chapter 2

Learning by spatial reorganization in an abstract neuron model

2.1 Introduction

Neurons receive and integrate information in the form of synaptic conductances across

their dendritic trees. Synaptic input is characterized by the spatial and temporal

distribution of active synapses, and by the strength and timecourse of individual

synaptic conductances.

The goal of the present study was to develop a mathematical framework that can

be used to describe and analyze the clusteron and other models that learn through

structural changes. Within this framework we investigated the mechanisms and learn-

ing rate characteristics of the clusteron in two basic configurations: one similar to the

original clusteron [60], and one consisting of discrete bins of integration, abstractions

of the computational subunits of a dendritic tree [63, 64, 90].

Once the mechanism of learning is understood, the model can be extended to

perform other tasks. We first show how the introduction of simple temporal dynamics

results in a model capable of learning spatio-temporal patterns. We then show how the
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conditions for synaptic rearrangement can be changed to create models that either

respond to a common feature in the set of training patterns, or the distinguishing

features of each pattern in the set.

Our analysis reveals a general feature of synaptogenesis: the length of time needed

to learn an association, and the ultimate strength of the association, are both depen-

dent on the likelihood of forming an appropriate synaptic connection. The contribu-

tions of the individual synapses to the output follows a Gaussian distribution, and an

approximation can be made that displays the relations to learning rate and association

strength explicitly. Analyzing the distribution of synaptic activations, yields a clearer

understanding of the principles underlying learning by structural rearrangement.

2.2 Methods

The clusteron differs from most other neuronal models in the literature in that learn-

ing is a result of changes in the physical arrangement of synapses on the cell, rather

than changes in the individual synaptic weights. Its primary feature is that the con-

tribution of an individual synapse to postsynaptic activation (e.g., depolarization)

is modulated by a nonlinear function of the total number of active synapses in its

vicinity. Because the number of active synapses and the synaptic weights are kept

constant, only changes in the spatial pattern of synaptic activation result in differen-

tial postsynaptic responses.
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2.2.1 Structure of the clusteron

We consider a dendritic tree on which N synaptic connections have been formed by

N numbered, afferent fibers. We refer to a collection of fibers that are activated by

a stimulus as an input pattern. Mathematically, an input pattern v ∈ {0, 1}N is an

N -vector of 1s and 0s so that if vi = 1, then the i-th afferent fiber is active in the given

pattern. The synaptic connections these fibers make on the cell are described by an

injective function φ : {1, 2, . . . , N} → {1, 2, . . . , N} that is independent of the input

pattern v. Therefore, φ(i) = j implies that fiber i innervates the synapse j, and,

similarly, φ−1(j) = i implies that synapse j receives an input from fiber i. During

training, the set of input patterns {vi} remains unchanged, meaning that each pattern

vi represents firing of a consistent population of presynaptic cells, i.e. activation of

a consistent set of fibers. However, the locations at which afferent fibers innervated

the cell, represented by φ, did change during learning. For notational reasons it was

easier to change the inverse φ−1 rather than φ directly.

We used two versions of the model: The first, illustrated schematically in Fig-

ure 2.1(b), was similar to the original clusteron [60] and contained a cell body and a

single dendrite with many synapses. The impact of an active synapse was boosted as a

function of the activity of other synapses that lay within a certain radius. The second,

“branched” model, presented schematically in Figure 2.1(c), can be thought of as a

reduction of a two-layer model of dendritic integration [62]. Rather than a single den-

drite, it contained non-overlapping regions that partitioned the dendrite into “bins”,
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which can be thought of as separate dendritic branches [63, 64]. Synapses within a

branch interacted nonlinearly, but the total depolarization was a linear combination

of individual branch activity. The two variants behaved similarly, but differed in

several important ways discussed below.

The total somatic activation, analogous to the membrane potential at the cell

body induced by an input pattern, was calculated as follows: In the first model the

activity of synapse i was modulated by all synapses within a given physical radius of

its location. We denoted the set of all synapses that affected the activity of synapse i

by Di. Since synapses were numbered sequentially, we set Di = {1 ≤ j ≤ N |i−K ≤

j ≤ i + K} where K is the radius of Di (see Figure 2.1(b). The activation due to

synapse i, given an input pattern v, was

ai(v, φ) = vφ−1(i)

∑

j∈Di

vφ−1(j). (2.1)

Therefore, the synaptic activation was the product of synapse i’s own input, either

1 or 0, and the sum of all other inputs in Di. This can be generalized to ai(v, φ) =

vφ−1(i)F
(

∑

j∈Di
vφ−1(j)

)

. The form of F modulates the summation, and it can be

chosen to model sublinear spatial summation, as in the case of a passive cell [65].

We only considered F (x) = x and typically chose 1000 input lines and a radius of

integration that included 20 synapses or more.

In the branched model, the activation of whole branches, rather than single

synapses is used to determine the somatic activation. In particular, the activation of
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V = {0, 0, 1, 1, 0, 1, 0, 0, 1}

φ φ−1

{1, 0, 1, 0, 0, 1, 1, 0, 0}

a.

b.

1 2 3 4 5 6 7 8 9

ai
(i=3)

1

2

3

4

5

6

7

8

9

c.

Figure 2.1: Schematic of the clusteron. (a) The function φ, maps the input vector,
v, to locations on the dendrite. The training paradigm modifies φ. In this example:
φ(1)=5, φ(2)=2, φ(3)=6, φ(4)=3, φ(5)=8, φ(6)=1, φ(7)=9, φ(8)=4, φ(9)=7. (b)
Schematic of the original clusteron with a single dendrite. Active inputs are shown in
red and are consistent with the example mapping shown in panel (a). Total synaptic
activation is determined by the activity of of nearby synapses (see Equation 2.1).
Shown is windowD3 of radiusK = 1 around synapse 3. (c) Schematic of the branched
version of the clusteron. The input vector is mapped onto the ‘branches’ of the cell.
Nonlinear interactions occur only within a branch (see Equation 2.2), so that synapses
6 and 7, which would interact in the unbranched case, now do not interact. Conversely,
synapses 1 and 3 now do interact, whereas in the unbranched case they were too far
apart.
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branch m was given by

bm(v, φ) =

(

k
∑

j=1

vφ−1(j)

)2

. (2.2)

As in the previous case, this can be generalized to bm(v, φ) = G(
∑k

j=1 vφ−1(j)). We

chose G(x) = x2 for consistency with the unbranched version of the model.

The total somatic activation was obtained as a sum of all N individual synaptic

activations in the first, and as a sum over all M branch activations in the branched

model. In particular, the depolarization W (v, φ) at the soma due to an input pattern

v and an arrangement of afferent fibers φ was given for the two models respectively

by

W1(v, φ) =
N
∑

i=1

ai(v, φ), and W2(v, φ) =
M
∑

i=1

bi(v, φ). (2.3)

2.2.2 Learning

In both models, a supervised learning protocol selectively stabilized the most highly

active synapses. The training protocol was divided into a number of “epochs”, each

consisting of alternating presentation of the training patterns followed by a judgment

of synaptic suitability. An epoch ended with the spatial rearrangement of poorly

performing synapses.

More precisely, let aji be the activation of synapse i in response to the j-th pattern

in an epoch. In the first model the average activation āi over all P training patterns

presented during an entire epoch, āi = 1/P
∑P

j=1 a
j
i , was compared to a threshold

value ζ. If āi > ζ, the fiber afferent to the synapse was fixed, i.e φ−1(i) remained

unchanged. For a synapse, ζ represents the level of activity that it must achieve
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in order to become stabilized, analogous to the degree of local activation needed to

induce long term potentiation. In these simulations, the choice of ζ dictates the

probability that a synapse can become stable.

The indices i of all synapses whose activation was insufficient, that is āi ≤ ζ,

formed a set R. To redefine φ−1 on R, we chose a bijective function H : R → R, and

redefined φ using

φ−1
new(i) =



















φ−1
old(i) if āi > ζ

H(i) if āi ≤ ζ.

(2.4)

We chose H randomly, and allowed it to change between training epochs [60]. Differ-

ent choices for H reflecting the targeting of certain locations on the dendrite could

also be considered [31].

Synapses located in regions with a higher density of active synapses, i.e. active

clusters, would attain higher values of synaptic activation and were rewarded by sta-

bilization. Isolated synapses had smaller activations, and were moved to potentially

join established clusters or nucleate new ones. This protocol was iterated throughout

the simulation.

The protocol for the branched model was similar; however suitability was deter-

mined at the branch level: If the average branch activation over a training epoch

(see Equation 2.2) exceeded a threshold, then all synapses on that branch were sta-

bilized. If not, all synapses on the branch became part of the pool R, and were

reshuffled according to Equation 2.4. Consequently, synapses were only stabilized by

collectively pushing a branch activation over threshold, and not by joining an existing
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stable branch. This assumption simplified the subsequent analysis. Alternate forms

of learning in the branched model resulted in qualitatively similar behavior.

The choice of the threshold ζ had a large impact on model performance. We will

discuss cases in which ζ was fixed, and cases in which ζ varied as a function of the

average synaptic activation. In the second case, a new form of synaptic competition is

introduced: The stabilization of some synapses may cause an increase in the learning

threshold and lead to the destabilization of previously stable synapses. These newly

destabilized synapses then have to compete for position on the dendritic tree that will

again lead to stabilization. The value of the variable threshold was typically given by

the mean synaptic activation, or a fraction thereof.

2.2.3 Sequence presentation

Both the standard and branched models could be extended to allow for presenta-

tions of spatio-temporal patterns. Sequences V = (v1, . . . ,vL), of spatial patterns

vi described above, were presented during each training epoch. The somatic acti-

vation W (pn, φ) in response to the n-th pattern in a sequence was obtained using

Equation 2.3 and

pn = vn + αpn−1 0 < α < 1, (2.5)

and p0 = v0. A fraction α of the raw input due to the preceding pattern was held

over to compute the synaptic activation of the present pattern. Thus, the activation

function reflected not only the spatial contiguity, but also temporal contiguity of

synaptic activations. We considered a spatio-temporal pattern to have been learned
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if the somatic activation of the training sequence exceeded the activation induced

by all other permutations of the training sequence, as well as those of a sequence of

random patterns.

The learning algorithm was equivalent to that described in the previous section.

An epoch consisted of a single presentation of the training sequence. However, the

synaptic activation upon the presentation of the final pattern in the sequence, rather

that average activation, was used to determine the suitability of a synapse. Therefore,

if the training sequence consisted of L patterns, then all synapses satisfying aLi < ζ

were reshuffled.

2.3 Results

We next present an intuitive description of learning in the two versions of the clus-

teron, and use these insights to develop and analyze several extensions of the learning

rule. As implied by the name, the spatial clustering of synapses was crucial for the

correct recognition of learned patterns [60]. The nonlinear interaction between clus-

tered synapses resulted in higher somatic activations than those evoked by arbitrary

patterns (Figure 2.2(a). We make these observations more precise by considering

the distribution of the activations of synapses in the model. The evolution of this

distribution during training is then fully described in a reduced model.
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2.3.1 Distribution of synaptic activations and learning

We begin by describing the distribution of synaptic activations in the clusteron and

how it changes during training. Note that the activation of synapse i, given by Equa-

tion 2.1, is directly proportional to the number of active synapses in its neighborhood.

Therefore, the degree of clustering of synapses activated by an input pattern can be

represented by the frequency histogram of synaptic activations.

Since, in our simulations, the total fraction of active synapses was small (typi-

cally 15%), and the windows of interacting synapses were large (typically K = 20),

synaptic activations approximately followed a binomial distribution, parameterized

by the number of active synapses Nactive, and the probability of randomly choosing

a specific window of integration (i.e. K
N
). Since the number of active synapses is

large, this binomial distribution was well approximated by a normal distribution. In

untrained patterns, the synapses are distributed randomly in space, which results in

an approximately normal distribution of activations (Figure 2.2(b).

Note, synapses not active in any patterns are not affected by restructuring (see

Equation 2.1). The large peak at 0 due to such synapses was omitted from synaptic

activation histograms for clarity.

Histograms of synaptic activation (e.g., Figure 2.2(b) demonstrated several impor-

tant features. Patterns that activated clusters, contained a higher number of highly

activated synapses. The corresponding distributions therefore lie to the right of those

corresponding to patterns activating a random subset of synapses (Figure 2.2(b).
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The learning threshold, represented by a vertical line in all figures, separated

synapses to the left that were reshuffled, and those to the right that are fixed at

the end of a training epoch (see Equation 2.4). Figure 2.2(b) shows the result of

training in the case of a fixed learning threshold. As synapses were reshuffled ran-

domly, they occasionally experienced increased activation due to joining an existing

cluster or nucleating a new one. If this activation was above the learning thresh-

old, the synapse was fixed. Therefore, during training the learning protocol resulted

in a gradual rightward shift of the distribution of synaptic activations. When the

activation of all synapses lay above threshold the system reached equilibrium. The
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Figure 2.2: Distribution of synaptic activations. (a) The location of the 150
active synapses activated by each of four training patterns before (lower of the pairs)
and after (higher of the pairs) training. After 100 training epochs, the active synapses
formed clusters along the dendrite. The x-axis represents distance along the dendrite.
(b) Histograms of synaptic activations for all active synapses before and after training.
Before training, the activations approximately followed a normal distribution. The
vertical line represents the learning threshold used in this simulation. During training,
synapses formed clusters, causing a rightward shift in the distribution. Note, the
peak of synaptic activations corresponding to 0 does not change with training and
was removed for clarity.
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choice of the learning threshold was critical in determining how well and how fast the

model learned. High thresholds lead to the best learning, i.e. the largest increase in

somatic responses to the training patterns. However, the time for an equilibrium to

be reached was typically long. Alternatively, low thresholds lead to rapid learning,

but resulted in relatively small increases in the somatic response. Figure 2.3(a) shows

examples of the somatic response during the course of training to a single pattern,

under three different threshold levels. The branched clusteron and other variations

that were tested show the same relationships between learning speed and magnitude

to the learning threshold (See Figure 2.3(b).

This relationship can be explained intuitively by considering the effect of the

threshold on the evolution of the synaptic activation distribution. If the threshold is

low, the main mass of the distribution would lie above it. Moreover, even synapses

with activations below threshold would only need a small boost to cross it. Therefore,

training resulted in rapid equilibration, but only an incremental increase in the total

activity. In the case of a high threshold synapses needed a large boost in their

activation to be stabilized. Random reshuffling rarely resulted in such large increases,

and equilibrium was reached more slowly. However, once the distribution lay to the

right of a high threshold the total activation could be very high.

This argument assumes that the learning threshold is constant during training.

However, as discussed in Section 2.2.2, the threshold can be set to increase with the

magnitude of the somatic activation, in a way similar to the BCM learning rule [5].

