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Abstract

Correlations between neuronal spike trains impact network dynamics and population cod-

ing. Overlapping afferent populations and correlations between presynaptic spike trains in-

troduce correlations between the inputs to downstream cells. To understand network activity

and population coding, it is therefore important to understand how these input correlations

are transferred to output correlations. Recent studies have addressed this question in the limit

of many inputs with infinitesimal postsynaptic response amplitudes, where the total input

can be approximated by Gaussian noise. In contrast, we address the problem of correlation

transfer by representing input spike trains as point processes with each input spike eliciting a

finite postsynaptic response. This approach allows us to naturally model synaptic noise and

recurrent coupling, and to treat excitatory and inhibitory inputs separately. We derive several

new results that provide intuitive insights into the fundamental mechanisms that modulate

the transfer of spiking correlations.

1 Introduction

The amount of information carried by neuronal populations can be strongly modulated by corre-
lations in neuronal activity (Zohary et al., 1994; Sompolinsky et al., 2001; Averbeck et al., 2006),
and the structure of correlations can encode information about a stimulus (Vaadia et al., 1995;
Dan et al., 1998; Maynard et al., 1999; Shlens et al., 2006; Biederlack et al., 2006; Temereanca
et al., 2008). An understanding of how correlated variability is propagated is therefore central to
understanding coding in neural tissue.

Synaptic divergence introduces correlated variability between the activity of nearby cells (Shadlen
and Newsome, 1998) and synaptic convergence downstream can dramatically amplify correlations (Re-
nart et al., 2010; Rosenbaum et al., 2010). In the absence of mechanisms to modulate these corre-
lations, highly correlated activity can develop in deeper layers (Reyes, 2003). However, correlations
measured in vivo tend to be small (Ecker et al., 2010; Renart et al., 2010). Some recent studies show
that correlations can be modulated by network effects (Hertz, 2010; Renart et al., 2010). Here, we
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Figure 1: An abstract representation of the input-output model. Two cells each receive
correlated excitatory, ej(t), and inhibitory, ij(t), inputs. These are combined to obtain the total in-
put currents, inj(t), which drive two integrate-and-fire neurons, IFj , to produce output spike trains,
outj(t). In some of our analysis, we consider coupling between the cells. We seek to understand
how the correlation, ρout, between the output spike trains is related to the statistics of the inputs
and the dynamical properties of the neurons.

examine how stochastic dynamics at the cellular level modulate correlations between the outputs
of two cells (See Fig. 1).

Earlier analytical approaches to this problem relied on the assumption that inputs can be mod-
eled by correlated Gaussian noise (Moreno-Bote and Parga, 2010, 2006; de la Rocha et al., 2007;
Ostojić et al., 2009; Vilela and Lindner, 2009). Such models are obtained in the limit of a large
number of inputs, each of vanishing strength (Renart et al., 2004) and may not fully capture the
statistical properties of the neurons’ responses (Helias et al., 2010).

In the models we consider, input are represented by point processes with each input spike
having a finite impact on the membrane potential of a cell. This approach allows us to examine the
effects of synaptic failure, random synaptic amplitudes, and recurrent coupling between cells, while
maintaining a more direct connection to physiology. Moreover, excitatory and inhibitory inputs
can be treated separately (See Fig. 1). We find that the effects of synaptic noise and excitatory–
to–inhibitory correlations, which are often ignored when inputs are modeled as Gaussian noise, can
greatly reduce output correlations. Such reductions in correlation from input to output may partly
explain small correlations sometimes observed in vivo (Ecker et al., 2010; Renart et al., 2010).

To obtain a clearer understanding of how the internal dynamics of spiking neurons affect corre-
lations, we study correlation transfer for random walk neuronal models. These models are drastic
simplifications of detailed neuron models. However, they have the advantage of being mathemati-
cally tractable, while capturing essential features of the response of spiking cells (Fusi and Mattia,
1999; Salinas and Sejnowski, 2000; Rauch et al., 2003). Due to the simplicity of these models, our re-
sults can be understood using intuitive and mechanistic explanations. We verify that physiologically
more realistic models behave similarly by comparing our analytical results with simulations.

2



2 Methods

2.1 Spike Trains and Correlations

Spike trains are represented as stationary point processes, a(t) =
∑

i δ(t − ti) where δ(t) denotes
the Dirac function and {ti}∞i=1 is the set of spike times (Cox and Isham, 1980; Daley and Vere-
Jones, 2003). The process Na(t) =

∫ t

0
a(s)ds counts the number of spikes in the interval [0, t] and

Na(t1, t2) =
∫ t2

t1
a(s)ds counts the number of spikes in [t1, t2]. Stationarity implies constant firing

rates ra = E[a(t)] = E[Na(t)]/t, where E[·] denotes expected value. The second order statistics are
quantified using the covariance and variance of spike counts

γab(t) = cov(Na(t), Nb(t)) and σ2
a(t) = γaa(t)

which are related to the cross-covariance functions by

γab(t) =

∫ t

−t

Rab(s)(t − |s|)ds. (1)

where Rab(τ) = cov(a(t), b(t + τ)) = rb(Hab(τ) − ra) is the cross-covariance function, and

Hab(τ) = lim
δ→0

Pr(Nb(τ, τ + δ) > 0
∣

∣Na(0, δ) > 0)/δ

is the conditional firing rate (Cox and Lewis, 1972; Brody, 1999). The correlation coefficient is then
given by ρab(t) = γab(t)/ (σa(t)σb(t)). We mostly focus on the asymptotic statistics

γab = lim
t→∞

γab(t)
/

t, σ2
a = γaa, and ρab = γab/ (σaσb) ,

which can alternately be defined using the relation γab =
∫∞

−∞
Rab(s)ds.

The Fano factor, Fa = σ2
a/ra, is a measure of the variability, or randomness, in a spike train.

For renewal spike trains, Fa = CV2
a where CVa is the coefficient of variation (CV) of the interspike

interval distribution (Cox, 1962; Nawrot et al., 2008).

A measure of exact synchrony between spike trains a and b is

Sab = ra·b/
√

rarb = lim
t→0

ρab(t)

where ra·b = limδ→0

∫ δ

−δ
Rab(s)ds is the rate of spikes occurring at precisely the same time. Pre-

cisely synchronous spikes can occur in integrate-and-fire models with finite, instantaneous synaptic
responses whenever two neurons receive exactly synchronous excitatory input spikes. Although
exactly synchronous spikes are a mathematical idealization, Sab models the proportion of output
spike pairs caused by a shared excitatory input in physiological settings.

3



2.2 The leaky integrate-and-fire (LIF) model

Throughout the text we compare analytical results to simulations of a current based leaky integrate-
and-fire model, hereafter referred to as the LIF. The membrane potential of the LIF is described
by (Tuckwell, 1988; Burkitt, 2006)

dV = − 1

τm

(V − Vrest)dt + dee(t)dt − dii(t)dt. (2)

where e(t) and i(t) are the excitatory and inhibitory input spike trains respectively and τm > 0
is the membrane time constant (Burkitt, 2006). When V (t) reaches threshold, θ, an output spike
is produced, and V (t) is set to Vreset. To simulate an inhibitory reversal potential, a lower barrier
on the membrane potential is imposed at β ≤ Vreset. For simplicity we assume that de = di. This
assumption is relaxed in a later section and in the Appendix by allowing variable synaptic responses.
Voltage is measured in units of the postsynaptic amplitude so that de = di = 1. Due to our choice of
units, the leak current when the membrane potential is at V = v is given by v/τm. The maximum
leak current is therefore θ/τm. We set Vreset = Vrest = 0 and in simulations we use θ = 30, and
β = −2.

The output spike train, out(t), is a point process consisting of times at which the membrane po-
tential, V (t), reaches threshold. In all examples considered, V (t) is an ergodic process (Stratonovich,
1963), and in all analysis, V (0) is assumed to be drawn from the stationary distribution of V (t) so
that the output spike train is stationary.

2.3 The statistics of the input spike trains

We consider two cells, j = 1, 2, each of which receives excitatory and inhibitory input spike trains,
ej(t) and ij(t). Although more general results are derived in the Appendix, several assumptions
are made in the text to keep the presentation less burdensome. In particular, we assume that the
inputs to the two cells are statistically identical: re1 = re2 = re, ri1 = ri2 = ri, σ2

e1
= σ2

e2
= σ2

e ,
σ2

i1 = σ2
i2 = σ2

i , γe1i2 = γi1e2 = γei, and γe1i1 = γe2i2 = 0. The assumption that γe1i1 = γe2i2 = 0 may
not hold in general (Okun and Lampl, 2008). However, correlations between the inputs to a cell
simply change the input variances, σ2

in, and their effect has been studied (Salinas and Sejnowski,
2000, 2002). To incorporate such correlations in our model, one substitutes σ2

in = σ2
e + σ2

i − 2γej ij .