Such increasing thresholds leading to a higher degree of competition between synapses:
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Figure 2.3: Dynamics of single pattern learning. (a) The increase in the somatic
response to training on a single pattern strongly depended on the learning threshold.
Low thresholds lead to rapid learning, while high thresholds resulted in longer equili-
bration times. However, high thresholds resulted in the strongest responses to learned
patterns. (b) The branched model showed the same relationships for learning speed
and magnitude. The vertical scale is different in the two cases. Since all synapses on
a branch are fixed after its activation exceeds threshold, the increase in the activation
during training is smaller in the branched model. (c) A strong response could be
evoked rapidly by using a low variable threshold. Here, the initial learning thresholds
are equal, but the variable threshold rises as a function of the mean synaptic acti-
vation, ζ = 0.7āi. Note how learning is of a comparable rate for both cases, yet the
variable threshold ultimately allows for much better learning. (d) Variable thresholds
grant an advantage in learning when they are relatively low. If the variable threshold
is too high, very few synapses are ultimately allowed to be stable, which limits the
total somatic activation that can be achieved. On the other hand, the steady-state
degree of learning is monotonically related to the learning threshold in the fixed case,
although the rate of learning suffers, as described in this manuscript.
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If the threshold increased sufficiently rapidly, at the end of each training epoch only a

fixed fraction of the synapses was stabilized. Therefore, the activity of synapses that

were stable at the end of a previous epoch could fall below the increasing threshold

as they are outperformed by newly reshuffled synapses. In contrast, with a fixed

threshold, all synapses can be stabilized at the same time, provided the learning

threshold is not prohibitively high. More precisely, if ζ ≤ K, the radius of integration,

there will exist at least one absorbing state in which all synapses will be stabilized.

Such variable thresholds can result in rapid learning and a large response to learned

patterns (Figure 2.3(c). During the early stages of training, the threshold was low,

allowing rapid nucleation of clusters. During the later stages the threshold increased

with the mean synaptic activation, and resulted in large increases in the learned

response. This relationship holds for a range of values for the variable threshold,

but fails when the threshold is very high (Figure 2.3(d). In that case, only very few

synapses are allowed to become stabilized and the total somatic activation that can

be achieved suffers.

2.3.2 Sequence learning

The observations made in the previous section can be used to to obtain a modification

of the clusteron algorithm capable of learning spatio-temporal patterns of input. Upon

following the learning paradigm described in Section 2.2.3 with a sequence of inputs

V = (v0,v1, . . . ,vL), the presentation of the sequence of patterns in correct order

resulted in the largest somatic activation (see Figure 2.4).
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The distribution of synaptic activations again clarifies the underlying mechanism.

Equation 2.5 indicates that the contribution of a pattern to the activation of a synapse

decreases exponentially in time. If each pattern activated a small subset of synapses,

then after the presentation of the n-th pattern the distribution of synaptic activations

could be decomposed into n parts, each corresponding to one pattern in the sequence

(see Figure 2.4(b). When latter patterns in the sequence were presented, synapses

activated by earlier patterns had decayed to the lower part of this distribution. Since

the activation of each synapse was compared to a single learning threshold at the time

of presentation of the last pattern, each pattern had undergone a variable degree of

exponential decay, and therefore experienced a different drive to cluster. As a result,

synapses activated by latter patterns in the sequence became the most clustered and

resulted in the largest single pattern responses. Thus, the training sequence was then

represented on the cell model by patterns of increasing clustering, which resulted in

the largest somatic responses (see Figure 2.4(c).

Interestingly, changes in the choice of threshold had a large impact on this out-

come. For example, a fixed threshold resulted in higher responses to the sequence

V presented in reverse order, while a variable threshold, resulted in a preference for

the proper order. The explanation of this is that with a fixed threshold, the steady-

state degree of clustering was similar to the degree of clustering when the model was

trained with a single pattern, resulting in the best clustering of patterns with the

highest relative learning threshold. On the other hand, when only a limited number

of synapses can be stabilized at a time, an advantage was gained by latter patterns
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Figure 2.4: Learning a sequence of patterns. (a) The response of the clusteron
to a learned spatio-temporal sequence. The response to the sequence presented in the
proper order was highest. Also shown is the response to the sequence presented in
reverse order (red trace) and the response to a sequence of four random patterns. (b)
The distribution of synaptic activations right after the presentation of the last pattern
is multi modal. Synapses activated by earlier patterns in the sequence have activation
that lie farther below the learning threshold (the vertical bar) and experienced a
smaller drive to cluster. (c) The location of active synapses for the four patterns in
the training sequence after training. Note that clusters for different spatial patterns
formed on overlapping regions of the dendrite, so that synaptic activation was boosted
when the patterns were presented sequentially.
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in the sequence, that clustered rapidly because of a low relative learning threshold.

In both cases, the preferred sequence was one in which patterns are presented in the

order of increasing clustering.

2.3.3 Feature detection

A system trained to respond to a set of patterns, such as faces, can do so in two

distinct ways: It can respond to a specific feature of each pattern in the training set

(such as a scar or other distinguishing mark). Alternatively, the system can respond

to a feature shared by all patterns in the training set (all faces in the training set may

feature a nose). In this section we show that the clusteron can be trained to respond

to either the shared features or specific features of the patterns in the training set.

As an example, consider the two patterns shown on the top of Figure 2.5(a). The

two input patterns in the figure each activated 25% of the fibers that synapsed on the

dendrite. Moreover, half of the fibers activated by one pattern are also activated by

the other. The fibers activated only by pattern 1 are denoted s1, those activated only

by pattern 2 are denoted s3, and those activated by both patterns are denoted s2. All

of these sub-patterns consist of 12.5% of the total fibers. Also shown are pattern s4

composed of fibers not activated by either pattern in the training set, and a random

pattern of 12.5% of the fibers. Note that this figure illustrates the patterns of fibers

that are activated, and does not indicate the location of the activated synapses on the

dendrite. While a pattern always activates the same fibers, their synaptic contacts

change during training.
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Pattern s2 can be obtained by performing a logical AND operation on the two

training patterns, and represents their common or shared features. Similarly, patterns

s1 and s3 can be obtained by obtaining a logical XOR operation and represent specific

features of the first and second training pattern respectively. Figure 2.5(b) illustrates

that different choice of learning threshold will lead the clusteron to preferentially

respond to either shared or common features of the training set.

An examination of the distribution of synaptic activations again reveals the mech-

anism behind this type of learning. Figure 2.5(c) shows a histogram of synaptic

activations used to decide which synapses are reshuffled at the end of the training

epoch. Since the total synaptic activation is averaged over a training epoch (see Sec-

tion 2.2.2), the distribution is bimodal. One part consists of synapses activated by

only one of the patterns and contains 2/3 of the total mass of the distribution. The

other part consists of synapses activated by both patterns.

If the threshold is high, only synapses participating in both patterns were likely

to attain average activations exceeding threshold upon reshuffling. Therefore, only

synapses activated by the pattern s2 were likely to be stabilized and experience a drive

to cluster. Similarly, if the threshold was low, synapses participating in both patterns

typically had average activations that already exceeded threshold. Therefore, only

synapses activated by a single pattern experienced a drive to cluster that lead to an

increase in activation.

We note that this effect depends crucially on the assumption that synaptic acti-

vation is averaged over an entire training epoch. Alternatively, we can normalize the
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Figure 2.5: Feature detection by the clusteron. (a) Schematic of the training
and testing patterns, showing the four possibilities for the activity of each synapse.
Out of 4,000 fibers, 1,000 were activated by each training pattern, with 500 activated
by both patterns. A fiber could be active by both training patterns (s1 and s3),
one pattern only (s2), or neither pattern. The fifth test pattern is composed of 500
randomly chosen fibers. (b) Bar graph of the total somatic response to the five test
patterns, normalized to the response to random untrained patterns. Response to
the test patterns reflect the degree of clustering for each subpopulation of synapses
in isolation. As shown, training with a high threshold resulted in high responses to
features common to both patterns, while a low threshold resulted in larger responses
to specific features. (c) The histograms of synaptic activations for the training pat-
terns illustrate the underlying mechanism. Synapses activated by both patterns have
higher average activations requiring a high learning threshold to stimulate significant
clustering. Similarly, synapses active in only one pattern were best stimulated to clus-
ter by a lower learning threshold. The distributions after training show modifications
that are due to clustering of the subpopulation in question, as well as from clustering
of the other subpopulation, since the training patterns contain both. The degree of
clustering for subpopulations in isolation is shown in (b).
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activity by the number of patterns in which a synapse participates

āi =

∑P

j=1 a
j
i

∑P

j=1 φ
−1(i, j)

.

In this case, the distribution of activations becomes unimodal, and the model will tend

to respond to any feature of the training patterns. These two measures of synaptic ac-

tivation could represent different timecourses of input integration. Averaging synaptic

activation over time requires a memory of previous pattern presentations and could

be explained by a long-lived biochemical change due to the pattern presentation.

Normalizing synaptic activation would only require that there be no such changes, or

merely that pattern presentation is sufficiently slow enough to outlive such changes.

Interestingly, this type of feature detection was not seen in the branched clusteron.

Intuitively, the activity of entire branches is too coarse a measure to discriminate

patterns at the level of single fiber activity.

2.3.4 A reduced model

We next developed an analytically tractable reduction of the branched model that

described how the distribution of synaptic activations evolved towards a steady state

with repeated presentations of a training pattern. The reduced and branched model

were qualitatively similar, and exhibited the same trends in the speed and magnitude

of learning.

Given a branched clusteron with B branches and A active synapses randomly

distributed across the branches, the binomial theorem can be used to approximate
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the distribution of the number of synapses per branch and hence the distribution of

branch activations: Let n0 = A and m0 = B be the initial number of active synapses

and branches respectively. The training protocol called for the redistribution of the

fibers lying on insufficiently active branches, that is those that contain less than Aζ

active synapses. These fibers were redistributed among the same set of branches.

This procedure was repeated after every training epoch. In particular, after the k-th

training epoch, there were mk branches that contained less than Aζ active synapses

per branch and thus were insufficiently activated. Here Aζ is the integer part of
√
ζ

(see Equation 2.2). At the end of a training epoch the nk synapses residing on these

branches were then redistributed randomly amongst the same set of insufficiently

active branches.

For simplicity we consider learning with a single training pattern. Since the

synapses were redistributed randomly, we can think of the nk synapses as balls that

are being distributed with equal probability among mk bins. The number of balls

per bin follows a binomial distribution, which can be approximated by a normal

distribution of mean µk and variance σ2
k where

µk =
nk

mk

and σ2
k =

nk

mk

(

1− 1

mk

)

.

Thus, the distribution of the number of active synapses per branch is approximately

mkN (µk, σ
2
k)(x), where we use N (µ, σ2) to denote a normal distribution with mean

µ and variance σ2.

Using this expression we approximate the total number of branches that will be
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insufficiently activated at the end of the next training epoch as

mk+1 = mk

∫ Aζ

−∞

N (µk, σ
2
k)(x)dx =

mk

2

[

1 + erf

(

Aζ − µk

σk

√
2

)]

. (2.6)

Note that the mean number of synapses per branch, amongst the insufficiently

activated branches, is given by

n̄k =

∫ Aζ

−∞
xN (µk, σ

2
k)(x)dx

∫ Aζ

−∞
N (µk, σ2

k)(x)dx
=

mk

mk+1

∫ Aζ

−∞

xN (µk, σ
2
k)(x)dx.

Since these are distributed amongst the mk+1 branches, the product n̄kmk+1 yields

the total number of synapses, nk+1, on the unstable branches, as

nk+1 = mk

∫ Aζ

−∞

xN (µk, σ
2
k)(x)dx

=
mkµk

2

[

1 + erf

(

Aζ − µk

σk

√
2

)]

−mkσk

√

1

2π
e
−

(Aζ−µk)2

2σ2
k (2.7)

= µkmk+1 −mkσk

√

1

2π
e
−

(Aζ−µk)2

2σ2
k .

Note that Equations 2.6 and 2.7 are a dynamical system whose evolution models the

change in the mean and variance of the distribution of activations.

The number of unstable branches and the number of unstable synapses on those

branches, can be used to compute the mean and variance of the new distribution by

again invoking the normal approximation to the binomial distribution. Therefore,

the total distribution G after training epoch k can be calculated as a sum of normal

distributions:

Gk =



















mkN (µk, σ
2
k)(x) for x < Aζ

∑k

i=0 miN (µi, σ
2
i )(x) for x ≥ Aζ .
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Note that only branches above threshold are stabilized, and so the part of the distribu-

tion of synapses per branch above Aζ includes all synapses stabilized in the past. The

portion of the distribution corresponding to unstable branches only consist of those

synapses assigned during the last round of training. The calculated distributions after

different numbers of training epochs are shown in Figure 2.6(a). Figure 2.6(b) shows

the averaged branch activation distribution for the analogous branched clusteron (125

branches, 40 synapses per branch, 50% active synapses), before and after 20 rounds

of training.

Figure 2.6(c) illustrates that the reduced model displays the same relationships

for the speed and magnitude of learning observed earlier. Here we computed the total

somatic activation from their distribution by act =
∫∞

−∞
x2Gk.

Furthermore, the steady state magnitude of learning is higher in models trained

with a higher learning threshold. Since most synapses are ultimately stabilized above

threshold, the steady state magnitude of learning is proportional to the number of

branches that are initially below threshold (i.e.
∫ ζ

−∞
N (µ, σ2)). This value evaluates

to an error function that is also monotonically increasing.

2.4 Discussion

A hallmark of biologically plausible neural networks is that the rules governing the ef-

ficacy of synaptic connections depend only on locally available information. Learning

rules for adjustment of synaptic weights based on the correlations of pre- and postsy-

naptic activity at a synapse have received considerable experimental and theoretical
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Figure 2.6: Performance of the reduced model. (a) The distribution of branch
activations in the reduced clusteron model. The normal distribution at the onset
of training as well as the distributions after a number of iterations of the reduced
model are shown. (b) The distribution of branch activations of a similarly config-
ured branched clusteron before, and after 20 rounds of training. Vertical red bar
represents the learning threshold. (c) The distributions shown in (a) can be used to
calculate the activation of the model during training. The performance of the reduced
model demonstrates the same relationships for the speed and magnitude of learning
dependent on the choice of learning threshold.
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treatment [5, 51]. There are also many examples in cortex (see [14, 32, 38, 45, 46, 92]

and [10,13] for review) and cerebellum (see [47,73] and [16] for review) where synap-

tic growth occurs with training, and such reorganization may even be required for

learning [12].

Nonetheless, activity-dependent synapse stabilization has received comparatively

little theoretical attention [50, 51, 60]. A good discussion of the strengths and weak-

nesses of the use of cortical rewiring can be found in [8].