We denote the excitation-to-inhibition ratio by q = re/ri. Due to our choice of units, the
excitatory and inhibitory input currents to cell j are the point processes, ej(t) and −ij(t), with
mean values re and ri respectively. The total input current is given by inj(t) = ej(t) − ij(t) with
mean µin = E[inj(t)] = re − ri, variance σ2

in = σ2
e + σ2

i , and correlation

ρin = ρin1in2 =
ρeeσ

2
e + ρiiσ

2
i − 2ρeiσeσi

σ2
e + σ2

i

(3)

where ρee = ρe1e2 , ρii = ρi1i2 , and ρei = ρe1i2 = ρe2i1 are the excitatory-to-excitatory, inhibitory-
to-inhibitory, and excitatory-to-inhibitory correlations (Shadlen and Newsome, 1998; Salinas and
Sejnowski, 2000). To generate pairs and quadruples of correlated spike trains for simulations, we
used the algorithms outlined in Appendix A.
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2.4 The statistics of the output spike trains

In addition to symmetry between the input statistics, we also assume that the two neurons are
dynamically identical (this is also relaxed in the Appendix). Hence the output spike trains, outj(t),
are statistically identical. Define the rate, variance, covariance, Fano factor, synchrony, and corre-
lation of the two output spike trains as rout = routj

, σ2
out = σ2

outj
, γout = γout1out2, Fout = σ2

out/rout,

Sout = Sout1out2 and ρout = ρout1out2 = γout/σ
2
out, respectively. When the outputs are renewal pro-

cesses, the output coefficient of variation is given by CVout =
√

Fout.

In Appendix C, we use the renewal properties of the output spike trains, and the Markov
properties of the membrane potentials for the LIF and dLIF models with Poisson inputs to derive
the following expression for the output correlation,

ρout =
CV2

out + 1

CV2
out

(

E[τ1] − E[τ1 | V2 ր θ]

E[τ1]

)

+
Sout

CV2
out

. (4)

Here E[τ1 | V2 ր θ] is the expected time until the next spike in neuron 1 given that neuron 2 has
just spiked, and E[τ1] =

(

CV2 + 1
)

/ (2rout) is the expected time until the next spike in neuron
1 starting from an arbitrary initial time (referred to in Cox (1962) as the expected recurrence

time). This expression is exact for uncoupled integrate-and-fire models, instantaneous synapses,
and white inputs. It is approximately valid for coupled models receiving non-white inputs or non-
instantaneous synapses in the fluctuation dominated regime. We are unaware of a similar expression
in the literature, and we use it in Sec. 4 to analyze the transfer of correlations in the fluctuation
dominated regime. The expression is also useful for calculating asymptotic correlations in simulated
data. We found it to be much faster and more accurate than standard methods for calculating the
correlation between two LIF neurons, see the discussion in Appendix C.

2.5 The drift dominated regime and the perfect integrate-and-fire (PIF)

model

In drift dominated regimes, where the excitatory current dominates the inhibitory and leak currents
(re ≫ ri + θ/τm), the lower reflecting barrier at β is visited rarely. In addition, the dynamics of
the neuron are dominated by the input and a good approximation is obtained by ignoring the
leak current (see Fig. 2C). We therefore approximate the LIF in drift dominated regimes by the
analytically tractable perfect integrate-and-fire (PIF) model, which is obtained by setting 1/τm = 0
in Eq. (2) and ignoring the lower boundary at β (Gerstein and Mandelbrot, 1964; Knight, 1972).

Note that the PIF model is a good approximation when the membrane time constant is slow
compared to inputs and the cells integrate their inputs. It is not a good approximation when
the membrane time constant is fast and the membrane potentials track their inputs, as occurs in
conductance based models in high conductance states.

The output statistics of the PIF can be obtained analytically. When µin = re − ri > 0, the
output rate is rout = µin/θ, and when µin ≤ 0, the output rate is zero. Thus the rate transfer
function of the PIF is threshold-linear. Hereafter we assume that µin > 0 when considering the
PIF model. The total variance of the output spike trains and Fano factor are σ2

out = (σ2
e + σ2

i )/θ
2,

and Fout = (σ2
e + σ2

i )/[θ(re − ri)] respectively (see Appendix B). For Poisson inputs this yields
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Θ
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Figure 2: An LIF in the drift dominated regime can be approximated with a PIF. (A)
The typical behavior of an LIF in the drift dominated regime (re = 2.5KHz, ri = 1KHz, τm = 20ms
and θ = 15). (B) Same as (A), except time was rescaled using the fast input timescale, so that (B)
represents the region inside the gray box in (A). (C) The response of a PIF driven by the same
input.

CVout =
√

(q + 1)
/

[θ(q − 1)] where q = re/ri > 1 measures the excitation-to-inhibition balance. In

Fig. 3 the output rate and CV are plotted as dashed lines.

2.6 The discrete LIF (dLIF) model

Outside of the drift dominated regime, spiking is increasingly due to fluctuations of the membrane
potential around its mean value (Salinas and Sejnowski, 2000; Ringach and Malone, 2007). In such
regimes, the PIF no longer provides a good approximation and we instead use the analytically
tractable discrete LIF (dLIF) model which is defined by

dV = e(t)dt − i(t)dt − IL(t)dt, (5)

with a threshold at θ, reset at 0, and a reflecting lower boundary at β ≤ 0. Here, IL(t) =
∑

i δ(t−ti)
is a Poisson point process with rate ĪL that models a leak current. Using Poisson jumps to model
leak may at first seem unnatural. However, the dLIF can be thought of as a noisy integrate–and–
fire model with constant leak (Fusi and Mattia, 1999). We use the dLIF because it is analytically
tractable and captures the fundamental properties of correlation transfer in more realistic leaky
models.

In parameter regimes where the input currents dominate the leak current, the dLIF provides a
good quantitative approximation to the LIF. Outside of such regimes, it captures the qualitative
dependence of the spiking statistics on parameters. We emphasize that the purpose of the model
is not to quantitatively approximate the LIF (which is itself a simplified model). Instead the
dLIF serves as an analytically tractable leaky model that can be used to understand the principal
mechanisms that shape correlation transfer.
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When e(t) and i(t) are Poisson, the membrane potential V (t) for the dLIF model is a continuous-
time Markov process on a discrete state space and we can compute the univariate and bivariate
spiking statistics exactly (see Appendix D). It is hereafter assumed that e(t) and i(t) are Poisson
when referring to the dLIF model. The stationary firing rate and CV for the dLIF are derived in
closed form in Appendix D,

rout =
(q̂ − 1)2

q̂ ((q̂−θ − 1) q̂β + θ(q̂ − 1))
re, (6)

and

CV2
out =

4(q̂(θ − β + 1) − θ + β)q̂θ+β + q̂2β + q̂2θ
(

−
(

q̂2β − 4(q̂(β − 1) − β)q̂β − q̂2θ + θ
))

(q̂β − q̂θ (q̂β − q̂θ + θ))2 , (7)

where q̂ = re/(ri + ĪL). Throughout the text, we take β = −2 and θ = 30. Fig. 3 shows that
the input-to-output rate curve has the threshold-linear shape that is typical of integrate-and-fire
neurons. In the fluctuation dominated regime, CVout ≈ 1, while in the drift dominated regime,
CVout is decreased.

We were unable to derive closed form expressions for the bivariate and the time-dependent
univariate spiking statistics. However, since the membrane potentials are a Markov process on
a discrete state space, their exact time dependent distributions can be found by exponentiat-
ing their infinitesimal generator matrix and the stationary distribution is given by the dominant
eigenspace of the generator. These methods are discussed in detail in Appendix D, and a suite
of Matlab programs that implement these methods can be found at http://www.mathworks.com/
matlabcentral/fileexchange/28686

2.7 The memory timescale of the dLIF model

The membrane potential of the dLIF model with Poisson inputs is an ergodic Markov process. The
infinitesimal generator for such a process has exactly one zero left eigenvalue and the remaining left
eigenvalues have negative real part (Karlin and Taylor, 1975). The non-zero left eigenvalue with
real part nearest to zero, λ1, determines the timescale at which the membrane potential relaxes
to its stationary distribution. In particular, defining τmem = −1/Re(λ1), the distribution relaxes
to its steady state exponentially like e−t/τmem . We use this result in Secs. 4 and 7 to analyze the
asymptotic correlation and to estimate the tail of the cross-covariance function for the dLIF model.
See Appendix D for a more complete discussion.

3 Correlations are nearly preserved in drift dominated regimes

When excitation is stronger than inhibition and leak, the membrane dynamics of a leaky model
can be approximated by the PIF (see the Methods and Fig. 2). Input to the model neurons,
inj(t) = ej(t)− ij(t), j = 1, 2, is a sum of excitatory, ej(t), and inhibitory, ij(t), components. When
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ej(t), ij(t), outj(t) Spike trains: excitatory input, inhibitory input, and out-
put for neuron j = 1, 2.

in1(t), in2(t) Total input: inj(t) = ej(t) − ij(t).

Nej
(t), Nij(t), Ninj

(t), Noutj
(t) Spike counts: NX(t) =

∫ t

0
X(s)ds.

re, ri, rout Firing rates: excitatory, inhibitory, and output.

q Excitation-to-inhibition balance: q = re

ri
.

σ2
e , σ2

i , σ2
in, σ2

out Asymptotic spike count variances.

Fe, Fi, Fout Asymptotic Fano factors: Fx = σ2
x

rx
.

CVout Output coefficient of variation.

γee, γii, γei, γin, γout Asymptotic spike count covariances: excitatory-to-
excitatory, inhibitory-to-inhibitory, excitatory-to-
inhibitory, total input, and output-to-output.

ρee, ρii, ρei, ρin, ρout Asymptotic spike count correlations: ρxy = γxy/(σxσy).

Sout Output synchrony, Sout =
rsynch

rout
where rsynch is the rate

of synchronous output spikes.

θ, β Threshold and lower boundary for IF models

τm Membrane time constant for the LIF model.

ĪL Mean leak current for the dLIF model

τmem Memory timescale for the dLIF model.

Table 1: Notation for parameters and spike train statistics. We assume symmetry between
cells (e.g., re1 = re2 = re) throughout the text, except in the Appendix.

Θ=20

Θ=30

Θ=50

Θ=120

A

1 2 3
re

0.05

0.1
rout

Θ=20

Θ=120

B

1 2 3
re

0.25

0.5

0.75

1

CVout

Figure 3: The univariate spiking statistics for the dLIF. (A) The output firing rate and (B)
the output CV as functions of the excitatory input rate, re, for β = −2 and for θ = 20, 30, 50, and
120. The dashed lines show the output statistics of the PIF when θ = 20 and ri = 1. Both re and
rout are in units of ri + ĪL (equivalently, ri + ĪL = 1 is fixed) so that q̂ = re.
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re − ri > 0, the output firing rate of the PIF is positive, with spike count

Noutj
(t) =

Nej
(t) − Nij(t) − Vj(t) + Vj(0)

θ

=
1

θ
Ninj

(t) + O(1), j = 1, 2 (8)

where O(1) represents terms bounded in time. Thus for large t, the input and output spike counts
are linearly related.

This implies that σ2
out = σ2

in/θ
2 and γout = γin/θ

2. The covariance and variance are scaled by
the same factor, and therefore the correlation coefficient is unchanged by a layer of PIFs,

ρout = ρin =
ρeeσ

2
e + ρiiσ

2
i − 2ρeiσeσi

σ2
e + σ2

i

. (9)

The fact that ρout = ρin is valid for a pair of PIFs with arbitrary stationary inputs with positive
mean (see Appendix B for a detailed proof). Thus the result does not depend on the assumption of
instantaneous postsynaptic potentials and remains true when inputs are modeled as continuous (e.g.,
white) noise (Vilela and Lindner, 2009). It follows that a threshold mechanism or a threshold-linear
f -I curve alone is not enough to reduce correlations.

We conclude that a pair of LIFs in the drift dominated regime nearly preserve correlations. This
conclusion is consistent with previous observations for LIF models driven by correlated, positively
biased white noise (de la Rocha et al., 2007; Shea-Brown et al., 2008; Tchumatchenko et al., 2008;
Vilela and Lindner, 2009) and is verified for the LIF with discrete post-synaptic potentials in
Fig. 4. In the drift dominated regime, output correlations for a pair of LIFs approximately match
the theoretical values obtained for PIFs. Outside of this regime, the LIF output correlations are
reduced in magnitude. We investigate this reduction of correlations next.

4 Correlations are reduced in fluctuation dominated regimes

When input to the cells is weaker and firing rates lower, correlations are reduced in the out-
put (Stroeve and Gielen, 2001; de la Rocha et al., 2007; Shea-Brown et al., 2008; Tchumatchenko
et al., 2008). In this section, we provide a mechanistic explanation of this reduction in correlations,
which can be observed in the LIF simulations in Fig. 4. Although our explanation applies to a wide
class of neuron models, we illustrate the results with the dLIF model described in the Methods.
This model is simple enough that the output correlation and other quantities of interest can be
computed exactly, yet it captures the overall features of correlation transfer in both the drift and
fluctuation dominated regimes.

The fact that the PIF preserves correlations relies on an asymptotically linear and deterministic
relation between the input and output spike counts, cf. Eq. (8). The same relation holds approxi-
mately for the LIF in drift dominated regimes since leak has a small effect, and the lower boundary
of the membrane voltage is visited rarely (see Fig. 2).

However, in the fluctuation dominated regime where spiking is caused by random fluctuations
of the membrane potential, the output spike count over large windows depends on the timing of
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Τm =10 ms
Τm =15 ms
Τm =20 ms
Τm =30 ms

A
Ρee=Ρii=0.2, Ρei=0

2 4 6 8
re HKHzL

0.05

0.1

0.15

0.2

Ρout

B
Ρii=0.2, Ρee=Ρei=0

2 4 6 8
re HKHzL

0.025

0.05

0.075

Ρout

C
Ρei=0.2, Ρee=Ρii=0

2 4 6 8
re HKHzL

0

-0.05

-0.1

-0.15

Ρout

D
Ρee=Ρii=Ρei=0.2

2 4 6 8
re HKHzL

0.025

0.05

0.075

0.1

0.125
Ρout

Figure 4: Correlation transfer for the LIF model. In each panel a set of input correlations,
ρee, ρii and ρei is fixed. Output correlations, ρout, are shown as functions of the excitatory input
rate when ri = 1KHz. Thick dashed lines represent the output correlation for the PIF, cf. Eq. (9).
Thin solid lines represent output correlation from simulations of the LIF with correlated Poisson
inputs. Along each dashed line the membrane time constant is held fixed and is larger for darker
lines (see legend). As the rate of excitation increases relative to inhibition and relative to leak, the
LIF is better approximated by the PIF. The output rates for the LIF varied from < 10−3Hz to
216Hz. The PIF and LIF agree well (equivalently, correlations are nearly preserved) for moderate
firing rates, e.g. |ρLIF − ρPIF| ≤ 0.1ρPIF when rout ≥ 40Hz and τm = 20ms in (A). Correlation
parameters are (A) ρee = ρii = 0.2 and ρei = 0. (B) ρii = 0.2 and ρee = ρei = 0. (C) ρei = 0.2
and ρee = ρii = 0. (D) ρee = ρii = ρei = 0.2. Here, and in all subsequent figures, sample points
from simulations are marked with dots and error bars are not drawn when the standard errors are
smaller than the diameter of the dots. Otherwise, error bars have radius of one standard error.
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input spikes, instead of the input spike count alone. As a result, the relationship between input and
output spike counts is stochastic and non-linear so that Eq. (8) is no longer valid. To understand
correlation transfer in the fluctuation dominated regime, we instead consider the following equation
for the output correlation derived in Appendix C,

ρout =
CV2

out + 1

CV2
out

(

E[τ1] − E[τ1 | V2 ր θ]

E[τ1]

)

+
Sout

CV2
out

.

Here E[τ1 | V2 ր θ] is the expected time until the next spike in neuron 1 given that neuron 2 has
just spiked, and E[τ1] =

(

CV2 + 1
)

/ (2rout) is the expected time until the next spike in neuron 1
starting from an arbitrary initial time (referred to in Cox (1962) as the expected recurrence time).

When the excitatory inputs are correlated synchronously (Se1e2 > 0), there is a non-zero proba-
bility of an exactly synchronous spike in neuron 1 and neuron 2. This leads to positive values of Sout

and thereby increases ρout. However, in the fluctuation dominated regime, Sout is small and can be
ignored (see Fig. 6 inset). Also, in this regime firing is approximately Poissonian so that CV2

out ≈ 1
(see Fig. 3B) and (CV2

out + 1)/CV2
out ≈ 2. Therefore, in the fluctuation dominated regime, changes

in ρout are dominated by the “memory”,

M =
E[τ1] − E[τ1 | V2 ր θ]

E[τ1]
.

which quantifies the relative impact of a spike in neuron 2 on the time until the next spike in neuron
1. In particular, ρout ≈ 2M in the fluctuation dominated regime.

When V1 and V2 are independent, E[τ1 | V2 ր θ] = E[τ1] and Sout = 0 so that ρout = 0. When
V1 and V2 are positively correlated, conditioning on V2 being at threshold increases the probability
that V1 is near threshold. This decreases the expected time for V1 to reach threshold, yielding
E[τ1 | V2 ր θ] ≤ E[τ1], and a positive value of M . A positive value of M implies a positive
value of ρout since Sout ≥ 0. Similarly, when V1 and V2 are negatively correlated, the expected
time until V1 reaches threshold is lengthened by conditioning on V2 being at threshold. Therefore
E[τ1 | V2 ր θ] ≥ E[τ1], resulting in negative output correlations when Sout is sufficiently small.

When excitation is weak in relation to inhibition and leak, firing is due to rare excursions of the
membrane potential across threshold (Paninski, 2006; Ringach and Malone, 2007). The stationary
distribution of the membrane potentials is concentrated near rest, but conditioning on a spike in
neuron 2 pushes the distribution of V1 closer to threshold. The distribution of V1 then relaxes back
to its stationary distribution. The timescale of this relaxation is given by the memory timescale,
τmem (see Methods). In Fig. 5A, we show that the memory timescale is much faster than the
spiking timescale (τmem ≪ E[τ1]) in the fluctuation dominated regime. This is due to the fact that
the spiking dynamics are much slower than the subthreshold dynamics in this regime. The result
of this effect is illustrated in Fig. 5B: The distribution of V1 settles to its stationary state long
before the next spike. Neuron 1 effectively forgets the effects of the spike in neuron 2 before it has
a chance to spike (Knight, 1972). Therefore a spike in cell 2 has a small impact on the waiting
time to the next spike in cell 1 and the output spike trains are nearly independent. As a result,
E[τ1] ≈ E[τ1 | V2 ր θ] (the arrows in Fig. 5B are close together) so that M ≈ 0, and therefore
ρout ≈ 0.