The clusteron model of Mel addresses learning that can be accomplished solely

by spatial rearrangement of synapses under the assumption of a nonlinear spatial

summation of synaptic input [60]. Mel demonstrated that a single clusteron neuron

could learn to respond more strongly to a set of training patterns than to randomly

selected patterns of equal size (i.e., number of active synapses). Poirazi and Mel

showed that synaptic rearrangement, in addition to allowing for increases in synaptic

weights by way of redundant connections, can increase the capacity of the model [63].

In our simulations, with identical synaptic weights and 15% active synapses, synaptic

rearrangement can enable a 1000 synapse clusteron to learn 20-25 training patterns

for a range of learning thresholds and windows of integration. Our focus, however,

was to study the dynamics of learning in the clusteron and some derivative models.

We demonstrated how the choice of the learning threshold determined the speed

and strength of learning, both through numerical simulations and analytically in a

reduced model of the clusteron. The distributions of synaptic activations are affected

by the density of the patterns, as well as the radius of integration. However, when
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considering the relative location of the distribution to the learning threshold as we

suggest, the trends we show hold for patterns of high and low density, as well as

with large and small regions of integration. Finally, by modifying and extending the

basic protocol, we showed how a clusteron-like rule can be used to learn sequences of

patterns or different features of the training set.

In the clusteron, spatially clustered synapses must result in a nonlinear increase in

overall efficacy. Poirazi and Mel argued that the storage capacity of a system making

use of this nonlinearity increases dramatically [63]. Nonlinear information processing

in the dendritic tree is well substantiated and has been shown to be responsible for

several behaviorally relevant computations. Euler et al. have shown the earliest

known location for direction selectivity in the mammalian retina occurs as a result of

dendritic morphology of starburst amacrine cells [25]. Likewise, the precise structure

of the dendritic arbor of the motion-sensitive neurons of the lobula plate of the blowfly

correlates with their preferred direction of motion [48]. Furthermore, the dendritic

tree of those neurons acts to filter the many phase-shifted inputs, representing the

same signal, to generate the common output that is sensitive to the overall motion

of the visual field [74]. Detection of an object on a collision course with an insect

has also been attributed to nonlinear dendritic computation [28]. Even in networks

where the input and output are more abstract, such as the hippocampus, or neocortex,

nonlinear dendritic summation appears to be a prominent feature [49, 54].

While the clusteron was meant to model a single neuron, it provides a basis for

describing a layer of neurons over which reshuffling of synaptic contacts could occur.
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It is well documented that synaptic growth occurs, even in the mature human brain,

as it learns a motor skill [45,86]. Inducible changes in the number of spines [18,21,83],

“maturation” of the spines [37,58], and rapid filopodial growth in acute slices in real-

time have been observed [57, 84]. Furthermore, Stepanyants et al. estimated a

so-called “filling-fraction” for various regions of the brain, to estimate the number of

possible synaptic contacts that could be made by a short filipodial outgrowth. Their

conclusion is that a large contribution to network remodeling could be made solely

by growth of new spines [77]. Thus, while the clusteron seems to make use of fairly

drastic reshuffling, in the context of a full layer of postsynaptic sites, small filopodial

movements may be expected to find adequate sites.

Our simulations predict further properties of systems that learn by structural

modifications. We can expect that the speed of memory acquisition and the strength

and stability of the memory, will be strictly dependent on the probability of making

an appropriate synaptic connection. Furthermore, the mechanism by which those

dependencies emerge is clearly shown by the distribution of synaptic activations.

Beyond making predictions about when a neuron can and cannot learn, we show that

feature detection and sequence learning are both explained by the relationship of the

synaptic activations to the value of the learning threshold. We therefore confirm the

utility of our finding to explain the behavior of the model in these two tasks.

We believe that the present method of analysis and these findings are generalizable

beyond the study of the clusteron and its derivative models. It seems that any

model that allows for the formation of new synapses, either by axonal growth, or
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by activation of silent synapses, could be described in a similar way. Any time a

new synapse forms, it can either be suitable or unsuitable for the purposes it has

to fulfill. The probability of either event will determine how well and how fast the

system can learn. In our case, the suitability of a synapse was determined by its

cluster membership, and approximately followed a normal distribution. This is only

one possible measure of suitability. An alternative measure of suitability of a new

synapse would be simply whether or not the synapse has formed on the correct cell.

The distribution of synaptic suitability would then be the proportion of synapses that

grow to the correct cell, or to the wrong cell, where synapse stabilization is allowed

only for the correct cell. The rate of learning would then be proportional to the

probability of synapse formation on the correct cell.

A simple analogy for this generalized model can be made to classical conditioning

paradigms, where the location of the learning threshold is a measure of the difficulty

of the task, which in this case would be related to the saliency of the conditioned

stimulus (CS). Classic work of Pavlov and others have shown the distinctiveness of

the CS to be critical in determining the rate of acquisition of the CS-US relationship

(summarized in [75]).

Perhaps the most accessible example of learning that follows this relationship may

be in the acquisition of a complex sensory or motor skill, such as learning a new lan-

guage, or learning to play an instrument. This form of learning is fairly slow and

allows time for the structural changes that our model utilizes [45,86]. The magnitude
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of the learned response at the cellular level is difficult to measure, but we would ar-

gue that the stability of a learned response over time would be proportional to what

we define as the magnitude of the response, since any degree of unguided structural

remodeling would take longer to disrupt a larger response. It is well known that the

length of time spent practicing a skill leads to a longer duration of memory reten-

tion [2, 4]. Interestingly, analogous to the gradual increase of our learning threshold,

skill learning also benefits from making incremental increases to the difficulty of the

task [68, 87]. Young pianists learn simple songs before Rachmaninoff, as our models

benefit from a learning threshold which is initially low and raised gradually during

training.
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Chapter 3

Patterns of back-propagation in live neurons

While learning by structural rearrangement discussed in the last chapter has many

interesting features, it is not the only means available to the cell to change its respon-

siveness to specific inputs. Cells communicate with each other through synaptic con-

tacts [44,76]. The changes in strength of these synaptic connections are thought to be

another mechanism by which learning and memory occurs at the cellular level [7,15].

Understanding the rules that govern these changes is therefore fundamental to un-

derstanding how the nervous system functions.

The pruning and generation of synapses may mediate coarse changes in neuronal

interactions. On the other hand, changes in synaptic strength occur on timescales that

are much shorter than those of growth and pruning. Conceivably, learning mediated

by synaptic weight changes could even mimic the effect of synaptic generation by

increasing the impact of synaptic connections that have negligible impact at the

start. Similarly, a significant reduction in synaptic strength could in effect be similar

to pruning. Given a sufficiently high connectivity between cells, all the benefits of

growth and pruning could be attained through synaptic weight changes. Moreover,

37



this can achieved far more rapidly than the time necessary to generate or prune

synaptic contacts. The combination of methods may reflect the balance between the

ability to learn quickly and the metabolic demands of having dendritic arbors large

enough to have such high connectivity.

Our experiments examine the activity of the cell under stimulation patterns that

induce changes in synaptic strength. To examine the effects of such stimulation, we

need to measure the activity at the sub-cellular level across a large portion of the cell.

This is not a simple task, considering that the cell spans hundreds of micrometers in

all directions, while the size of the dendrites, and other structures of interest, can be

less than one µm in diameter. Furthermore, the signals frequently occur on timescales

less than 1ms. Therefore, the task requires sub millisecond sampling rates to achieve

good temporal resolution, and sub micron spatial resolution. The small size the the

structures and rapid timescale of neuronal activity are the main obstacles to a detailed

characterization of neural activity.

Fluorescence microscopy provides a way of examining the structure and function

of living cells that are inaccessible to direct electrical recording. Optical recordings

are typically done by including a contrast agent that translates a biological or bio-

chemical signal of interest into a measurable one (for reviews see [70, 71]). Such is

the case for calcium measurements. Calcium-sensitive dyes are typically fluorescent

molecules that bind calcium ions, inducing a structural change in the dye molecule.

This structural change then changes the excitation or emission of photons from the

molecule, allowing the change in calcium to result in a change in the amount of
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emitted light, which can then be quantified by a suitable detector.

There are several technical challenges in performing these kinds of experiments.

First, optical recordings have traditionally been hindered by problems with light

scattering. The structures of interest are frequently buried deep within the brain slice.

This makes imaging using single photon fluorescence techniques difficult because a

lot of excitation light is lost before reaching the preparation, and emitted light is

redirected causing image quality to suffer. Furthermore, obtaining a good optical

signal is often limited by the amount of light the experimenter can apply to the

preparation without damaging the tissue. Finally, and most importantly, neurons are

inherently three-dimensional structures, and can extend hundreds of micrometers in

the axial direction. A standard microscopes setup is limited to viewing only one focal

plane at a time. The need to physically move the objective lens or insert an additional

lens in order to scan in the axial dimension severely limits the time resolution that

can be obtained.

A number of labs, including ours, have been addressing these problems in several

steps. First, the development of multiphoton fluorescence microscopy partially alle-

viated problems stemming from light scattering [17]. Multiphoton microscopy makes

use of very long wavelengths (near infrared) which penetrate the scattering media bet-

ter than the light used in single photon fluorescence. The fact that two photons are

required to excite the fluorophore, within a very short time, means that fluorophore

excitation is proportional to the square of the incident light intensity, f = α2pI
2. In

single photon microscopy, the fluorescence is proportional to simply the light intensity
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itself, f = α1pI. The nonlinear relationship of multiphoton fluorescence sharpens the

focal spot, decreasing the volume of excited fluorophore. As a consequence, signals

emerge from a very small region, approaching the sub-micron theoretical diffraction

limit, at the focal spot. Standard confocal imaging requires a pinhole to select light

only from the focal plane, which decreases the signal by rejecting some good photons.

The small excitation volume used in multiphoton microscopy obviates the need for

such a pinhole and allows for the collection of more of the emitted light. As a result of

these improvements, experimenters have access to tools that are capable of imaging

small neuronal dendrites, deep in neuronal tissue, with far reduced photodamage.

This method addresses one of the key challenges in these experiments, allowing us to

quantify fluorescence from the fine scale structures of the neurons, with high quality

images and little photodamage.

Additional improvements had to be made, however, to obtain the temporal reso-

lution required to record the fast signals of interest at multiple locations on the cell.

Existing methods of laser scanning typically use mirrors mounted on galvanometers,

which are used to scan the preparation. Our instrument uses a completely different

method, acousto-optical deflectors (AODs), to deflect the laser. This allows for a

much faster repositioning of the laser by large angles. Interestingly, with a change

in the input to the AODs, which will be described in detail below, the laser colli-

mation can also be changed. This allows for scanning above or below the natural

focal plane of the objective lens without physical movement of the objective. Thus,

three-dimensional scanning can be achieved at very high speed.
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Using this three-dimensional scanner we examined the interplay between back-

propagating action potentials (bAPs) and excitatory postsynaptic potentials (EP-

SPs). As mentioned in Chapter 1, the occurrence of bAP, preceded by an EPSP,

is thought to amplify the bAP and result in a superlinear influx of calcium. This

could be a mechanism of coincidence detection underlying Hebbian plasticity. We

examined the role of dendritic sodium channels in the interaction between bAPs and

EPSPs. We observe a large boosting of the calcium signal associated with a bAP

by pairing with presynaptic EPSPs. This boosting is present whether the EPSP is

paired with a single spike, or the tenth spike in a train. Somewhat unexpectedly, the

boosting is restricted to the distal region of the dendrites. We propose an explanation

for this, and discuss some of the implications for spike boosting as a mechanism for

coincidence detection.

3.1 Methods

3.1.1 Electrophysiology & calcium measurement

Brain slices were acutely cut from the hippocampus of 4-7 week old Sprague-Dawley

rats according to published procedures [67]. Briefly, our dissection solution consisted

of (in mM): 110 choline chloride, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 10 Dex-

trose, 0.5 CaCl2, and 7.5 MgCl2. This cutting solution was partially frozen and used

for intracardial perfusion, and for incubation while in the cutting chamber. Three

hundred µm thick horizontal slices through the hippocampus were made on a Pelco
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Vibratome 1000 Plus Sectioning System. After cutting, slices were transferred to our

standard extracellular solution which was made up of (in mM): 125 NaCl, 2.5 KCl,

1.25 NaH2PO4, 25 NaHCO3, 10 Dextrose, 2 CaCl2, and 2 MgCl2. For the incubation

time, this extracellular solution was supplemented with 1.3mM Ascorbic Acid, and

3mM Na-Pyruvate. After a brief 15 minute incubation at 32 degrees C, the slices

were left in the supplemented extracellular solution for at least one hour at room

temperature. Cutting solution and extracellular solution was continuously aerated

with a 95% O2 / 5% CO2.

CA1 pyramidal neurons were patched in the whole-cell configuration, and at least

20 minutes were allowed for diffusion of the fluorescent dyes. Internal solution con-

sisted of (in mM): 120 K-gluconate, 20 KCl, 0.2 EGTA, 10 HEPES, 2 MgCl2. This

was supplemented daily with frozen aliquots of 4mM MgATP, 0.3mM Tris-GTP, and

7 mM phosphocreatine. Two hundred µM Oregon Green Bapta-1, OGB-1, was in-

cluded for calcium measurement, while 50µM Alexa-594 was included for structural

visualization, also added from frozen aliquots.

In some experiments, a bipolar extracellular stimulating electrode was placed in

stratum radiatum, approximately 20 - 50µm from the dendrite of the recorded cell.

Stimulation protocols (described in Section 3.1.4) were applied, consisting of EPSPs,

driven by the extracellular stimulator, and bAPs, initiated via the patch pipette at

the soma.
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3.1.2 Data acquisition and analysis

Data were acquired using custom software, RUF II, originally designed by R. Fink,

and later modified and extended by G. D. Reddy, and myself. Time series data

analysis and image processing was done in MATLAB using custom algorithms written

by myself.

3.1.3 2D and 3D scanning

Structural imaging and functional recording are made using a custom 3D scanning

microscope (See Figure 3.1(c) for schematic). Excitation light at 820nm transmit-

ted to the preparation passing through a 750nm dichroic mirror (750DCXRU). This

wavelength of light is capable of 2-photon excitation of both fluorophores present

(OGB-1 and Alexa-594). Emitted light is reflected by the dichroic mirror and passes

through either a 600:200 (HQ600/200) bandpass filter, for the structural signal, or

a 550:100 (HQ550/100) bandpass filter to select the calcium-sensitive dye for the

functional signal. All of these filters were purchased from Chroma Technology Corp,

Bellows Falls, VT. As described in detail in the publication describing the develop-

ment of the instrument, Reddy et al [67], our microscope is capable of rapid scanning

in three dimensions. The setup includes four AODs, configured to deflect an incoming

laser beam by an angle dictated by the frequency of the acoustic wave applied to the

crystal.