As re increases towards the drift dominated regime, conditioning on V2 being at threshold has
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Figure 5: The forgetfulness of cells in the fluctuation dominated regime. (A) The memory
timescale (τmem) and the spiking timescale (E[τ1]) plotted as a function of re when ri = 1 and
ĪL = 0.5. The filled circles indicate the boundary between the fluctuation and drift dominated
regimes: re = ri + ĪL. (B) Top: The mean membrane potential of neuron 1 conditioned on a spike
in neuron 2 at time t = 0 (solid line). The shaded region represents the mass within one standard
deviation of the mean and the dashed line indicates the stationary mean. Bottom: The cumulative
probability distribution of the waiting time, τ1, of the next spike in neuron 1, conditioned on a spike
in neuron two at time t = 0 (solid line) and in the stationary case (dashed line). Arrows indicate the
expected value of τ1 in the stationary (solid) and conditional (dashed) cases. The distance between
the two arrows is M = (E[τ1] − E[τ1 | V2 ր θ]) /E[τ1]. Parameters in (B) are re = 1.25, ri = 1,
ĪL = 0.5, ρee = ρii = 0.5 and ρei = 0.
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Figure 6: Dependence of M on re for the dLIF model. Here ρee = ρii = ρin and ρei = 0 for
lines in the upper half. For lines in the lower half, ρee = ρii = 0, and ρei is chosen so that ρin = −0.2
and −0.1, respectively. For all four lines, ri = 1 and ĪL = 0.5 are fixed (so that re and ĪL are given in
units of ri). The inset shows the output synchrony, Sout, as a function of re with ρee = ρii = 0.2 and
ρei = 0. Filled circles indicate the values for which re = ri + ĪL = 1.5, which defines the boundary
between the fluctuation and drift dominated regimes. When re ≪ ri + ĪL, M is approximately
0. As the cell approaches the drift dominated regime, |M | increases. Interestingly, |M | decreases
with re in the drift dominated regime. However, in this regime S is no longer negligible and CVout

decreases with re (see inset and Fig. 3B), so that the value of M alone is no longer a good indicator
of the value of ρout.

an increasing relative impact on the expected waiting time until V1 spikes and, as a result, |M |
increases (see Fig. 6). Since |M | dominates in Eq. (4), |ρout| also increases as the drift dominate
regime is approached. Inside the drift dominated regime, ρout ≈ ρin as discussed previously. The
dependence of ρout on the level of excitation is illustrated for the dLIF in Fig. 7 and is consistent
with the LIF simulations in Fig. 4.

The reduction of dependencies between the output spike trains in the fluctuation dominated
regime does not depend on our choice of the Pearson correlation coefficient as a measure. When
firing is rare, output spike trains become nearly independent. Thus, any reasonable measure of
dependence between output spike trains tends to zero in the fluctuation dominated limit. We
revisit this observation in the Discussion.

Some combinations of the correlation parameters can lead to non-monotonic behavior of ρout

with respect to re. For instance, in Fig. 7B, ρin > 0 so that ρout initially increases with re from
0 towards ρin > 0. However, as re continues to grow, uncorrelated excitation dominates and ρout

decreases towards ρin ≈ ρee = 0. The opposite occurs in Fig. 7C: correlation initially decreases from
0 towards ρin < 0 then increases towards ρee = 0.

A non-monotonic relationship between re and ρout yields a non-monotonic relationship between
rout and ρout since rout increases with re. Therefore, correlations do not necessarily increase with
firing rate (de la Rocha et al., 2007). Such mechanisms could underly the attention induced decreases
in correlations accompanied by increases in firing rates (Cohen and Maunsell, 2009). This result
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Figure 7: Correlation transfer for the dLIF model. The output correlation as a function of
the excitatory input rate, re, for different combinations of the correlations parameters, ρee, ρii, ρei,
and the mean leak current, ĪL. We fixed ri = 1 and varied re and ĪL, thus re and ĪL are given
in units of ri. The solid lines represent the output correlations for the dLIF and the dashed lines
represent values for the PIF (equivalently the input correlation, ρin). The mean leak current, ĪL,
decreases with the darkness of the solid lines. The darkest solid line is obtained by setting ĪL = 0,
eliminating the leak current altogether. In this case, the dLIF differs from the PIF only by the
presence of a lower reflecting barrier at β. When re < ri, this lower barrier has a decorrelating
effect. When excitation is stronger, the lower barrier has an insignificant effect on correlations
since it is visited rarely. The filled circles indicate the boundary between the drift and fluctuation
dominated regimes, re = ri + ĪL. The correlation parameters are (A) ρee = ρii = 0.2 and ρei = 0.
(B) ρii = 0.2 and ρee = ρei = 0. (C) ρei = 0.2 and ρee = ρii = 0. (D) ρee = ρii = ρei = 0.2.
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Figure 8: The effects of synaptic variability on correlation transfer. Solid lines indicate
theoretical values for a pair of PIFs (cf. Eq. (10)) and thin dashed lines were obtained from
simulations of a pair of LIFs. For the LIF simulations, ri = 1KHz and τm = 20ms are fixed and
the excitatory input rate, re, increases with the darkness of the lines (see legend). The correlation
parameters are ρee = ρii = 0.2 and ρei = 0. Inputs are renewal with gamma distributed ISI’s (see
Appendix A) and postsynaptic amplitudes are random, with peak values drawn independently from
a gamma distribution with mean 1 and coefficient of variation CVd. In the drift dominated limit,
the PIF accurately approximates the LIF (see the darkest dotted lines). Outside of this regime (the
lighter lines), correlations are reduced but obey the same dependence on the parameters. (A) The
input Fano factor, F , is fixed at unity (inputs are Poisson), and the magnitude of synaptic noise,
CVd, is varied. (B) The degree of synaptic variability is fixed at CVd = 1 and F is varied.

is not necessarily in opposition to the central result in de la Rocha et al. (2007), which implies an
increase in the correlation susceptibility, ρout/ρin, with respect to firing rates. In Fig. 7 A, B, and
C the correlation susceptibility increases with rout . However in Fig. 7D, ρin = 0 when re = ri,
but ρout > 0 so that the correlation susceptibility is undefined at this point. This phenomenon is
explored further in Sec. 8.1.

5 Synaptic variability reduces correlations

Synapses can have a range of efficacies and spikes in presynaptic neurons can elicit a variety of
post-synaptic response amplitudes. Furthermore, synaptic failure and random response amplitudes
result in variability at the level of single synapses. Release probabilities at a synapse range between
less than 0.1 and up to 0.9 (Allen and Stevens, 1994; Thomson, 2000), and the magnitude of the
postsynaptic response, evoked by the same cell, can vary with a CV from .25 to 1.5 (Mason et al.,
1991; Hessler et al., 1993; Brémaud et al., 2007).

To model synaptic variability, assume that an excitatory (inhibitory) spike at time tke (tki ), causes
a random “jump” dk

e (dk
i ) in the membrane potential of the post-synaptic cell. Assume that the

jumps are drawn independently from a distribution with mean de (di) and variance σ2
de

(σ2
di
). For

simplicity we let de = di = d and σ2
de

= σ2
di

= σ2
d (more general results are given in Appendix E.1).

Synaptic noise adds stochasticity to the relationship between input and output spike counts
given for the PIF by Eq. (8), but randomness is only introduced at each input spike. As a result,
the variance is increased by an amount which depends on the input rates. In particular, for the PIF,

15



σ2
out =

(

σ2
in + CVd

2(re + ri)
) /

θ̂2 where θ̂ = θ/d is the average number of excitatory kicks needed

to reach threshold and CVd = σd/d. Since synaptic noise was assumed to be independent, the
covariance of the outputs is not changed by the noisiness of the synapses, γout = γin

/

θ̂2. Correlations
are therefore reduced as (see Appendix E.1)

ρout =

(

F

F + CV2
d

)

ρin (10)

where F = (Fere +Firi)/(re+ri) is the weighted average of the excitatory and inhibitory input Fano
factors. The decrease in correlations due to synaptic noise is illustrated in Fig. 8A. Interestingly
an increase in the randomness of the input, as measured by F , will increase the output correlation,
but only in the presence of synaptic noise. This effect is illustrated in Fig. 8B.

Synaptic failure can be modeled by assuming that dk
e and dk

i are binary random variables in which
case CV2

d = (1 − p)/p, where p is the probability of release. For example when inputs are Poisson
(F = 1), ρout = p for the PIF model. Hence, ρout decreases with an increase in the probability
of synaptic failure. When p is small (Allen and Stevens, 1994; Thomson, 2000), correlations are
significantly reduced by synaptic failure.

Combining the effects of synaptic failure and variable postsynaptic amplitudes, we obtain

ρout =

(

p F

p F + (1 − p) + CV2
d

)

ρin (11)

where we have assumed that a proportion p of the inputs successfully elicit a response, and the
amplitudes of the successful synaptic responses are variable with a CV of CVd. Realistic choices
of parameters yeild dramatic reductions in correlations. For example, taking p = 0.5, CVd = 1,
and CVe = CVi = 0.6 (where F = CV2

e), correlations are reduced by nearly an order of magnitude
by the PIF (ρout = 0.107ρin). Correlations are reduced even further by leaky models, especially
in the fluctuation dominated regime. In Fig. 9 we illustrate the effects of synaptic variability on
correlations in a simple population model.

As the release probability and PSP amplitude are dependent on input statistics (Czubayko
and Plenz, 2002), the independence assumptions made in this section can only be taken as a first
approximation. However, the model can be extended to take such dependencies into account.

6 The effect of coupling on correlations

Recurrent connections are common in many parts of the central nervous system, and may play
an important role in information processing (Gawne and Richmond, 1993; Kisvárday et al., 1997;
Gibson et al., 1999; Lamme and Roelfsema, 2000; Oswald et al., 2009). Synaptic coupling or gap
junctions can actively modulate the transfer of correlated inputs (Schneider et al., 2006; Ly and
Ermentrout, 2009), and thus affect the information carried by a population of cells (Gutnisky and
Dragoi, 2008; Josić et al., 2009).

To model recurrent coupling between two cells, suppose that an action potential in one cell
instantaneously raises the membrane potential of the other. We consider a pair of identical, re-

16



0.1
Ρee 0.1

Ρii

0.1
Ρei 0.1

Ρie

Ρin = Ρee + Ρii - Ρei - Ρie

-0.2 0.2 Ρin

Synaptic failure,
Variable PSP amplitudes

-0.02 0.02 ΡPIF

Figure 9: Correlations are dramatically reduced by unreliable synapses. The input popula-
tion has excitatory-to-excitatory, inhibitory-to-inhibitory, and excitatory-to-inhibitory correlations
distributed according to a normal distribution with a mean of 0.1 and a standard deviation of
0.05. Assuming homogeneous rates and balanced excitation and inhibition, the input correlations
to downstream cells are normally distributed with a mean of 0 (the ei correlations “cancel” with
the ee and ii correlations), and a standard deviation of 2 × 0.05 = 0.1 (the variances sum). How-
ever, realistic levels of synaptic failure, variability of synaptic amplitudes, and non-Poisson input
statistics (CVd = 1, p = 0.5, CVe = CVi = 0.6, F = CV2

e, see Sec. 5) decrease output correlations
for the PIF by almost an order of magnitude, std(ρPIF) = 0.0107. Correlations are reduced even
further for leaky models, especially in fluctuation dominated regimes (see Sec. 4 and Fig. 8).
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Figure 10: The effect of coupling on correlation transfer. Solid lines indicate theoretical
values for a pair of PIFs (cf. Eq. (12)) and thin dashed lines were obtained from simulations of a
pair of LIFs with ρee = ρii = 0.2, ρei = 0 so that ρin = 0.2. Parameters are the same as in Fig. 8,
except that inputs are strictly Poisson and synapses are not random.

ciprocally coupled cells here, but more general results are given in Appendix E.2. The jump in
membrane potential, c, due to reciprocal coupling is assumed to be smaller than θ.

The membrane potentials of a pair of coupled PIFs are described by the coupled differential
equations.

dV1 = in1(t)dt + c out2(t)dt, dV2 = in2(t)dt + c out1(t)dt,

with the usual threshold and reset boundary conditions. The analogue of Eq. (8) in this case is a
coupled set of linear equations. Their solution can be used to compute the output variance and
covariance for the PIF (see Appendix E.2),

σ2
out =

σ2
in

(θ2 − c2)2

[

(θ2 + c2) + 2cθρin

]

, and γout =
γin

(θ2 − c2)2

[

(θ2 + c2) +
2cθ

ρin

]

.

Since |ρin| < 1, it follows that coupling has a larger effect on the covariance than on the variance.
This can be understood by noting that coupling affects the covariance directly and affects the
variance only indirectly (Rangan, 2009): when neuron 1 spikes, the membrane potential of neuron
2 (and therefore the timing of its spikes) is affected directly due to coupling. However, the effect on
neuron 1 itself is indirect – a spike in neuron 1 affects the propensity of neuron 2 to spike, which in
turn affects the timing of spikes in neuron 1.

The output correlation is

ρout =
(1 + u2)ρin + 2u

(1 + u2) + 2uρin
, (12)

where u = c/θ < 1 is synaptic amplitude relative to the distance from reset to threshold, and
measures the strength of the coupling. If the coupling is not too strong, then to first order in u,
ρout = ρin + 2(1 − ρ2

in)u + O (u2) . Fig. 10 illustrates the dependence of ρout on u when ρin is fixed.
Not surprisingly, excitatory coupling (u > 0) increases correlations and inhibitory coupling (u < 0)
decreases correlations. Frequently, the amplitude of a single PSP is much smaller than the distance
from reset to threshold (i.e., u is small) and therefore the effect of coupling on correlations is small.
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Figure 11: Output cross-covariance functions. The output cross-covariance function when in-
puts are delta-correlated (black lines) decay with a timescale of τmem (heavy dots follow e−τ/τmem).
The gray lines show the output cross-covariance when the input cross-covariance is a double ex-
ponential, (γin/2)e−|τ |/5, instead of a delta-function. The dashed line was obtained by convolving
the input cross-covariance function with the output cross-covariance function obtained in the delta-
correlated case. (A) Cros-covariance functions for the dLIF with re = 3, ri = 2, ρee = ρii = 0.2,
ρei = 0, and ĪL = 0.877 chosen so that the output rate (rout = 8.4Hz) matches with the LIF sim-
ulations in (B). The black solid and dashed lines were obtained exactly, without simulations. The
grey line is from simulations. (B) Cross-covariance function from LIF simulations with the same
parameters as in (A) and τm = 20ms. In both plots, inputs are Poisson (see Appendix A) and
cross-covariance functions are normalized to have a peak value of 1.

7 Cross-covariance functions and the timescale of correla-

tions

So far we have focused on the magnitude of correlations over asymptotically large windows (see the
definition of ρab in the Methods). However, the timescale over which correlations occur is often of
interest in both theoretical and experimental studies (Maršálek et al., 1997; Brody, 1999; Kohn and
Smith, 2005; Moreno-Bote and Parga, 2006; Ostojić et al., 2009). We provide a brief discussion of
the topic here. A full treatment of the topic will be addressed in a forthcoming publication.

The timescale over which two spike trains are correlated can be measured by their auto- and
cross-covariance functions, which can be computed exactly for the dLIF model (see Methods and
Appendix D). When inputs are delta-correlated, the tail of the cross-covariance function, R12(τ),
decays exponentially as τ → ∞. The timescale of this decay is given by the memory timescale,
τmem, of neuron 2 (see dotted line in Fig. 11A) and the τ → −∞ tail decays as the memory timescale
of neuron 1.

To address the question of how correlation timescales are transferred, the timescale of input cor-
relations must be taken into account. So far, we have concentrated on “delta-correlated” inputs, i.e.
inputs whose cross-covariance is a delta function. In particular, the analysis of the dLIF model relied
on this assumption. In Fig. 11, we show that the cross-covariance obtained from delta-correlated
inputs can be used as an impulse response function for the transfer of cross-covariance functions:
The output cross-covariance is well approximated by convolving the input cross-covariance with the
output cross-covariance obtained with delta-correlated inputs (compare gray and dashed lines in

19



t = ¥

t = 1

t = 10

t = 100

0 2 4 6 8 10
re0

0.05

0.1

0.15

0.2
ΡoutHtL

Figure 12: Correlation over finite windows. The output spike count correlation, ρout(t), over
a window of size t, plotted as a function of the input excitatory rate, re for various values of t.
Correlations are smaller for smaller window sizes, but obey the same general dependence on re.

Fig. 11). Thus, the timescale of output correlations is given by τout = max{τmem, τin} where τin and
τout are the timescales of the input and output cross-covariance functions respectively. Fig. 11 also
illustrates that the cross-covariance functions for the dLIF match those for the LIF qualitatively
when the two models have identical input parameters and ĪL is chosen so that the rates of the two
models are matched.

The spike count correlations over finite windows can be computed from the auto- and cross-
covariance functions cf. Eq. (1). Correlations are smaller for smaller window sizes for an LIF
model with white noise inputs (Shea-Brown et al., 2008). The dependence of output correlations
on window sizes will be discussed in the authors’ forthcoming work.

8 Comparison of results with other models

8.1 Comparison with a white noise Gaussian model

In Fig. 13A, we compare the analytical results for the dLIF and simulations of the LIF with Poisson
inputs to a linear response approximation of the LIF with Gaussian white noise inputs, as described
by de la Rocha et al. (2007) . The models exhibit the same qualitative dependence on rout, but
the dLIF differs from the LIF quantitatively to some extent. Both models are caricatures of actual
neurons, and neither should be expected to agree quantitatively with actual recordings. The dLIF
has the advantage of being more amenable to analysis and simpler to understand mechanistically.
We next describe a regime where the dLIF differs from Gaussian models even qualitatively.

When 2ρei
√

reri = ρeere + ρiiri the correlation between the total input currents, ρin, is zero.
In such cases, output correlations for the dLIF are positive, but very small – about two orders of
magnitude smaller than ρee and ρii (See Fig. 13B). Note that small correlations on this scale have
the potential to significantly impact coding and downstream activity when the output from several
neurons is pooled (Zohary et al., 1994; Renart et al., 2010; Rosenbaum et al., 2010). This might
explain why large correlations are observed in deeper layers of feedforward networks even when
excitation and inhibition are balanced (Litvak et al., 2003; Rosenbaum et al., 2010)

Integrate-and-fire models are able to transfer uncorrelated input currents to correlated outputs
because uncorrelated input currents are not necessarily independent. Since the integrate-and-fire
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Figure 13: Comparing the dLIF with a Gaussian model. (A) Output correlation plotted
as a function of output rate for three models: analytical results for the dLIF (solid black line),
simulations of an LIF with Poisson inputs (heavy black dots), and a linear response approximation
to an LIF with Gaussian white noise input (gray dashed line). For the dLIF and LIF with Poisson
inputs, the input parameters are as in Figs. 4A and 7A with τm = 20ms and ĪL = 0.5. The white
noise inputs for the gray dashed line has bias µ = re − ri, variance σ2 = re + ri, and correlation
ρin = 0.2. (B) Results are from the dLIF model with ri = 1, ĪL = 0.5, ρee = 0.5, and ρii = 0.5
fixed. The filled circles indicate the boundary between the drift and fluctuation dominated regimes,
re = ri + ĪL. As re changes, ρei is varied so that ρin = 0 and ρin = 0.005 respectively. Output
correlations are positive even when ρin = 0. When ρin = 0.005, correlations can double from input
to output. Gaussian models cannot exhibit such increases in correlations.

filter is non-linear, it is possible for moments to “mix” so that higher order input correlations
are transferred to second order output correlations. This phenomenon cannot be observed when
inputs are modeled by Gaussian processes, since uncorrelated Gaussian processes are necessarily
independent. Furthermore, when 2ρei

√
reri ≈ ρeere + ρiiri correlations nearly cancel and ρin ≈ 0. In

such cases it is possible that |ρout| > |ρin| > 0 for the dLIF model (See Fig. 13B). This would again
be impossible if inputs were modeled using Gaussian processes (Lancaster, 1957).