Passing through an AOD, the angle of deflection, θ, of the laser light, is linearly

related the frequency, f , and inversely proportional to the velocity, v, of the acoustic
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Figure 3.1: Schematics of the optical setup. (a) AODs deflect light by an angle
θ, dependent on the frequency of the impinging acoustic wave (See Equation 3.1)
(b) Providing a pair of counter-oriented AODs with linearly chirped acoustic waves
deflects the laser by a range of angles. This results in a angular deflection of the
beam, described by Equation 3.2, as well as a change in collimation of the beam,
equivalent to a lens with focal length described by Equation 3.3. In practice, a 1:1
relay telescope is in place between the pair of AODs. (c) Schematic of the laser setup.
Collimated laser light is first expanded and brought to the aperture of the first pair of
AODs configured as explained in part (b). A 1:1 relay telescope transfers the image of
the first pair of AODs onto the second pair. Light is guided to the preparation, first
passing through a long-pass dichroic mirror, followed by the objective lens. Emitted
light is directed by the dichroic through one of a set of changeable emission filters
that selects the fluorophore of interest. Finally, light is collected by the PMT.

44



wave, as explained in the equation below:

θ =
λf

v
. (3.1)

Note that the angle of deflection also depends on the frequency of the incident light,

λ. For simple, two-dimensional scanning, similar to that achievable using standard

galvanometer-based scanners only one pair of AODs is used. One AOD deflects the

beam in the x-dimension (Figure 3.1(a)), while another perpendicular AOD deflects

the beam in the y-dimension.

To scan in three dimensions, the second pair of AODs is also used, and all AODs

are given linearly chirped inputs, rather than a constant acoustic frequency (See

Figure 3.1(b)). Equation 3.2 describes the total angle of deflection, θ, for one pair of

counter-oriented AODs. In this case, the AODs are given linearly chirped acoustic

waves with center frequencies of f1c and f2c, which relates to the angle of refraction

according to the equations below:

θ =
λ(f1c − f2c)

v
(3.2)

FAOL =
v2

2λα
. (3.3)

The term α corresponds to the slope of the acoustic chirps. The chirped frequencies

results in a deflection of the beam by a range of angles, changing the degree of

collimation of the beam. In effect, each pair of AODs, those oriented in the x, or

those oriented in the y direction, create a cylindrical lens with a variable focal length,

FAOL, described above by Equation 3.3.
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Because no physical movement of an objective lens or any mirrors is necessary,

AOD-based scanners greatly improve the speed at which the laser can be redirected

by a large angle. More importantly, our current configuration allows for a rapid

repositioning of the focal spot three dimensions. The speed of movement is limited

only by the aperture time, the length of time needed for a new frequency to fill the

aperture of the AOD. As a consequence, there is no added time penalty for large

deflections, or movements between focal planes. With standard galvanometer-based

systems, the time to move to a new location increases with distance, and movements

between focal planes require a separate technique.

A drawback to using AODs, on the other hand, is the large power losses, up to

30% from each AOD. The setup then requires a fairly high powered laser at the start

of the optical path. Similarly, AODs impose significant temporal dispersion. This

spreads out the laser pulses in time, resulting in a lower peak power. If power is a

limiting factor, this can hinder experiments. Interestingly, the problem of spectral

dispersion, where the wavelength dependence of diffraction from the AOD causes a

smearing of the focal spot when scanning with two AODs does not appear in the four

AOD configuration. The spectral dispersion by the first set of AODs, caused by the

wavelength dependence of the angle of deflection (Equation 3.1), is compensated by

the second set of AODs since they are oriented in opposite directions (Figure 3.1(b)).
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3.1.4 Experimental protocol

As depicted in Figure 3.2(b), the stimulation protocol consisted of a 500ms baseline

period, followed by ten action potentials at 10Hz, initiated at the soma. In some

experiments, one of the 10 evoked action potentials is paired with a series of 3 synaptic

EPSPs at 50Hz. These EPSPs were evoked starting at 50ms before the selected action

potential by the bipolar extracellular stimulating electrode placed at 20–50µm from

the dendrite of the recorded cell.

3.1.5 Calcium transient extraction

Functional traces were background subtracted and normalized for baseline fluores-

cence by calculating ∆F
F
. From these data, we extract the ten amplitudes of the

calcium transients from the trace according to the following procedure. For each

experiment, using the largest and cleanest traces of the cell, the decay phase after

the tenth spike was fit to determine the best exponential time constant (See Fig-

ure 3.3(a)). Typically this was found to be about 600-1200ms. Thus, knowing the

timing of each action potential, and the approximate shape of each transient, the

peak amplitudes of those transients were estimated using a version of the Generalized

Linear Model, GLM described next. Assuming that measurements were made at T

points in time, our model has the form

D = βX + E, D ∈ R1×T , β ∈ R1×10, X ∈ R10×T , E ∈ R1×T . (3.4)
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Figure 3.2: Schematics of the experimental setup. (a) A rough schematic of the
hippocampus. Our experiment involves patch clamp recording of pyramidal cells in
CA1, while stimulating the Schaffer Collateral inputs from CA3. (b) A closer view of
the cell and position of electrodes. The patch clamp pipette is at the soma, while the
synaptic stimulation is given in stratum radiatum, 20-50µm from the dendrites. (c)
The top plot represents the timing of stimulation through the somatic patch pipette to
initiate bAPs. The bottom plot represents the stimulation via extracellular bipolar
electrode. After a 500ms delay, 10 action potentials are initiated at the soma by
a brief current injection. Preceding one of the spikes, either the 1st or the 10th,
three synaptic stimulations at 50Hz are given, starting 50ms before the paired spike
i.e. EPSPs triggered at t−50ms, t−30ms, and t−10ms, with t the time of the paired
spike.
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Figure 3.3: Description of the GLM. (a) To estimate the decay time constant of
the fluorescence signal, the largest and cleanest signals of each cell were averaged.
The decay to baseline after the last action potential was fit to a single exponential
decay. The blue trace shows the average signal, as well as the best fit exponential
in red. The parameter, τ , in the equation noted in the figure is used in the GLM
analysis. The best fit timecourse in the example data shown above is 1.17s. (b) The
model calcium transients corresponding to the matrix X. The τ corresponds to the
best fit time constant from part (a), although there is a change in scale to better show
the different transient onsets.

As a tenet of the GLM, we assume that the data vector, D, is a noise corrupted

version of a sum of the the model calcium transients shifted in time to align them

with the stimulation. Equation 3.4 represents this in matrix notation. The sum of

functions is the product of a vector of coefficients, β, times the matrix X. The vector

E represents the noise in the model resulting from the measurement or the nature of

the observed process. The matrix X is analogous to the design matrix in some other

fields, such as in the analysis of fMRI data [27, 41]. As shown in Figure 3.3(b), each

row of the matrix is a model calcium transient induced by a single action potential.

The model shape is a function with an “instantaneous” risetime1, and an exponential

1The rise time of calcium after an action potential is very fast as is the binding of calcium to
fluorophore. It is a simplification of this model that the risetime of the calcium signal if fast enough
compared to our sampling frequency to be disregarded.
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decay. More precisely, the ith row of the matrix X has the form

Xi = e
−(t−si))

τ H(t− si),

where si is the time of the ith stimulation from the patch clamp pipette, and H(t)

denotes the Heaviside function.

To fit the model to data, we need to determine the vector of coefficients β. The

value of those coefficients represent the amplitude of each model transient that makes

up the fluorescent trace. Assuming that E is a vector of uncorrelated Gaussian

random variables, the least squares estimate of the coefficients is given by

β = DXT (XXT )−1. (3.5)

Implicit in this this discussion is the assumption that the amplitude of the recorded

signal is proportional to the amplitude of the underlying calcium transient. This

assumption is discussed further in Section 3.2.

3.1.6 Spatial functional data analysis

The main challenge of the data analysis is to integrate measurements that are made

from many points on the same filled cell. Both voltage and intracellular calcium are

expected to change gradually over the length of the dendrite. Therefore, the con-

centration of bound fluorophore, and hence the true amount of light emitted from

the recording sites, is expected to vary smoothly with path distance along the den-

drite. This means the correlation between recording sites nearby can be exploited by

functional data fitting in a further effort to increase the signal-to-noise ratio. I used
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Figure 3.4: Construction of a spline function. (a) The function whose graph is
represented by the heavy black line is fitted by splines. Fourth-order spline functions
are defined piecewise between six knots, shown here as vertical blue lines. The red
trace shows the polynomial which defines the function on the first interval between 0
and 0.2. Green, black, magenta, and blue define the function on the remaining four
intervals. Outside the six knots, the function equals zero. (b) A simple example set
of spline basis functions that could be used to fit data on the interval between 0 and
1. In our case, each function is a shifted version of all the others, with knots aligned.
Fitting involves calculating the coefficients of these functions, which when summed,
will approximate our data.

functional data analysis to better represent the smooth function assumed to underly

the noise corrupted measurements (See Ref [66] for a good introduction to the theory

of functional data analysis).

One-dimensional functional data analysis

The basis functions of our functional data analysis are fourth-order spline functions

(See Figure 3.4(a)). Splines are piecewise polynomial functions, having six knots in

our case, which are the points at which the polynomials are pieced together. Fourth-

order splines are continuous up to the 3rd derivative, and smooth and continuous up

to the 2nd derivative. A set of spline basis functions is defined on a domain matching
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that of the data. Let B be a matrix anM×N matrix of spline basis functions as shown

in Figure 3.4(b), where M is the number of basis functions, and N is the number of

sites to evaluate them. Similarly, let C be the same size matrix representing the

curvature of those basis functions, i.e. the second derivative of the spline functions.

For ease of presentation, I define the M ×M matrices, J = BωBT , K = CCT , and

L = J+λK. Here, ω is used to represent the confidence in each individual datapoint.

It is anN×N diagonal matrix whose elements are the variance of the estimate for each

datapoint. Also, λ is the so-called “stiffness” parameter, which essentially penalizes

high curvature in determining the function that best fits the data.

The coefficients of the spline functions are calculated by

S = DωBTL−1, (3.6)

where D is again a vector of datapoints. Note that if λ = 0, and ω = IN , the equation

reduces to S = DBT (BBT )−1. This is similar to the GLM solution for the coefficients

of the model calcium transients (Compare to 3.5). After determining the coefficients,

the smoothed function can be easily calculated by multiplying the coefficients by the

matrix of basis functions,

fit = SB. (3.7)

Prediction error for parameter validation

There are several free parameters when fitting a spline to the dataset. The first that

needs to be set is the order of the spline, which is related to the order of polynomial
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functions that comprise it. Cubic, third-order, splines are common and suitable for

most purposes. Ours are fourth-order splines because we occasionally plot the second

derivative of the spline, and the second derivative of a fourth-order spline is still

a smooth function. The decision is not too critical however, since all spline basis

functions beyond second-order have roughly the same shape and don‘t greatly affect

the end result.

Two more parameters, however, are more critical since they can greatly affect

the resulting fit. First is the knot interval, which is the distance between each of

the knots. This controls how much space any given spline basis function will span.

Having many sharply peaked functions, as a result of a small knot interval, allows

the fit to match a rapidly changing function. However, the use of such function may

lead to overfitting. On the other hand, splines defined with a larger knot interval

will change much more slowly over the domain. Secondly, the stiffness parameter,

λ, penalizes a curvature in the function, and pushes the calculated fit towards more

slowly changing functions (See Figure 3.5(b)). It is imperative to have an objective

way to set the parameters, beyond the attractiveness of the result.

Since we always have several replicates of each recording site under each experi-

mental condition, we can validate our choice of those parameters by minimizing the

prediction error of our fit. To calculate the prediction error of the functional fit,

first, leave out one replicate of the data, and perform your smoothing based on the

remaining replicates. The smoothed function is the “prediction” of the values of the

missing replicate. The error is simply the sum of squared deviations between the
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smoothed function and the missing replicate. The procedure is repeated by leaving

each replicate out in turn. Finally the results are averaged. The value returned for

this prediction error calculation is most useful when compared to similarly calculated

values from fits with different parameters. In this way, the values for the knot in-

terval, and spline stiffness, can be chosen according to which set of parameters best

represents the data by minimizing the prediction error (See Figure 3.5(c)). If there

were only one datapoint corrupted by Gaussian noise, the best estimate of the true

underlying value is simply the sample mean of all the replicates. Functional data

analysis takes advantage of the fact that nearby datapoints are correlated in their

values. It thus improves on the estimate of the underlying value beyond what can be

attained by using only individual sample means.

Branched functional data analysis

The previous section involved determining the best functional fit to a dataset defined

on a simple one-dimensional domain, such as a subinterval of the real line. Our

data, however, come from a branched domain. We present here an extension of

traditional functional data analysis that makes use the specific correlational structure

that smooth functions defined on a branched domain will impose.

As described above, B is an M × N matrix, where M is the number of basis

functions, and N is the number of datapoints. This matrix contains the values of

the spline functions at the locations of each datapoint. It is typically calculated as a

function of location on the dendrite and the location of the knots. Another way to
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Figure 3.5: Synthetic data and the basics of functional data analysis. (a)
Applying our analysis techniques to synthetic data allows us to test the effectiveness
of the technique when the correct answer to the problem is known. The underlying
function is a simple sine wave shown in red. Plotted also are five noisy “measure-
ments” of the same function, as colored dots. (b) The effect of varying the stiffness
parameter on the resulting functional fit. Blue, green, and red plots are functional
fits with a low, medium, and high values for the λ. Black points represent the mean
and standard error of the raw data. Note that the blue trace tends to follow each
deviation in the underlying data, while the red trace is beginning to be too stiff to
follow the data at all. When λ is very high, the functional fit becomes flat. (c) The
choice of stiffness parameter is justified by minimizing the prediction error of the
functional fit. Sweeping through a wide range of values for λ, the plot shows a clear
minimum in prediction error around a value of λ = 10−5, highlighted by the vertical
red line. Compare this to the prediction error of the sample mean shown in green.

55



a.

25% ∆F/F

100µm

half max

distance of propagation

b.