8.2 Comparison with a conductance-based model

We now compare the results above to simulations of a conductance based integrate-and-fire model (Dayan
and Abbott, 2001) similar to the model used in Salinas and Sejnowski (2000). This type of model
can accurately capture the statistics of a variety of neuronal responses (Kobayashi et al., 2009).
The subthreshold potential obeys the differential equation

Cm V̇ = −gL(V − EL) − gAMPA(t)(V − EAMPA) − gGABA(t)(V − ECl),

where gAMPA(t) = (e ∗ epsc)(t) and gGABA(t) = (i ∗ ipsc)(t) are convolutions of the excitatory and
inhibitory inputs with post-synaptic conductance kernels. The excitatory (AMPA) post-synaptic
conductances were modeled as exponential functions with time constant τAMPA and peak value
ḡAMPA,

epsc(t) = ḡAMPAe−t/τAMPA
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and the inhibitory (GABA) post-synaptic conductance are double exponentials,

ipsc(t) =
ḡGABA

D

(

e−t/τ
(1)
GABA − e−t/τ

(2)
GABA

)

where D is a constant chosen so that ḡGABA is the maximum value of ipsc(t). When the cell crosses
threshold, Vθ, a spike is produced and the potential is reset to EL where it is held for a refractory
period, τref.

The parameters used in the simulations are EL = −60mV, EAMPA = 0, ECl = −62mV, Vθ =
−54mV, τm = 20ms, τAMPA = 5ms, τ

(1)
GABA = 5.6ms, τ

(2)
GABA = .285ms, τref = 2ms (compare to

parameters in Salinas and Sejnowski (2000)). In Figs. 15 and 16, gL = Cm/(20ms) is fixed to obtain
a membrane time constant of τm = 20ms. For the simulations in Fig. 14, we used several different
values of gL. For all simulations we set ḡAMPA = Cm/(909ms) so that 30 synchronous excitatory
input spikes are required to bring the cell from reset to threshold, in accordance with our choice of
θ = 30 for the current based models (see Methods). We then set ḡGABA = 10.3215gAMPA so that
an IPSP is about twice the size of an EPSP when the membrane potential is halfway between rest
and threshold.

Figs. 14, 15, and 16 show that the conductance based model transfers correlations in accordance
with the theory developed above and illustrated in Figs. 4, 7, 8, and 10. However, in Fig. 14 the
magnitude of correlations begin to decay with re when re gets large. This is consistent with Shea-
Brown et al. (2008) where such a decrease in correlations is attributed to the refractory period.
The effect is only significant when rout is on the same order as 1/τref. To illustrate this point, we
plotted the correlation when τref = 0 and τm = 30ms as a dashed line in Fig. 14 (compare to the
darkest solid line). The presence of a refractory period causes noticeable decorrelation only once
re ≥ 3KHz at which point rout ≈ 60Hz.

We also observe that correlations are generally smaller in magnitude for the conductance based
model than for the current based models considered above. This may be a consequence of the
fact that the model has more sources of non-linearity than the current based models. Another
potential explanation is that the effective membrane time constant is reduced when inputs are
stronger (Brunel et al., 2001; Kuhn et al., 2004) so that excitation cannot significantly outweigh
the “effective leak”.

9 Discussion

We used simplified random walk models of neural dynamics to investigate correlation transfer in a
variety of settings, and verified that more realistic models obey the same trends. We found that
correlations are well preserved in drift dominated regimes when synaptic variability is not taken
into account. However, correlations are reduced outside of the drift dominated regime, and reduced
further in the presence of synaptic variability and synaptic failure. Positive coupling can increase
correlated variability, but only to moderate levels, unless the coupling is strong.

Recent experimental and theoretical studies (Hertz, 2010; Renart et al., 2010) suggest that re-
current network dynamics can modulate correlations to prevent the potential blowup of correlations
observed in a feedforward setting (Reyes, 2003; Rosenbaum et al., 2010). These studies agree with
in vivo recordings that show small (Ecker et al., 2010; Renart et al., 2010) or moderate (Zohary
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Figure 14: Output correlation as a function of re in a conductance based model. Results
from Figs. 4 and 7 are reproduced with a conductance based model. Here, re and τm = Cm/gL are
varied while ri = 1KHz is fixed. The membrane time constant, τm, is varied by changing gL and
keeping Cm fixed, so that synaptic conductances are not affected. Inputs are correlated Poisson
processes. Output rates varied from < .01Hz to 130Hz. For the dashed line in (A), we set τref = 0
and τm = 30ms to illustrate the effect of a refractory period. Correlations in the inputs are (A)
ρee = ρii = 0.2 and ρei = 0. (B) ρii = 0.2 and ρee = ρei = 0. (C) ρei = 0.2 and ρee = ρii = 0. (D)
ρee = ρii = ρei = 0.2.
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Figure 15: The effects of synaptic variability on correlation transfer in a conductance-
based model. Results in Fig. 8 are reproduced. Parameters ri = 1KHz and τm = 20ms are
fixed and the excitatory input rate, re, increases with the darkness of the lines (see legend). The
input correlation parameters are ρee = ρii = 0.2 and ρei = 0. Inputs are renewal with gamma
distributed ISI’s (see Appendix A) and EPSCs are random, with peak values drawn independently
from a gamma distribution with mean ḡAMPA and coefficient of variation CVd. (A) The input Fano
factor, Fe = Fi = F in = 1, is fixed and CVd is varied. (B) The synaptic variability, CVd = 1, is
fixed and Fe = Fi = F is varied.
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Figure 16: The effects of coupling on correlation transfer in a conductance-based model.
Results in Fig. 10 are reproduced. Parameters are the same as in Fig. 15, except inputs are strictly
Poisson and synapses are deterministic. When u > 0, a spike in one neuron adds a PSC to the
AMPA conductance of the second. The peak value of the EPSC is given by u · ḡAMPA/30 so that
the corresponding PSP amplitude is roughly a proportion u of the distance from rest to threshold.
When u < 0 spikes in one neuron add a PSC with peak value u·ḡGABA/60 to the GABA conductance
of the other, to obtain a similar scaling.
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Figure 17: An alternate measure of correlation. The covariation factor (solid line) and
Foutρin (dashed line) as a function of re for the dLIF with ri = 1, ĪL = 0.5, ρee = ρii = 0.2 and
ρei = 0. The filled circle indicates the boundary between the drift and fluctuation dominated
regimes, re = ri + ĪL. The covariation factor is nearly zero for small values of re. As re grows, the
cells become less forgetful and Cout increases initially. In the drift dominated regime, Cout decreases
towards Fout ρin since ρout ր ρin (see Sec. 3) and ρout = Cout/Fout.

et al., 1994) correlations between cells. We showed that correlations are also strongly modulated
by dynamics at the cellular level. The correlation structure at the level of networks is shaped by
the interplay between such local and global effects.

Analytical approximations of the correlation between the outputs of two current or conductance
based LIF neurons in the diffusive limit have been obtained previously (de la Rocha et al., 2007;
Shea-Brown et al., 2008; Tchumatchenko et al., 2008; Ostojić et al., 2009). Since integrate-and-fire
models are only caricatures of actual neurons, it is useful to complement such analytical approaches
with a mechanistic understanding. We characterized the mechanisms that shape correlation transfer
in an intuitive way, providing insights into how correlations are affected by various aspects of neural
dynamics. Moreover, the use of point processes to model inputs allowed us to address questions that
are more difficult to formulate for diffusive models, and helped maintain a more direct connection
to physiology.

9.1 Non-stationary inputs

Throughout the text, we have assumed that inputs are stationary. Although this assumption is
frequently made in theoretical studies (Moreno-Bote and Parga, 2006; de la Rocha et al., 2007;
Shea-Brown et al., 2008; Ostojić et al., 2009), neurons in vivo receive inputs with time-dependent
statistics. The assumption of stationarity is a good approximation when the input statistics change
more slowly than the timescale of correlations and synaptic responses.

The dLIF model can be extended to take time dependent rates and correlations into account
whilst maintaining its numerical tractability. The master equation for the membrane potentials
is transformed from an linear autonomous system of ODEs (see Appendix D), to a linear non-
autonomous system, p′(t) = A(t)p(t) where A(t) is the time-dependent infinitesimal generator
matrix (Karlin and Taylor, 1975; Gardiner, 1985). The methods in the Appendix can then be
extended to investigate time-dependent spiking statistics.