Figure 3.6: Simple branched spline basis functions. (a) Each basis function can
be evaluated at any point on the tree by calculating the distance to the center of
the spline. Notice how the function centered at the branch point (cyan) is equally
represented in all branches, and functions near the branch point (red, blue, magenta)
have some mass in all three segments of the tree. (b) Once there is a smooth functional
representation of the data, a more reliable measure of the distance of spike propagation
can be made. Here, the distance of propagation is defined as the distance at which the
functional fit of the fluorescence values falls below half the maximum value attained.

think about it, which is easier to extend to branched structures, is to define a canonical

spline basis function that is centered at zero. Evaluating the spline at the recording

sites then involves calculating the distance from the recording site to the center of the

spline function in question. A branched spline function centered near a branch point

will have mass that extends down each branch since the distance from those points

to the center of the spline is small. Figure 3.6(a) shows some simple branched spline

functions that can be used to fit data on a domain with three branches. The branched

functional fits of our real data are more complicated, as the domain of the function

is determined by the branching pattern of the cell, but they always fit in the same

mathematical framework. An additional normalization step is required for branched

functions, since regions of the dendrite near the branch points have more spline basis
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functions contributing than regions without branch points. All this entails is iterating

through the columns of matrix B and normalizing the sum to 1.

Quantifying distance of propagation

Figure 3.6(b) illustrates of how we calculate the distance of propagation of a bAP. We

define it as the point at which the functional fit drops to half of the maximal value

attained on the tree. In summary, we have methods of extracting each individual

calcium transient from the fluorescence traces, and functional data analysis to fit the

entire cell’s data at once. We therefore obtain a measure of the distance of propagation

for all spikes in the train across the visible region of the cell.

3.2 Results

The ability to do fast scanning in three dimensions is a notable accomplishment by

itself, and the subject of a standalone publication in Nature Neuroscience [67]. The

scanner is capable of repositioning the laser to any location in the entire visible volume

at high speed, limited only by the time at which a new acoustic frequency can fill the

aperture of the AODs. This corresponds to the settling time of approximately 12µs.

We then keep the laser focus fixed at this location for 8µs for data collection, after

which the laser is moved to a different spot. The entire cycle therefore takes only

20µs, and a functional scan consisting of 50 arbitrarily positioned recording sites can

be made at a 1kHz sampling rate.
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Figure 3.7: 3D scanning of live neurons. The images above demonstrate the
capabilities of the 3D scanner. These are maximal projection images from each of the
three views, top-left is the z-projection, top-right is the x-projection, and the bottom
is the y-projection. This example has 38 recording sites which are plotted on each
image, color-coded for depth in the slice. It takes 8µs to scan a site and 12µs for the
scanner to move between two sites. All points are covered in 760µs (38pts * 20µs/pt),
before returning back to the first. The white scale bar is 50µm.

3.2.1 Three-dimensional imaging of bAPs

Figure 3.7 shows three maximum projections images from a stack of data collected

with this setup. All three main axis views are show in an attempt to convey the three-

dimensional nature of the dataset. After the image stack was made, 38 recording sites

were selected, as shown on each of the images. The color of the marker represents

the depth of field relative to the natural focal plane of the objective. As a proof of

concept experiment, to measure the calcium transient associated with bAPs, I applied

a simple stimulation protocol (3 bAPs @ 20Hz, 500ms delay). As shown in Figure 3.8,
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the calcium transient associated with the stimulus is apparent (blue traces). After

application of 150µM BaCl2, which has been shown to block the A–type potassium

current [29], a large increase in the calcium response is clear in almost all traces from

the apical trunk. This is consistent with the expected effect of the A–current on

the shape of the action potential. As a very fast, depolarization-activated outward

current, it is expected to decrease the amplitude of bAPs, and limit the range of back-

propagation of a spike. This example illustrates the ability of the setup to measure

the calcium signal induced by the bAPs, as well as its modulation by an A-type

potassium channel blocker. It therefore serves as an important step in motivating

and justifying the experiments that will be described next.

3.2.2 Linearity of the fluorescence response

In fluorescent imaging, there is always a concern about the linearity between the

recorded optical measurement on the underlying signal. In the present case we are

using the relative strengths of the optical signal to infer relations between the mag-

nitudes of the recorded calcium concentrations. Therefore, in our case the concern

about linearity is even greater, because we may be comparing the amplitudes of cal-

cium transients from different baseline values. The fluorescence response is expected

to follow an exponential binding curve. At high calcium concentrations, much less

fluorophore is available. This saturation causes the measured calcium transients to

decrease with dye occupancy. It is important that the response of our calcium dye

remains approximately linear in order to compare the magnitude of different calcium
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500ms

Figure 3.8: K-channel dependence of bAPs. For the cell shown in Figure 3.7,
the effect of 150µM BaCl2 bath application is shown for the 13 points on the apical
trunk. The blue traces were recorded in control solution, while the green traces were
recorded 20 minutes after bath application of BaCl2. The scale bar is shown in the top
right of the figure. As expected, the blocking of the A current resulted in increased
calcium response reflective of an increased depolarization due to bAPs.
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transients.

Validation of our technique on this point is possible since for each cell, we have

a number of recording sites at or near the soma. As verified by our simultaneous

somatic recording, action potentials at the soma are reliable and have a consistent

amplitude. This enables us to measure the fluorescence transient amplitudes at these

sites near the soma to ensure that the amplitudes we extract via the GLM are of

equal size. Figure 3.9(a) shows a sample recording site that is located near the soma.

Note that the calcium transients extracted by the GLM are very consistent over the

whole train in the site corresponding to the soma.

Some cells did exhibit a significant decrease in the amplitude of calcium transients

with successive spikes, presumably due to dye saturation. These cells were not used

in the comparison between different spikes in the train.

3.2.3 Pointwise analysis of fluorescence signals

Viewing the fluorescence traces from single recording sites as in Figure 3.9, a few

confirmations can be made about the behavior of the bAPs. Firstly, as mentioned

above, the fluorescent transient has a consistent amplitude when measured near the

soma (Figure 3.9(a)), as expected from the amplitude of the action potentials there.

Contrarily, the transients extracted from the dendrites do show reduction in amplitude

later in the train (see Figures 3.9(b) and 3.9(c)). This is consistent with direct

electrophysiological recordings which show that the amplitude of later spikes in a

train recorded in the dendrite are smaller than the amplitude of the first. This is due
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Figure 3.9: Single point examples of fluorescence traces. Left panels, (a,d),
correspond to the proximal recording site, middle panels, (b,e) to the middle recording
site, while the right panels (c,f) correspond to the distal recording site as shown in (g).
The top pairs of plots are the response of the cell to ten action potentials initiated
at the soma. In all cases, the blue trace is the raw data, and the superimposed red
trace is the GLM fit. The bottom pairs correspond to ten action potentials, paired
with three EPSPs before the tenth spike, as described in Figure 3.2(b). The soma is
just above the image shown in (g). The bright object near the bottom of the image
is the extracellular stimulating electrode.
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to the slow recovery from inactivation of dendritic sodium channels [11]. Looking at

the dendritic measurements in Figure 3.9(b) and 3.9(c), it is also apparent that the

first transient appears to be decreasing in amplitude with distance, a phenomenon

usually attributed to A-type potassium channels [36].

Additionally, we can observe significant boosting of the calcium signal after presy-

naptic stimulation just before the bAP. Compare 3.9(b) to 3.9(e) and 3.9(c) to 3.9(f)

to see the changes in response with and without presynaptic stimulation paired with

the tenth spike. Note that the amplitude of the tenth spike near the soma is similar

between the two conditions.

3.2.4 Functional data analysis on the apical trunk

The data presented in the last section demonstrate the effectiveness of the GLM in

extracting the amplitudes of the calcium transients and confirm several expectations

from previous biological experiments. Our goal, however, is to generate a more com-

plete representation of the activity level on the whole cell. Section 3.1.6 describes a

method by which data recorded at different points of a simple one-dimensional struc-

ture can be fit to a smooth function. This method can be applied directly to our data.

We first present the analysis of the data from the recording sites on the apical trunk

of the dendritic tree. For the purposes of our analysis, this portion of the dendrite

is represented by a line segment. The analysis of data on branched sections of the

dendritic tree is shown subsequently.
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Figure 3.10: Single spike propagation and boosting. (a) Aligned maximum
projection images from four recording regions of the experiment. The markers on
the image are the locations of the recording sites. Cyan markers denote locations
on the long dendrite used in the functional data analysis in panel (b). (b) Raw
amplitudes, and functional fits for each of the three conditions of the experiment.
Blue is the fluorescence signal resulting from an unpaired bAP, red is the signal from
an unpaired presynaptic stimulation, and green is the signal from a bAP that is paired
with presynaptic stimulation.

Figure 3.10 shows the recording locations and the amplitude of the calcium tran-

sient evoked by a single bAP. The markers on Figure 3.10(a) represent the recording

locations during the stimulation. Figure 3.10(b) shows the raw amplitudes for the

cyan recording locations from part (a), overlaid with the spline fit for each of the three

conditions. The EPSPs that are evoked by extracellular stimulation have little effect

on their own, but both the action potential and the pairing induce a large fluorescence

change. Importantly, the signal from the action potential paired with extracellular

stimulation extends significantly farther from the soma.
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Figure 3.11: Spike train propagation through the apical trunk. (a) Top: A
functional representation of each of the ten action potentials in a train, using all
recording sites on the apical trunk. The dotted vertical lines represent estimates
of the distance of propagation for each spike. Note that the blue and green lines
correspond to the first and second action potentials in the train, which are known to
propagate the furthest along the dendrites. (a) Bottom: The functional representation
of ten action potentials, with presynaptic stimulation occurring before the tenth spike.
Colors are the same as in the top plot. The cyan trace, corresponding to the tenth
spike, extends further along the dendrite than even the first and second (blue and
green as in the top plot). (b) Bar graph highlighting the distance of propagation of
each of the spikes. Blue corresponds to trials without presynaptic stimulation, and
red to trials with presynaptic simulation just prior to the tenth bAP.

Figure 3.11 shows the one-dimensional fit to the data from recording sites on the

apical trunk during a train of bAPs. The fit was obtained using functional data

analysis, as explained in Section 3.1.6. Each calcium transient propagates backwards

through the tree to varying degrees. In both cases in Figure 3.11(a), the response from

the first spike (shown in blue) propagates farther than that of the second spike (green)

which propagates farther than spikes 3–9. Only spike number 10, when paired with

presynaptic stimulation propagates further (cyan trace, bottom plot). Figure 3.11(b)

compares the distances of propagation between the two sets of trials.
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It is interesting that in this case, as in the boosting experiment with a single bAP

(See Figure 3.10(b)), the boosting is only apparent in the distal region of the cell.

Some interesting implications of this observation will be discussed in Section 3.3.

3.2.5 Functional data analysis on the entire tree

The analysis presented above represent a great way to use functional data analysis to

include more of the data in the measurement of the distance of propagation. On the

other hand, a lot of data were left out, since we only analyzed data from the apical

trunk. This is made obvious by the large number of recording sites in Figure 3.10(a)

that were not included.

Using the branched spline fitting approach, described in Section 3.1.6, I fit the

entire dataset at once, with smooth function defined on a domain that matched the

branching pattern of the cell. The fit was obtained using splines adapted to the

branching structure. Figure 3.12 shows the result of the fitting, where the amplitude

of the first and tenth spikes are plotted with and without presynaptic pairing with the

tenth spike. The bottom panels of Figure 3.12(a) show the difference in the amplitude

of the calcium transients between the two conditions. As expected, the response of

the first spike, which happens long before the presynaptic stimulation, is relatively

unaffected. The difference plot in that case is relatively close to zero across the whole

cell. On the other hand, the tenth spike, shown on the right plots is greatly affected

on some branches, while unaffected on others. The result that the region of significant

boosting is restricted to the distal branches is clear in this case as well.
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Figure 3.12: Branched functional data analysis. (a) The branched functional
representation of the activity induced by the first action potential in the train, with
and without EPSP pairing with the tenth spike. This is essentially a control condition,
as the EPSP pairing with the tenth spike happens long after the first spike and
should not effect it at all. Different dendritic branches are color coded according to
the map image in (c). The bottom plot, the difference between the two functions,
accentuates the effect of presynaptic pairing, which in this case is small. (b) The
branched functional representation of the calcium response of the tenth spike, with
and without pairing. Notice that the difference plot shows a large region of boosting
of the calcium transient by the presynaptic pairing. Interestingly, this case shows
what appears to be selective propagation down some branches (note the “failure” to
propagate down the green branch, for instance). (c) An image showing the recording
sites and color coded branches. The soma of this cell is just below the image, where
the edge of the recording pipette can also be seen on the left.
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3.3 Discussion

We have demonstrated the ability to measure the calcium transient associated with

bAPs using 3D scanning microscopy. In particular, we used the technique to effec-

tively estimate the extent of propagation of bAPs through a significant portion of the

dendritic tree. The calcium wave displays many of the features expected from what

is known about spike back-propagation. We show that the signal decreases in ampli-

tude with distance from the soma, and decreases in amplitude with successive spikes

in a train. Furthermore, the decreasing amplitudes of our calcium measurements are

restricted to dendritic recording sites, as is the decrease in spike amplitude made from

direct electrical recordings [11].

The new capabilities of our microscope instilled the need for new strategies for

data analysis, that can take advantage of data generated from many locations at once.

I presented the methodology for functional data analysis on simple one-dimensional

domains, as well as on a branched structure. This technique, along with the GLM for

time series analysis, goes a long way towards optimizing the estimate of the parameters

of interest. An even more powerful model, which takes into account the nonlinearities

imposed by fluorescent recording, as well as the noise profile of our instrument is

presented in Chapter 4.

In the experiment presented above, we also observed the interaction of bAPs and

EPSPs on the dendritic tree and have mapped the region in which the combination

of stimuli produce a superlinear effect. An interesting point about the boosting of
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the calcium signal that we observe (See Figures 3.10(b), 3.11(a), and 3.12(a)(b)) is

that it is restricted to the distal regions of the dendrites (usually > 150µm).

One key component to how we understand the interaction of the two stimuli

is in the distinction between spike amplification and resurrection of a failed spike.

Both effects can change the amplitude of the action potential, and subsequently in-

duce a measurable change in calcium fluorescence. Spike amplification by an EPSP

would simply mean that presynaptic stimulation has inactivated the transient potas-

sium channels, shifting the balance between excitatory and inhibitory currents. This

changes the shape and amplitude of the spike by a degree proportional to the amount

of potassium channels that were inactivated.

Resurrection of a failed spike, on the other hand, has some different properties.

Acker and White [1] showed the effect of the changing concentrations of ionic con-

ductances along the dendrite. They find that at some distance from the soma, the

increasing concentration, and faster kinetics, of the A-type potassium channel results

in a loss of the traveling wave attractor (TWA) for that membrane. This means

that the conductances found far out on the dendrites are incapable of sustaining a

regenerative action potential. An action potential propagating along this dendrite

will reach a point beyond which only passive decremental propagation is possible. In

this light, the effect of a presynaptic stimulation, as it inactivates the A–current, isn’t

merely a change in the balance of excitation and inhibition that amplifies the action

potential. Instead, it changes the balance to restore the TWA, and allows for active

propagation into regions where before there was only failure. This can result in a
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much larger boosting of the spike since it moves across the bifurcation point where

the TWA emerges.