25



9.2 Alternate measures of correlation

There is no unique way to quantify dependencies between pairs of spike trains. We chose to use the
Pearson correlation coefficient because it is a unitless quantity that is widely used and understood.
However, the random walk models we presented are mathematically tractable and our analysis can
be applied to other measures of statistical dependence.

For example, measures of correlation where the covariance is normalized by the firing rates have
been proposed and may offer information theoretic advantages (Amari, 2009; Roudi et al., 2009).
As an example, we consider the unitless covariation factor, Cout = γout/rout. This quantity is an
extension of the Fano factor that measures the dispersion of a bivariate distribution.

To analyze the covariation factor, reorganize Eq. (4) as

Fout = CV2
out, and Cout = (Fout + 1)

(

E[τ1] − E[τ1 | V2 ր θ]

E[τ1]

)

+ Sout.

The behavior of Cout now parallels that of ρout: In the fluctuation dominated limit, when re ≪ ri+ĪL,
the effect of a spike in one neuron is forgotten by the time the second spikes, so that Cout ≈ 0. As re

increases towards the drift dominated regime, the cells become less “forgetful” and |Cout| increases.
As re increases into the drift dominated regime, the cells behave like PIFs, transferring spike counts
linearly and preserving correlations, so that Cout = ρoutFout ≈ ρinFout (See Fig. 17B).

The “forgetfulness” of cells diminishes the dependence between the output of the cells in the
fluctuation dominated regime. The effect of a spike in one neuron is forgotten before the second
neuron spikes, and the output spike trains are nearly independent as a result. This is a fundamental
property of excitable systems, and not due to the particular choice of the Pearson correlation
coefficient or the neuron model employed.

9.3 Higher-order correlations

Pairwise correlations play a significant role in the neural code, and it has been proposed that the first
and second order statistics may fully characterize the response of a population (Schneidman et al.,
2006; Shlens et al., 2006; Tang et al., 2008; Shlens et al., 2009, although see (Roudi et al., 2009)).
However, the higher-order structure of the population response can have significant effects on the
firing of downstream neurons (Kuhn et al., 2003), and the information carried by the response Roudi
et al. (2009).

Eq. (8) can be used to show that a pair of PIFs preserve higher order correlations, and we
therefore expect that a pair of leaky neurons in the drift dominated regime approximately preserve
higher order correlations. In the fluctuation dominated limit, the forgetfulness of cells causes spiking
to become independent and therefore higher order correlations are reduced. The analysis of synaptic
noise and coupling can also be extended to higher order moments.

9.4 Physiologically realistic models

We used random walk models in our analysis and verified our results with simulations of a conduc-
tance based integrate–and–fire model. This approach is common in studies of stochastic response
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properties of neurons (Salinas and Sejnowski, 2000; Rauch et al., 2003) and captures the funda-
mental mechanisms of a physiological cell. However, more detailed models of active conductances,
synaptic plasticity, channel dynamics, and an extended dendritic morphology might reveal addi-
tional mechanisms that modulate correlations. Such models are outside of the scope of this study,
but warrant further investigation. For instance, preliminary results suggest that correlations are
reduced significantly in a Hodgkin Huxley model (E. Shea-Brown, private communication, 2010).
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A Generating correlated inputs

To generate a pair of correlated Poisson processes, we used an algorithm equivalent to the SIP
model in Kuhn et al. (2003). We first generated three independent Poisson processes, a1, a2, and b,
then defined p1 = a1 + b and p2 = a2 + b. The processes p1 and p2 are correlated Poisson processes
with rpj

= raj
+ rb and ρp1p2 = rb/

√
ra1ra2 . The cross-covariance function between these processes

is a delta function with area γp1p2 = ρp1p2

√
rp1rp2. Any pair of Poisson processes with a delta

function cross-covariance is statistically equivalent to processes generated by the algorithm above.
This algorithm is easily generalized to four Poisson processes with specified pairwise correlations.
In generating such quadruplets, we constrain the processes so that the probability of more than
two spikes occurring simultaneously is zero as dt → 0. This algorithm generates delta-correlated
Poisson processes. To generate pairs of Poisson processes with temporally extended correlations
(for the gray lines in Fig. 11), we added an independent random number to each spike time in
one of the excitatory and one of the inhibitory trains. The resulting processes are Poisson with a
cross-covariance function given by the density of the random numbers used (Cox and Isham, 1980).

The simulations in Fig. 8 and 15, required correlated processes with CV 6= 1. For these simula-
tions we generated pairs of correlated renewal processes with gamma distributed interspike intervals:
Begin with a pair of delta correlated Poisson processes, p1 and p2, generated using the algorithm
above. Let nj ∈ N be positive integers, and let gj be the spike train consisting of every nj-th spike in
pj for j = 1, 2. Then gj is a renewal processes with rate rgj

= rpj
/nj, Fano factor CV2 = Fgj

= 1/nj

and correlation coefficient ρg1g2 = ρp1p2 . The interspike intervals follow a gamma distribution with
rate parameter rgj

and shape parameter nj . While the auto-correlations of such processes are
oscillatory, the cross-covariance function between g1 and g2, is a delta function.

B Correlation Transfer for the PIF Model

We next derive the total output correlation for a pair of PIFs driven by correlated stationary inputs.
In the main text, we assume that the input signals can be written as inj(t) = ej(t) − ij(t) where
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ej(t) and ij(t) are point processes. Here we derive the output statistics for a pair of PIFs driven by
general stationary processes, in1(t) and in2(t), under weak assumptions.

We generalize the input pike count by defining Ninj
(t) =

∫ t

0
inj(s)ds for j = 1, 2. Note that

Ninj
(t) is not necessarily integer valued since inj(t) is not necessarily a point process. For the PIFs to

have non-zero firing rates, we must assume that the inputs have positive mean, µinj
= E[inj(t)] > 0.

The asymptotic variances, covariance and correlation are defined as, σinj
(t) = limt→∞ var(Ninj

(t))/t,
γin = limt→∞ cov(Nin1(t), Nin2(t))/t, and ρin = γin/(σin1σin2). These quantities can also be inter-
preted in terms of the areas of auto- and cross-covariance functions as in the Methods. The mem-
brane potentials V1(t) and V2(t) of two PIFs driven by input signals in1(t) and in2(t) obey the
stochastic equations

dV1 = in1(t)dt

dV2 = in2(t)dt

with the added condition that when Vj reaches θj , it is reset to Vj = 0 and an output spike is
produced. These stochastic equations can be interpreted unambiguously in the Itô sense whenever
(Nin1(t), Nin2(t)) is a bivariate semimartingale (Métivier, 1982). However, any interpretation which
yields Eq. (13) is sufficient. The output spike trains have rate, variance, covariance, and correlation
routj

, σ2
outj

, γout, and ρout as defined in the Methods. We make the following ergodicity assumptions,

1. σin, γin, σoutj
, and γout are finite and σinj

,σoutj
> 0; and

2. ~V (t) = (V1(t), V2(t)) is ergodic and its stationary distribution has finite, positive variances.

These assumptions are necessary for the outputs to be stationary and for the asymptotic input and
output correlations to exist. They are true for typical processes used to model stochastic inputs,
but can be violated for periodic processes or processes obtained from deterministically periodic
driving forces. We assume that ~V (0) is drawn from the stationary distribution of ~V (t) so that the
process is stationary. We will first derive the output statistics for a pair of uncoupled PIFs driven
by stationary inputs, then separately consider the case of variable synaptic responses and reciprocal
coupling in Appendix E.

The output spike counts are given by

Nout1(t) =
Nin1(t) + V1(0) − V1(t)

θ
, and Nout2(t) =

Nin2(t) + V2(0) − V2(t)

θ
(13)

Before deriving the output spiking statistics, we must prove a simple lemma. The notation f(t) ∼
o(t) below is shorthand for limt→∞ f(t)/t = 0.

Lemma 1. Suppose Xt and Ct are stochastic processes such that limt→∞ var(Xt)/t = c for some

finite positive number c and var(Ct) ∼ o(t). Then cov(Xt, Ct) ∼ o(t).

Proof. By the Cauchy-Schwarz inequality,

lim
t→∞

|cov(Xt, Ct)|
t

≤ lim
t→∞

√

var(Xt)var(Ct)

t
= lim

t→∞

√

var(Xt)

t

√

var(Ct)

t
= 0.
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We now derive the output spiking statistics

Theorem 1. Under assumptions 1 and 2 above, the output spike count variance and covariance for

a pair of PIFs driven by correlated stationary inputs, in1(t) and in2(t), are given by

σ2
outj

=
σinj

θ2
j

, and γout =
γin

θ1θ2
.

Thus the input correlation coefficient is preserved, ρout = ρin.

Proof. First note that var(Vj(t)) ∼ o(t) by assumption 2 above and that limt→∞ var(Ninj
(t))/t = σ2

inj

is finite and positive by assumption 1. From Eq. (13) and using the bilinearity of covariances we
can calculate

γout = lim
t→∞

1

t
cov (Nout1(t), Nout2(t))

= lim
t→∞

1

t
cov

(

Nin1(t) + V1(0) − V1(t)

θ1

,
Nin2(t) + V2(0) − V2(t)

θ2

)

=
1

θ1θ2
lim
t→∞

1

t
[cov (Nin1(t), Nin2(t)) + o(t)] (14)

=
γin

θ1θ2

where (14) follows from Lemma 1 and the bilinearity of covariances. Using an identical argument

we can derive σ2
outj

=
σ2
inj

θ2
j

. It follows that ρout = γout/ (σout1σout2) = ρin.