Given the ability of the changing potassium conductances to allow or disallow

active propagation through their impact on the TWA, it is easy to show a similar

effect of changing sodium conductances. Our own simulations, data not shown, reveal

that similar effect of loss of the TWA when sodium channel densities decrease. It is our

hypothesis that with successive spikes in a train, due to the loss of sodium channels,

the location of the bifurcation point of the TWA will migrate towards the soma.

The reason for making the distinction between spike amplification and spike res-

urrection is that the two mechanisms of spike boosting are likely to behave very

differently. For example, the loss and gain of the TWA, will be restricted in space to

the region of the dendrite close to the bifurcation point for the TWA, since a spike

that has not yet failed cannot be resurrected, reemerging from the deep like Jonah

from the belly of the whale. Actively propagating spikes, on the other hand, can still

be amplified, since it is a variable change in spike amplitude, driven by any change

in the balance of excitation and inhibition. There is also a difference in the gain

of the boosting response to the two mechanisms. Even a small change in channel

concentrations on a region of dendrite near the bifurcation point of the TWA can

make a large difference in spike amplitude. On the other hand, a small change in

channel concentrations will make only a small change in the amplitude of an actively

propagating spike.

Our data show the region of the largest pairing induced calcium influx is in the
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distal dendrites. This spatial patterning suggests our signal is dominated by the

spike resurrection mechanism presented above. Without undue dependence on the

theory of TWAs presented above, our data clearly show that the calcium response in

the distal dendrites, from the bAP, is greatly influenced by presynaptic stimulation.

Pairing with presynaptic stimulation may ensure back-propagation of the spike to

the distal dendrites, and provide another form of coincidence detection for the cell.

Multiple coexisting coincidence detectors has been proposed for corticostriatal STDP

as well [26].
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Chapter 4

Data analysis by sequential Monte Carlo particle filter

To review, we study the activity of neurons under different stimulation paradigms.

Furthermore, our tools allow us to measure the level of activation of many different

cellular compartments with high temporal resolution. This is accomplished with the

use of fluorescent calcium indicators and a newly developed 3D scanning multiphoton

microscope [67].

Our most basic analysis task involves the measurement of the amplitudes of the

calcium transients evoked by a train of back-propagating action potentials. The

simplest estimates of this amplitude are confounded by the low signal-to-noise ratio,

and depending on the method used, can be biased. For example, measuring the

amplitude of the transient as the maximum value during the transient [23,85] is biased

towards higher values. It also suffers from the full extent of the recording noise, which

dominates the measured signal when the light intensity is low (See Figure 4.1). On the

other hand, measuring the amplitude as the average over an interval of time [3,6,69]

during the transient is biased towards zero, since the calcium transient is not flat,

but decays exponentially. As illustrated in Figure 4.1, this bias towards zero becomes
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more problematic when measuring the amplitude of spikes in a train, where the signal

has not yet decayed back to baseline. In studies with very low noise, such as when

using a very slow detector, the signal can even be estimated by the first point after

the stimulus [94].

The main focus of this chapter is to describe how to estimate the underlying signal,

by using the information that is known about the processes by which our signal is

produced and measured. These methods are then validated and characterized on

synthetic data. The data analysis procedure makes use of our understanding of the

kinetics of the binding reaction of Ca2+ and fluorophore, as well as the noise profile

imparted by our instruments. This is accomplished through the implementation of

a sequential Monte Carlo (SMC) particle filter, to find the most likely combination

of parameters that produced a given data trace. This strategy has been used before

in analyzing single channel traces [9], and more recently in fluorescence traces for

extracting the spike times of a neuron [88].

The GLM model presented in Section 3.1.5 is a more sophisticated method than

the traditional methods presented shown in Figure 4.1. It does take into account the

shape of the expected waveform, and makes use of the whole dataset in an estimate,

instead of only a subset of the available data. The limitations of the GLM, however,

stem from the hidden assumptions that are made, such as the Gaussianity of the

noise. I will show later that the detection noise from the PMT is highly non-Gaussian,

especially at low light levels. The analytical tractability of the GLM also comes at

a cost. The linearity of the model stems from the assumption that the solution is a
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Figure 4.1: Problems with traditional analysis techniques. (a) Using synthetic
data to compare the effectiveness of several different methods of estimating the ampli-
tude of a simulated calcium transient (black trace). The calcium transient is modeled
here as an instantaneous increase in fluorescence, followed by an exponential decay
back towards baseline. The noise is assumed to be Gaussian with zero mean. Using
only the first point (green dot), or the maximum value (blue dot), or an average
over an interval of time (red section) are three ways to estimate the amplitude of a
noise corrupted signal. The magenta trace is the noise-free signal. They cyan plots
in all panels represents the true, noise-free signal. (b) shows the distribution of the
3 different estimates. Estimating the amplitude with a single point (green), with the
maximum value (blue) and with an average of 100 points (red) show the effect of the
different methods on the variance and bias of the estimate. (c) shows a simulated
fluorescence response to a train of 10 action potentials, as well as the estimate of
the fluorescence signal as an average of points during the transients (red). (d) shows
those estimates as a function of position in the spike train. Note how estimating the
amplitude of the transient by a simple average gets progressively worse later in the
spike train.
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linear combination of known functions.

The model-based procedure I present here makes no assumption of linearity, nor

does it assume a Gaussian noise profile. Taking into account what is known about

how calcium influx results in an increase in measured fluorescence, and how that

fluorescence is measured by the detector, the most likely calcium influx is inferred

from the measured fluorescence trace.

4.1 The model of the fluorescence signal

As mentioned above, the goal is to include knowledge of the system to best estimate

the signal of interest, which is the degree of activation of each subcellular compart-

ment. While voltage-sensitive fluorescent dyes measure the cell’s membrane potential

more directly, using the calcium signal as a proxy has a couple of practical advantages.

First, calcium dyes offer a much larger change in fluorescence than voltage-sensitive

dyes. Furthermore, a high affinity calcium dye, such as Oregon Green Bapta-1 (OGB-

1), binds Ca2+ with rapid onset, but very slow offset (i.e. α ≫ β in Figure 4.2). This

allows for temporal integration of the signal, further increasing the signal-to-noise

ratio of our estimate.

Figure 4.2 shows a simplified diagram of the chemical reaction that relates mem-

brane potential to an increase in calcium concentration, and subsequently an increase

in recorded fluorescence. Depolarization of the membrane acts to increase intracel-

lular calcium concentration, [Ca2+]i, through the opening of voltage-gated calcium
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Figure 4.2: The relationship between membrane potential and fluorescence.

Changes in membrane potential, Vm, affect the rate of Ca2+ influx into the cell via
VGCCs. Intracellularly, [Ca2+]i is sequestered by endogenous Ca2+ buffers, as well as
by our optical probe, F. A change in the relative concentration of F and FCa2+ results
in a measurable change in fluorescence.

channels, VGCCs. Under normal conditions, activity of VGCCs leads to a rapid in-

crease in [Ca2+]i, which is then sequestered and extruded by a myriad of endogenous

calcium buffers and membrane-bound calcium pumps. Our experimental manipula-

tion makes this transient visible by including an additional calcium buffer in the cell.

This buffer corresponds to the intracellular fluorophore, and is denoted by F. The

final bound complex, FCa2+, is 9 times more fluorescent than its unbound counter-

part [33], providing an optical measure of electrical activity.

4.1.1 Fluorescence as a function of [Ca2+]i

The binding diagram given in Figure 4.2 provides the framework for knowing the way

in which our signal of interest is transformed by our experimental setup. Changes in

[Ca2+]i are reflected in the resulting fluorescence changes, but the kinetics of the mea-

sured fluorescence don’t necessarily match the kinetics of [Ca2+]i. In our case, with a
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high affinity indicator, the onset of the fluorescence change is a good approximation

to the onset of the Ca2+ signal, since the association rate of the two components, α,

is very fast. The disassociation rate, β, however is much too slow to match the rate

at which [Ca2+]i levels return to baseline. Therefore, the resulting fluorescence is a

“leaky integral” of the Ca2+ signal, rising quickly to match the rise of [Ca2+]i, but de-

caying back to baseline with a very slow time constant (≈600-1200ms). Equations 4.1

to 4.3 relate the three variables involved in the binding reaction explicitly,1

[Ca2+]t = [Ca2+]t−1 +
n
∑

j=0

Ajδt,tj + (4.1)

dt
(

β[FCa2+]t−1 − α[F]t−1[Ca
2+]t−1

)

+

dt
(

rext
(

[Ca2+]base − [Ca2+]t−1

))

+
√
dtχCa

[FCa2+]t = [FCa2+]t−1 + dt
(

α[F]t−1[Ca
2+]t−1 − β[FCa2+]t−1

)

(4.2)

[F]t = [F]total − [FCa2+]t. (4.3)

The concentrations, [Ca2+]t, [FCa
2+]t, and [F]t are calculated as functions of the con-

centrations and rates of change at the previous timestep, t−1. Here, rext represents a

combined rate constant for all the endogenous mechanisms of Ca2+ sequestration, and

[Ca2+]base is the baseline Ca
2+ level. The parameters, α and β are the rate constants

for binding and unbinding to the fluorophore. Variation in the underlying calcium

signal is represented by χCa which follows a normal distribution with zero mean and

and standard deviation σCa, that is N (0, σ2
Ca). Therefore, calcium concentration in

the model can rise and fall due to random fluctuations. The term rext will serve

1Since our dye is intracellular, the measurements will only reflect changes in [Ca2+]i, and not
[Ca2+]o, therefore the subscript will from now on refer to the time variable t.
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to bring the calcium concentrations back towards baseline, which makes the under-

lying calcium concentration a mean-reverting Gaussian process. This process is a

time discretization of an Ornstein-Uhlenbeck process. At the times of bAP initiation,

the calcium concentration is allowed to increase by a variable amount, reflecting the

unknown amount of calcium introduced by the bAP. In the model, a series of n pa-

rameters, Aj, represent the amplitudes of the ‘instantaneous’ rise in Ca2+ at the times

of action potential initiation, which are denoted by tj. Estimating the distribution of

the most likely amplitudes is the main goal of this procedure.

Finally, light intensity It emitted from each recording location is related to the

concentrations of free and bound fluorophore as

It = C1(Rf [FCa
2+]t + [F]t) + C2. (4.4)

The scalar, Rf is the relative fluorescence of the bound fluorophore to free fluo-

rophore (Rf = 9 [33]). The constant C1 represents the proportionality constant for

fluorophore concentration to light intensity, while C2 is the signal offset resulting from

autofluorescence.

4.1.2 Variability in PMT output

Now that the amplitude and timecourse of the signal of interest can be parameterized

and predicted, additional knowledge of the detection system will also aid in uncovering

the signal. Photomultiplier tubes, PMTs, are very sensitive light detectors, which

amplify the light signal in several stages. Referring to Figure 4.3, an incoming photon
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induces the release of a free electron at the photocathode. In the body of the PMT,

a high voltage electrical field accelerates the electron towards a series of dynodes. At

each dynode each incoming electron gives rise to a number of electrons which continue

on to the next dynode. Therefore each dynode amplifies the signal multiplicatively.

This results in an avalanche of electrons which grows at every stage.

The mean gain of the PMT is easily calculated. Given a PMT with k stages, where

the gain per stage (the average number of electrons produced per incoming electron) is

g, the mean total gain is equal to G = gk. There is, however, uncertainty in the gain of

the PMT, as the number of electrons produced at each dynode by an incoming electron

is a random variable. The number of electrons emitted at each stage has been modeled

previously by Tan [82], as a Poisson distributed random variable, with known mean,

corresponding to the mean gain per stage. Under this assumption, a single electron

at the first dynode, yields pg(1) electrons at stage two, where pg(x) represents the

sum of x numbers drawn from a Poisson distribution with mean g. Subsequently, the

number of electrons emerging from the second stage is pg(pg(1)), since each electron

from stage 1 yields a group of electrons. Our eight stage PMT would be modeled by

the eight level composite function, pg(pg(pg(pg(pg(pg(pg(pg(1)))))))).

Evaluating this composite function a number of times results in a distribution of

gains that resembles that of a real PMT. However, due to the fact that the gain is

not achieved by a simple additive process, the central limit theorem does not apply

directly. As a result, the distribution of PMT gains at the output can be highly

non-Gaussian, and depends on the incoming light intensity. At lower light levels, the
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Figure 4.3: Schematic of a PMT. A photon enters the PMT and induces release of
an electron at the photocathode. The electron continues towards a series of dynodes,
which result in the amplification of the signal by a multiplicative factor at each stage.
Public Domain image from [20].

distribution is highly skewed, approaching an exponential-like distribution at very

low light levels. At higher light levels, the distribution becomes more normal, and

becomes closely Gaussian at high light intensity. This change in the shape of the

distribution of output voltages can be recorded directly in a PMT [22, 82], including

our own as shown in Figure 4.4. Information about this gain distribution can be used

to improve the estimate of the underlying signal.

4.1.3 PMT voltage as a function of fluorescence

To estimate the distribution of output voltages, i.e. the noise profile of the PMT,

I collected many long data traces from a constant light source. This was done by

imaging a simple fluorescent slide at different excitation intensities. Figure 4.4(a)

shows four such data traces, corresponding to four different light intensities. The

distribution of output voltages is approximated by a histogram of all points in the

data traces, as shown in Figure 4.4(b). In all traces, the resulting distribution is well
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Figure 4.4: Noise profile of PMT output. (a) shows four voltage traces given a
constant input from a fluorescent slide. The four plots correspond to increasing light
intensities from top to bottom. (b) (top) shows the histograms generated from all
points in each of the four traces in (a). Note that at low light intensity (blue), the
distribution is highly skewed and appears exponential, while at high light intensity
(cyan) the distribution becomes Gaussian. Superimposed on each trace in black is
the gamma approximation given by the model. (b) (bottom) shows the residual not
captured by the gamma approximation.

approximated by a gamma distribution. The two parameter family of gamma distri-

butions is reduces to the exponential distribution in certain limits, and the Gaussian

distribution others. This family has previously been used as an approximation to the

the gain distribution of PMTs [78].

Hundreds of noise traces like those shown in Figure 4.4(a) were used to build a

model of the noise profile of our PMT. The gamma distributions that best fit each

trace were found and define a function that relates the mean incoming voltage to the

shape parameter, denoted here as A, of those gamma functions. Equation 4.5 was

empirically fit (using Eureka version 0.79 [72]) for this purpose. The scale parameter

B is then calculated as in Equation 4.6 to ensure that the resulting distribution has
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the required mean value (E [γA,B] = AB).

A(It) =
0.094

0.112 + I3t
+ 7.663It + 0.162I2t − 0.476 (4.5)

B(It) =
It

A(It)
(4.6)

Vt = γA,B + C3 (4.7)

Here, γA,B is a randomly distributed value which follows a gamma distribution pa-

rameterized by A and B, calculated from Equations 4.5 and 4.6. Note that values

of Vt follow a shifted gamma distribution, on account of the voltage offset from the

PMT, represented here as C3.

As mentioned above, the distribution of voltages from the PMT drastically changes

shape with light intensity. A word of caution: Although the shape of the distribution

is changing, and becoming highly skewed at low light levels, the amount of light

emitted from the recording site is still best represented by themean of the distribution,

not the mode (peak value). That is to say, the amount of light emitted, our true

parameter of interest, is proportional to the mean voltage at the PMT.

Consider a single fluorescent molecule emitting photons under constant excitation

light. The emission of photons from that molecule can be thought of as a Poisson

process, with events occurring at rate r. As such, the number of photons emitted in a

given time interval, ∆t, follows a Poisson distribution, with a mean r∆t. Now, assume

that a second fluorescent molecule has arrived in the focal volume. The new rate of

photon emission is 2r, and the mean number of photons emitted in each time interval is

2r∆t. Extrapolating further, the number of photons for n molecules of fluorescent dye
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a.

b.

Figure 4.5: Construction of, and inference from, the noise model. (a) depicts
the method by which a model of PMT noise was constructed from measurements
of constant light sources. Highlighted are three distributions corresponding to low
(green), medium (red), and high (cyan) light levels. Once the smooth function de-
scribed in Equation 4.5 had been defined, the distribution of voltages from any light
level, not just those used in the fitting, can be estimated. (b) illustrates the way in
which estimates of light intensity are made from the model, assuming all light inten-
sities are equally probable. Highlighted are three distributions corresponding to three
different voltages measured from the PMT. These distributions are interpreted as the
likelihood distribution of light intensities that produced a given voltage datapoint
measured from the PMT.
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is nr∆t. The shape of the Poisson distribution can also changes with light intensity,

from a highly skewed distribution at low light levels, to an approximately Gaussian

distribution at high light levels. The shape of the distribution further depends on ∆t,

but the proportionality between the number of fluorescent molecules and the mean

number of photons in a given time interval remains. In a similar way, the number of

electrons emitted at a dynode of the PMT, is best described by the mean number of

electrons it will emit, not the most likely number over a given time interval.

A key step in constructing the noise model is in definition of Equation 4.5. This

relates the mean incoming light intensity to the parameters of the distribution of

voltages that will emerge from the PMT. Once an equation has been found to describe

this relationship, the distribution can be estimated for any possible value of incoming

light, not just the ones that were recorded and used to fit the function. At that point,

the problem can then be inverted using Bayes’ Theorem. In our case, Bayes’ theorem

relates probability of light intensity, It, given a recorded value for Vt, in the following

way:

P (I|V ) =
P (V |I)P (I)

P (V )
,

where P (I) is the prior probability distribution for It. Here, P (V ) is a normalizing

constant, which can also be written as
∑

I P (V |I)P (I). In this analysis, we always

assume a uniform prior distribution over It.

Thus, the voltage output of the PMT at time t, Vt, is an independent gamma

distributed random variable with parameters which are functions of It. Constant C3

represents the voltage offset of the PMT. Figure 4.5(a) shows the relationship of the
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distribution of Vt to a given It, and depicts how the model of PMT noise is constructed.

Highlighted are the distributions of noise at three constant light intensities. As will be

discussed in more detail in the following sections, this noise model is used to calculate

what likelihood distribution of It values produces a given Vt, as shown schematically

in Figure 4.5(b). Highlighted are the likelihood distributions of It for three voltages

measured from the PMT.

The assumption that each measurement is an independent random variable is

validated by measuring the cross-correlation between noise traces collected in the

same sweep. Recall that the laser focus sequentially visits each recording point, and

then repeats the sequence until the end of the sweep. As such, if PMT samplings

had temporal dependencies it would be reflected in the cross-correlation of successive

points scanned. Since no cross-correlation was higher than 10−3, the assumption of

independence appears valid.

This section has described a slightly simplified model of how an increase in [Ca2+]i

leads to an increase in voltage output of the PMT. The model includes the major

component which changes the timecourse of the signal due to the binding kinetics of

our fluorophore, and the noise profile of the detector. We next use this model to infer

what set of parameters most likely produced the recorded data traces.

85



4.2 Particle filter estimation of the calcium signal

We assume our system behaves according to the model presented above, and consists

of a set of parameters we wish to estimate. We therefore have a set of hidden states

Ht =
{

[FCa2+]t, [F]t, [Ca
2+]t
}

,

along with a set of parameters,

θ =
{

Aj, [F]total, rext, σCa, [Ca
2+]base

}

.

These dictate the transition between possible hidden states, according to Equa-

tions 4.1–4.3. To constrain the model, we use the PMT output as the observation

of the system at time t, Ot = Vt. This results in a set of observations O = O1:N .

From the model of the system, detailed above, we define the observation distribution,

which describes the probability of observation states, given a particular hidden state.

P (Ot|Ht) = P (Vt|It) = P (Vt|[FCa2+]t, [F]t) (4.8)

The probability of each observation is obtained using the gamma distribution, with

parameters dictated by It through Equations 4.5 and 4.6. Our task, however, is to

estimate the relative likelihood of hidden states at time t, given the entire set of

observations, P (Ht|O).

The particle filter begins with the creation of a large number of particles, which

are independent realizations of the model described above. The particle filter method

allows us to estimate the likelihood distribution of hidden states, as they are con-

strained by the observation states, representing the experimentally recorded values.
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More precisely, the distribution is approximated by a set of weighted particles as in:

P (Ht|O1:t) ≈
N
∑

i=1

wi
tδ(Ht −Hi

t), (4.9)

where δ(·) denotes a point mass at the hidden state defined by particle i. The weights

are determined by:

wi
t =

P (Ot|Hi
t)P (Hi

t|Hi
t−1)w

i
t−1

q(Hi
t)

. (4.10)

We use a simple version of the algorithm and assume that the sampling distribution,

q(Hi
t), is equal to the transition distribution, P (Hi

t|Hi
t−1). Therefore,

wi
t = P (Ot|Hi

t)w
i
t−1. (4.11)

Here the weight, wi
t, of particle i, at time t, is calculated as the product of the weight

of the particle at the previous timestep, and P (Ot|Hi
t), which is the likelihood of

the observation from particle i. In other words, the weight of the particle defined by

the hidden parameters, Hi
t is updated by the likelihood that this particular particle

generated the voltage value measured at time t.

4.2.1 The SMC particle filter algorithm

The particle filter approach is based on the simulation of a large number of particles,

all of which are potential candidates for the system that created the data trace. Al-

though it would be very computationally intensive, one could, in a very simple way,

create an enormous number of particles, calculate the likelihood of each in producing

the recorded data, and find the particle with the highest likelihood. For data with
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only one or two parameters this is a feasible approach. The curse of dimensional-

ity eventually makes this approach impossible, however, because of the exponential

increase in the number of particles with added dimensions.

Particle filter algorithms avoid such difficulties by attempting to ignore the large

regions of parameter space that are very unlikely to have generated the data. This

is achieved by periodic resampling from the set of particles: Particles with very low

weight (and hence low likelihood) are erased. To keep the population of particles

constant, new particles are generated from those with high weight. Such algorithms

can achieve a good approximation of the distribution of interest with relatively small

numbers of particles.

A basic implementation of the analysis method to estimate the entire set of hidden

states, Ht, as well as the total fluorophore concentration, and the amplitudes of the

ten action potentials in a trace, is shown in the code block below.

* Create N particles

* Randomly initialize parameters {[F]total, Aj}
* Initialize particles with equal weight : wi

t=1 = 1/N

* For each time point where Vt has been recorded

* Integrate Equations 4.1–4.3 up to that time
* Calculate Ii,t predicted by each particle from Equation 4.4
* Calculate P (Vt|Ii,t) using the recorded value of Vt

* Update the weight of each particle : wi
t = wi

t−1P (Vt|Ii,t)
* if(Neff < N/2) then resample the particles

* Randomly sample, with replacement, from the particles, weighted by
wt

* Reset particles to equal weight : wi
t = 1/N

* Interpret data

* Generate kernel density estimates of parameters
* Peak of KDE is most likely value
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Here again, i indexes the particle, while t indexes the timestep. After the likeli-

hoods are updated for each timestep, the number of effective particles, is computed

as Neff = 1
∑N

i wi
t
2 . Notice that when all the weights, wi

t = 1/N , then Neff = N . Also,

if all the weight was in one particle, i.e. wx
t = 1 and all wi 6=x

t = 0, then Neff = 1.

Since the resampling step eliminates particles with bad estimates for the param-

eters, by the end of the algorithm, most of the particles will have a decent estimate

of the value for each parameter. We use a weighted Gaussian kernel density estimate

to approximate the probability density function of the model parameters from the

discrete values contained in the population of particles. The most likely value is the

one at the peak of the kernel density estimate.

For example, when iterating through each time step, at the time of an action

potential, each particle has an estimate as to what the amplitude of the calcium

transient is. Each particle predicts what the fluorescence intensity should be. The

weight of each particle is updated by how likely the recorded voltage was produced by

that particle’s predicted intensity, P (Vt|Ii,t). Particles with unreasonable estimates of

the amplitude of the calcium transient will suffer, because the measured voltage will

have been an unlikely value to occur based on their predicted fluorescence. Particles

that guess close to the value represented by the data will retain a relatively high

weight. When the particles are resampled, they are randomly selected with replace-

ment, weighted by wi
t. This means that those with high weight have a good chance

to continue, and a good chance to get duplicated, should they get selected more than

once. Particles with low weight are probabilistically discarded in this resampling
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step. At the end of the analysis, a histogram of the particles’ values will estimate the

likelihood distribution of that parameter. The Gaussian kernel density estimate that

we use acts in a similar way, but generates a smooth function at the end.

4.2.2 Summary of parameters

A summary of model parameters retrieved from published sources, or calculated di-

rectly is shown in Table 4.1. Those parameters estimated by the Monte Carlo particle

Symbol Units Parameter Value Source
α M−1s−1 OGB-1 association rate 0.79 ∗ 109 [19]
β s−1 OGB-1 disassociation rate 178 [19]

Rf - Fluorescence ratio FCa2+

F
9 [33]

C2 V Autofluorescence varies Calculated
C3 V Voltage offset of PMT 0.3724 Calculated

Table 4.1: Fixed model parameters

filter are shown in Table 4.2. Note that not all of those parameters need to be esti-

mated independently from all the data traces, instead one high quality estimate was

made, and a single parameter was used for all traces. Those parameters are labeled

with an estimation frequency of once. Other parameters are estimated at every point,

i.e. [Ca2+]t, [FCa
2+]t, while the Aj are estimated only once per spike. The total flu-

orophore concentration, [F]total, is not expected to change during the time of a single

trace, and so a single estimate is made for the whole trace.
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Estimation Frequency Symbol Units Parameter
every timepoint [Ca2+]t M Free calcium
every timepoint [FCa2+]t M Bound complex
one value per spike Aj M Calcium transient amplitudes
one value per site [F]total M Total fluorophore concentration
once rext s−1 Rate of calcium clearance
once σCa M s−1 Noise in calcium concentration
once C1

V
M

Proportionality constant (F→V)
once [Ca2+]base M Baseline calcium concentration

Table 4.2: Monte Carlo estimated parameters

4.3 Performance with synthetic data

To test the effectiveness of our method, we characterize its performance with a syn-

thetic dataset, which is designed to reflect the statistical structure of our recordings.

This approach is standard when comparing two parameter estimation techniques.

We simply compare the estimates obtained by different approaches to the parameters

used in generating the synthetic data.

First, the model is instantiated, the parameters of which are unknown to the SMC

particle filter which will be used in the estimation. In this example, values for the

parameters Aj and Ftotal are set, and the initial conditions for variables [F]t, [FCa
2+]t,

are chosen. Equations 4.1–4.3 are recursively evaluated to generate values for each

variable at each time t. At that point, the entire vector of light intensity over time

can be calculated by Equation 4.4. Figure 4.6(a) shows the result of this process.

Among the hidden set of values are: free calcium (top plot), bound fluorophore +

calcium (second plot), free fluorophore (third plot), and light intensity (bottom plot).

These values are part of the hidden set of variables, described above as Ht. As such
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the analysis does not have access to these values.

We highlight some important features of the traces in Figure 4.6(a), since they

illustrate how the model works. First, the effect of calcium influx at the times of

the bAPs can be clearly seen in all the plots. The amplitudes of those calcium

transients will be estimated by the algorithm as well. It is important to note that

the plot of free calcium (top plot) shows these transients as well, and their shape

closely matches that of the other plots. This may be somewhat unexpected since it

has been previously stated that the decay of a normal calcium transient is very fast,

much faster than the decay to baseline of the fluorophore. It can be shown, however,

that integration of Equations 4.1–4.3, without fluorophore, i.e. [F]total = 0, does in

fact yield a trace with very rapid transients of free calcium. When fluorophore is

included, however, the amplitude of those calcium transients decreases greatly, and

their decay time constant lengthens. Another point to make regarding Figure 4.6(a)

is in regard to the plot of free fluorophore (third plot). As expected, the plot in this

case is an inverted form of the plot of bound fluorophore (second plot), since the

amount of free fluorophore decreases when calcium binds to it. Interestingly, as this

value approaches zero, the reduction in the amount of free fluorophore necessarily

leads to a decrease in the sensitivity of the fluorophore to changes in calcium. This

occurs exactly when the calcium dye saturates, and is the major source of nonlinear

effects in optical measurements.

Once the vector of fluorescence values, It, has been determined, an instantiation

of a possible voltage trace, Vt, can be generated. Shown in Figure 4.6(b)(top), the
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Figure 4.6: Generation of a synthetic dataset. (a) Plots show the values for the
hidden variables of the model, generated by recursive evaluation of Equations 4.1–
4.4. From top to bottom, they are free calcium, bound fluorophore + calcium, free
fluorophore, and light intensity. Notice the calcium transients occurring at the times
of the simulated bAPs. (b) A plot of one possible voltage trace generated by selecting
random variables from the gamma distribution defined according to Equation 4.7.
The bottom plot shows a low-pass filtered version of the signal normalized for baseline
fluorescence, by calculation of ∆F

F
.
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voltage trace is generated in the following way. For each timepoint t, calculate A(It)

and B(It) according to Equations 4.5 and 4.6. Vt is a random variable selected

from the gamma distribution with parameters A and B. This is the only observable

measure of the hidden model instantiated above available to the algorithm, the results

of which are described next.

4.3.1 Estimating the amplitudes of the transients

The algorithm makes use of a large number of particles, 5000 in this case, that

evolve in time according to Equations 4.1–4.3. The main parameters we are trying to

estimate are the amplitudes, Aj of the calcium transients induced by the bAP. At the

end of iteration through the dataset, we have 5000 particles, each with an estimate

of the amplitude of each Aj, and an associated likelihood of each particle.

Figure 4.7 shows the results of this algorithm in estimating the calcium transient

amplitudes of the synthetic dataset generated in Section 4.3. The weight of each

particle is plotted against its estimate for the transient amplitudes. Remember, the

likelihood of a particular value is reflected in both the weights of the particles, and

the location of the mass of particles, either a weighted histogram, or a kernel den-

sity estimate, is made from the population of particle estimates. In this case, the

red curves on each graph represent a Gaussian kernel density estimate of the tran-

sient amplitudes. The vertical green line in each case shows the correct value of the

amplitude of the calcium transient.

The particle filter as described in this example also estimates the total fluorophore
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Figure 4.7: Estimating the amplitude by SMC particle filter. These are ten
plots, representing the estimates of the ten calcium transient amplitudes from the
population of particles in the particle filter. The weight of each particle is plotted
against its estimate for each spike. The red curve is a kernel density estimate of the
population of estimates. The vertical green lines show the correct amplitude of the
underlying calcium transient.

3.5 4 4.5 5 5.5 6 6.5

x 10
−5

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

F
total

Li
ke

lih
oo

d

 

 

Weights
KDE
True F

total

Figure 4.8: Estimating [F]total by SMC particle filter. As in the figure above,
the weight of the 5000 particles is plotted against each particle’s estimate, which in
this case is the estimate of [F]total. Red curve is the kernel density estimate, and the
green line is the correct answer, as in the figure above.
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concentration, [F]total. Other parameters can be included as well, but do involve

additional computational costs. Figure 4.8 shows the weight of each particle versus

its estimate of [F]total. Again, the red curve represents the kernel density estimate of

the population of estimates. The correct answer, corresponding to 50µM, is indicated

as a vertical green line.

4.3.2 Generating a filtered trace

While the most important value for us to estimate is the amplitude of the calcium

transients, each particle has an estimate for the values of [FCa2+]t, [F]t, and It at every

timestep. As such, it is possible to generate a filtered trace, to try to reconstruct the

original noise-free version of our signal. This is done in a similar way as in estimating

the amplitude of the calcium transients. At timestep t, each particle has an estimate

of It. The kernel density estimate of the particle values for It approximates the

likelihood distribution, and the peak of that kernel density estimate represents the

maximum a-posteriori (MAP) estimate for the light intensity at time t.

Figure 4.9(a) shows the MAP estimate of It, overlayed with the true values for

It, revealing a very good reproduction of the hidden variables by our particle filter.

Remember, this estimate is made without knowledge of It, instead only the noise

corrupted version, Vt is known to the algorithm. The raw data and the MAP estimate

are shown in the bottom plot of Figure 4.9(a) for comparison.
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4.3.3 Comparison to low-pass filtering

One standard technique in analyzing data obtained using fluorescent dyes is the use

of a low-pass filter in an attempt to remove high frequency noise from the traces.

Allow a word to justify that approach, before comparing it to modern methods, and

our SMC particle filter. Given a signal, s, corrupted by a function Ψ, we measure

d = Ψ(s). In my view, any strategy for data analysis that improves the estimate of

the signal s has merit. For example, applying function Υ to the data improves the

estimate of the signal if |Υ(d)− s| < |d− s|. By this reasoning, a low-pass filter with

a reasonable cutoff frequency surely improves the estimate of the signal.

The methods presented here have attempted to better characterize how the signal

is corrupted by the measurement. In other words, we are characterizing the function

Ψ. Ideally, we could know Ψ exactly and invert it to calculate directly Ψ−1(d) = s.

The SMC particle filter presented here sidesteps the difficult problem of inverting the

function that translates a rise in [Ca2+]i into a fluorescent signal, and subsequently

into a voltage at the PMT.

Comparing the performance of the particle filter directly to the low-pass filter

requires a way to calculate the error of the processed trace. We calculate the error

as
∑T

t=1 (It − Et)
2, where T is the total number of datapoints. Here Et is taken to

mean the estimate of It, whether it be by MAP, or by low-pass filter. Figure 4.9(b)

compares the error of the MAP estimate to the error of the low-pass filter estimate.

Since each low-pass filter is defined by its cutoff frequency, the whole range must be
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Figure 4.9: Comparison to a digital low-pass filter. (a) Top, plot of the true
vector of It values (blue), overlayed with the MAP estimate of the particle filter (red).
Bottom, an overlay of the MAP estimate, and the raw data, Vt, from which the MAP
estimate was made. (b) Top, a comparison of the error of the MAP estimate (red
line), calculated as the sum of squared differences between the estimate and the true
answer, and the errors of a low-pass filter, calculated from wide range of values for the
cutoff frequency. The vertical green line corresponds to the frequency of low-pass filter
with the lowest error. The error of the MAP estimate is approximately an order of
magnitude smaller than that of the best low-pass filter estimate. Bottom, an overlay
of the true signal (blue), a low-pass filtered signal (green), and the MAP estimate
(red). The frequency of low-pass filter shown here corresponds to the minimum of
the error curve shown in the top plot.
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tested, and as shown in Figure 4.9(b), some frequencies are more appropriate than

others. As can be seen however, the MAP estimate performs much better than the

low-pass filter at all frequencies.

4.4 Conclusions

I have presented here the results from my implementation of a sequential Monte

Carlo particle filter designed to analyze fluorescence traces. The algorithm takes into

account the way in which fluorophore binding and unbinding modifies the original

calcium transient to create a signal with a fast rise time and a slow decay time, as

fluorescent recordings show. Furthermore, I have characterized the voltage output of

the PMT, which contains noise which is highly non-Gaussian and dependent on the

intensity of the incoming light. After careful characterization of this noise profile, by

measuring the distribution of voltages at many light intensities, the inverse problem,

calculating the likelihood of different light intensities from a given voltage, can be

done.

The results shown here demonstrate the ability to estimate the amplitudes of the

calcium transients, as well as estimating the total fluorophore concentration. Fur-

thermore, a filtered version of the signal can be generated that outperforms a digital

low-pass filter, in terms of reconstructing the true signal from the noisy trace. One of

the major strengths of model-based analysis is in its adaptability to the requirements

of the task. The filter described here is designed to match the task of analyzing cal-

cium fluorescence traces. As such, the filtered response (see Figure 4.9(a)) has the
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capacity to rise very quickly, while decaying to baseline very slowly. This is a difficult

task for filters which select for certain frequencies, such as the low-pass filter.

One drawback to the particle filter however is in the computational costs of the

analysis. The task presented in Section 4.3.1, filtering a 2000 point trace with 5000

particles in MATLAB, takes about 10 minutes to run on a 1.66GHz dual core PC with

2GB RAM, whereas a low-pass filter, or the GLM presented in Section 3.1.5, takes

only a few seconds. The problem becomes worse when estimating more unknown

variables however, such as [Ca2+]base, or rext, since more particles are required. On

the other hand, optimizations to the algorithm, and translation out of MATLAB, will

likely improve the speed of the analysis by a significant degree.
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Chapter 5

Discussion

5.1 Summary

Chapters 2, 3 and 4 describe my work using theoretical, experimental, and computa-

tional techniques to examine the way in which information is processed by neurons.

Using the abstract neuron model, the clusteron, we showed that learning via

structural rearrangement is capable of some tasks that single neurons are not typi-

cally thought capable of. We demonstrated that not only is the clusteron capable of

learning to respond preferentially to specific input patterns, but to respond to specific

input patterns in a specific sequence. Furthermore, we showed they are capable of

selecting common features of a set of input patterns, or under different conditions,

selecting the features that distinguish those patterns.

From structural plasticity to spike-timing-dependent plasticity, our experiments

examined the interaction of bAPs and EPSPs. Using calcium fluorescence, and a

3D scanning microscope, we found that pairing a bAP with presynaptic stimulation

boosted the bAP associated calcium transient, most noticeably in the distal region

101



of the dendrites. Analyzing the data required some new strategies for data analysis,

most importantly, the functional data analysis to better represent the spatial extent

of the calcium transients.

Two strategies for improved measurement of the amplitudes of the calcium tran-

sients were developed, driven by the desire to make use of all the data available. The

GLM model proved to be a fast and unbiased way to estimate the amplitudes of all

ten action potentials in the train, with the drawback that it assumes a linear signal,

and a Gaussian noise source. The SMC particle filter makes no such assumptions and

was shown here to be capable of a very good estimate of the true signal underlying a

synthetic dataset.

5.2 Coincidence detection

Interpreting our results further, the amplification of the calcium response to the bAP

seems to support its role as a coincidence detector. When both stimuli are present,

presynaptically evoked EPSPs, and a bAP, there is considerable amplification of the

calcium signal. The importance of the NMDA receptor in supplying the required

calcium for plasticity of the Schaffer Collaterals has been well documented (reviewed

in [56]). Therefore, the role of this coincidence detector is likely to involve the guidance

of the bAP towards more distal regions of the dendrite, rather than directly supplying

the calcium signal for synaptic plasticity. The question remains as to why there are

multiple coincidence detectors, and what is the role of each.

The spatial distribution of spike boosting is an interesting feature, since by our
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data, it appears that there is not much of a change in the calcium signal proximal

to the soma. Distally, however, the mechanism of coincidence detection that we

see would be much more critical, since the distal region sees a much larger pairing

dependent change in the signal. Furthermore, since each bAP in a train fails at a point

on the dendrite closer to the soma than the preceding bAPs, the region of dendrite

that experiences boosting by an EPSP changes in a complementary way. This could

have implications for the plasticity rules for the regions of the dendrite depending on

the firing rate of the cell. Low firing rates would yield far reaching bAPs, and the

region of the cell which requires pairing induced bAP propagation would be restricted

to the distal dendrites. High firing rates, on the other hand, induce bAPs which fail

closer to the soma, and the region of dendrite which requires presynaptic stimulation

to propagate the spike increases.

5.3 Cluster sensitivity

As mentioned in the Chapter 1, one critical piece of information that is missing from

our understanding of neuronal computation is in the connectivity between individual

neurons, and the subcellular location of those connections. As presented in Chap-

ter 2, we studied a neuron model in which the spatial distribution of inputs on its

dendrite changes the responsiveness of the cell. The sensitivity of the cell to different

spatial patterns of input can be used as a basis for learning by rearranging the posi-

tion of synapses on the tree. Learning by this mechanism predicts that connections

that carry similar information would be located at nearby regions of the dendrite.
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Evidence for such clustering of related inputs has been seen in at least one specialized

system, namely the avian auditory system [59]. Here, the distribution of inter-synapse

intervals was shown to be dependent on the nature of the input to the system.

In a recent study, however, Jia et al. [42] were able to examine the stimuli given

to different regions of the cell dendrites in layer 2/3 of cortex, in vivo. Studying the

orientation selective cells of early visual cortex, they recorded subcellular dendritic

calcium signals. They showed that there were specific hotspots of orientation specific

calcium influx, presumably driven by presynaptic contacts at those locations. In-

terestingly, most dendritic branches contained multiple hotspots specific to different

orientations, suggesting that information is not relegated in a branch specific man-

ner. This appears to contradict the predictions of the spatial learning model, which

predicts that inputs which best drive the neuron, are likely to have accumulated in

one region, in order to maximize their effectiveness.

One possible explanation for the contradicting results is that the signals measured

by Jia et al. [42] are in fact calcium signals from clusters of synapses. The authors

state that each signal they measure is likely derived from a single synapse, but only

base this on the comparison to the spatial profile of single responses recorded in

vitro. It may be true, however, that inputs that drive layer 2/3 neurons to fire are not

arranged in any specific pattern on the dendrites. It is exciting to have the capabilities

to observe the subcellular distribution of inputs, as this piece of information will be

very enlightening as to the way neurons process information.
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5.4 Model-based analysis

The Monte Carlo particle filter I present here is based on a model with some very

solid assumptions, mainly that our calcium signal is the result of a reversible binding

reaction with our fluorophore. Critics of model-based analysis methods point out that

the quality of the results crucially depends on the assumptions made, which is a valid

argument. It’s absolutely true that if the model used in the analysis is wrong, then

the results obtained are also wrong. The point should be made, however, that all

analysis is model-based, and leaving the assumptions of the model unstated does not

mean they are not made. As a simple example, estimating the mean fluorescence from

a recording site can be done by calculating the sample mean of all the datapoints.

The hidden model used in this approach states that the signal is completely flat,

and the noise is Gaussian. We know from our measurements of the distributions of

recorded voltages, with a constant input, that this assumption is wrong. As such, a

better estimate of the signal can be made with assumptions that are less wrong. The

maximum likelihood approach described in Section 4.1.3, is based on the actual noise

distributions measured from the detector.

The strategies for data analysis presented here have proven to be very useful. Sev-

eral times, after learning a new approach to a problem, I found myself as the proverbial

“man with a hammer.” In particular, the GLM is a very powerful technique, which

is also easily implemented. It is commonly used to analyze fMRI data [27, 41]. We

use it here for measuring the amplitudes of many overlapping calcium transients. It
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could be easily adapted to other common tasks, such as measuring complicated peaks

of HPLC, or partially overlapping bands on western blots.

The flexibility of Monte Carlo particle filter makes it a suitable tool for numerous

applications, as many researchers are currently finding. The barrier imposed by

high computational costs has been partially alleviated by increasing computer speeds.

Parallelization of computation, another rapidly advancing technology, will likely be a

benefit in the near future as well. In the past, particle filters have been used to analyze

other forms of noise corrupted time series data, like single channel recordings [9]. We

use it here to make estimates of the unknown amplitude of transients which occur

at known times. Another lab, however, has addressed the complementary problem,

estimating the timing of action potentials [88], from a fluorescent calcium trace. Their

analysis yields the most likely spike train from a fluorescence trace with transients at

unknown times.

Some interesting possibilities are extending the existing models, to include a bio-

physically accurate description of the neuron, similar to the approach in [40]. It could

be possible to estimate channel densities and kinetics as well. Perhaps an important

step in the realization of that task is to optimize the experimental protocols to do so,

such as in [52]. Remember that the particle filter ultimately yields the distribution of

likely values for the parameter that you are estimating. The quality of the estimate

depends on the width of that likelihood distribution. If the particles at the end of

your analysis have a very wide range of values for a particular parameter, then confi-

dence in the estimate is low. One cause for this could be that the experiment is not
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properly designed to discriminate on that particular parameter. Thus, optimizing the

experiment, perhaps through simulations, to best collapse those likelihood distribu-

tion, and thereby increase the confidence of the estimate, may be a fruitful area of

research.
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