C Derivation of Eq. (4)

In this section, we derive Eq. (4) which gives the asymptotic correlation between the outputs of
two integrate-and-fire neurons. The equation holds for any integrate-and-fire models for which the
membrane potentials are Markov processes (marginally and jointly) and additionally satisfy

Pr(Vj(t3) ∈ A | Vj(t2) = v2, Vi(t1) = v1) = Pr(Vj(t3) ∈ A | Vj(t2) = v2) (15)

for i, j ∈ {1, 2}, any set A and any voltages v1 and v2, whenever t1 < t2 < t3.

These conditions are met by a pair integrate-and-fire neurons whose sub-threshold membrane
potentials are governed by equations of the form

dV1 = f1(V1, in1)dt

dV2 = f2(V2, in2)dt

where in1(t) and in2(t) are stationary stochastic processes such that ini(t) is independent of inj(s)
for s 6= t and i, j ∈ {1, 2}. Here, we assume standard threshold and reset conditions at θj and
0 respectively (see Methods). In short, the two input processes must be delta-correlated (e.g.,
correlated Poisson processes, white noise, or any linear combination thereof) and the neurons must
be uncoupled. For example, the conditions are met for the PIF, LIF and dLIF models considered
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in the text with Poisson or white noise inputs, even in the case of random synaptic amplitudes.
The conditions are not strictly met for the conductance-based model due to its non-instantaneous
synapses. However, the results obtained here are approximately valid when the input is correlated
in time or when synapses are not instantaneous, as long as the firing rates are significantly slower
than both the synaptic time constants and the correlation time constants of the inputs.

Since the membrane potentials are marginally Markov, the output spike trains a1(t) and a2(t)
are renewal processes. We assume that the bivariate membrane potential process (V1(t), V2(t)) is
ergodic and its initial condition is drawn from its stationary distribution so that the output spike
trains are stationary in a bivariate sense (Cox and Lewis, 1972). For ease of notation, we write
Nj(t) in place of Naj

(t) for the counting processes and similarly for other quantities.

For t > 0, define Qij(t) to be the distribution of the waiting time until the first spike in ai(t)
after a spike in aj(t),

Qij(t) = lim
δ→0

Pr (ai spikes in [t, t + δ], but not in [0,t] | aj spikes in [0, δ]) /δ.

The auto- and cross-covariance functions are related to the asymptotic spike count statistics by (Cox
and Lewis, 1972),

σ2
j = 2

∫ ∞

0+

Rjj(t)dt + rj , j = 1, 2

and

γ12 =

∫ ∞

0+

R12(t)dt +

∫ ∞

0+

R21(t)dt + rs. (16)

where the + on the lower limit of the integrals indicates that any delta function at the origin is
omitted and rs is the rate of synchronous spikes, which accounts for the area of the omitted delta
function at the origin. Similarly, rj accounts for the area of the delta function in Rjj(t).

Due to the renewal properties of the outputs, we have that (Cox, 1962)

Hjj(t) := lim
δ→0

1

δ

∞
∑

k=1

Pr
(

aj spikes for the kth time in [t, t + δ]
∣

∣ aj spiked in [0, δ]
)

=

∞
∑

k=1

Q
(k)
jj (t), t > 0, j = 1, 2

where Q
(k)
jj is the k-fold convolution of Qjj with itself. Similarly, due to the renewal properties of

the outputs in addition to assumption (15), we have for t > 0,

H12(t) := lim
δ→0

1

δ

∞
∑

k=1

Pr
(

a1 spikes for the kth time in [t, t + δ]
∣

∣ a2 spiked in [0, δ]
)

= Q12(t) +

∞
∑

k=1

(

Q12 ∗ Q
(k)
11

)

(t)

= Q12(t) + (Q12 ∗ H11)(t) (17)

where ∗ denotes convolution. Similarly, H21(t) = Q21(t) + (Q21 ∗ H22)(t) for t > 0.
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We proceed by considering the Laplace transform of the cross-covariance functions. The Laplace
transform of a function f(t) is given by f̂(u) =

∫∞

0+ e−utf(t)dt. Using elementary properties of the

Laplace transform, Eq. (17) can be rewritten as Ĥ12(u) = Q̂12(u) + Q̂12(u)Ĥ11(u). Now, using the
definition of R12(t) we can write

R̂12(u) = r2

(

Ĥ12(u) − r1

u

)

= r2

(

Q̂12(u) + Q̂12(u)Ĥ11(u) − r1

u

)

= r2

(

Q̂12(u) +
1

r1

Q̂12(u)R̂11(u) + r1

(

Q̂12(u) − 1

u

))

where the last step follows from the fact that Ĥ11(u) = R̂11(u)/r1+r1/u. From this, we can calculate
the area of the cross-covariance function,

∫ ∞

0+

R12(t)dt = lim
u→0

R̂12(u)

= r2

(

1 +
σ2

1 − r1

2r1

+ r1Q̂
′
12(0)

)

= r2

(

CV2
1 + 1

2
− r1E[τ1 | V2 ր θ2]

)

(18)

where where F1 = CV2
1 = σ2

1/r1 is the output Fano factor and E[τ1 | V2 ր θ2] = −Q̂′
12(0) is the

expected time until the first spike in a1 after a spike in a2 (Feller, 1991). In the derivation above,
we used the facts that limu→0 Q̂12(u) = 1 and limu→0 R̂11(u) = (σ2

1 − r1)/2.

By an identical argument, we get an analogous expression for
∫∞

0+ R21(t)dt. From these expres-
sions and Eq. 16, we can write the output correlation, ρout = γ12/(σ1σ2), as

ρout =

√
r1r2 (E[τ1] − E[τ1 | V2 ր θ2] + E[τ2] − E[τ2 | V1 ր θ1]) + S12

CV1CV2
(19)

where E[τ1] = (CV2
1 + 1)/(2r1) is the expected recurrence time (Cox, 1962), which is the expected

time until the next spike in a1 starting from an arbitrary time (i.e., with V1 starting from its
stationary distribution) and similarly for E[τ2].

To obtain the form given in Eq. (4), we note that Eq. (18) can be written as

∫ ∞

0+

R12(t)dt =
r2

2
(CV2

1 + 1)

(

E[τ1] − E[τ1 | V2 ր θ2]

E[τ1]

)

.

In the symmetric case, combining this with Eq. (16) gives Eq. (4).

Eq. (19) can be used to calculate the correlation between simulated data when the model satisfies
the Markov assumptions made above. To apply the equation to data, we only need to obtain
estimates for rj , CVj, E[τ1 | V2 ր θ2], E[τ2 | V1 ր θ1], and S12. The rates and ISI CV’s can easily
be estimated from a sample of the univariate interspike intervals, rj = 1/E[ISIj] and CV2

j =
var(ISIj)/E[ISIj]

2. The synchrony is easily estimated by counting the occurrence of synchronous
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spikes. To estimate E[τ1 | V2 ր θ2], one only needs to calculate the average time between a spike in
a2 and the next spike in a1, and similarly for E[τ2 | V1 ր θ1].

We used Eq. (19) to obtain the estimates of ρout for the LIF model in Figs. 4 and 8. We found
several advantages to using this method versus conventional methods, such as computing the cross-
covariance functions or counting spikes over sliding windows. When calculating the correlation from
the integrals of the cross-covariance functions, one must bin time and also choose a large window
size over which to integrate. Similarly, when using the sample covariance of spike counts between
sliding windows, one must choose a large window size for the sliding window. The quantities in
Eq. (19) can all be estimated by looking at the time intervals between spikes. It is therefore not
necessary to bin time or to fix a large window size over which to calculate the correlation. The
algorithm based on (19) appears to be faster than algorithms using the other two methods. Though
a deeper investigation is necessary, it also appears that the estimator is more accurate.

Next, we show how Eq. (19) can be used to calculate the exact correlation coefficient for the
dLIF model.

D Analysis of the dLIF model

The methods used to analyze the PIF model cannot be applied to the dLIF model since there
is no analogue to Eq. (8) due to the lower reflecting barrier at β. However, when the inputs
are correlated Poisson processes as defined in Appendix A, we can use the theory of continuous
time Markov chains in combination with Eq. (19) to derive the output spiking statistics. A suite
of Matlab programs that implement the methods described below can be found at http://www.

mathworks.com/matlabcentral/fileexchange/28686.

For notational simplicity in the analysis below, we consider only the case where ĪL = 0, i.e. there
is no leak term. However, note that the leak current in this model is equivalent to an uncorrelated
inhibitory input current. To recover the results for ĪL > 0 from the results below, simply make the
substitutions rij → rij + ĪLj

, ρii → ρii/(1 + ĪL/ri), and ρei → ρei/
√

1 + ĪL/ri.

We first derive the univariate statistics for a single dLIF driven by Poisson inputs (see Methods).
The membrane potential V (t) for this model is a continuous time Markov random walk and the
output spike trains are renewal processes. The Laplace transform of the first passage time densities
for reflected random walks are obtained by Khantha and Balakrishnan (1983). The moments of the
first passage times can be found from the derivatives of these Laplace transforms (Feller, 1991). For
the mean first passage time of V (t) over θ starting from k ∈ {β, β + 1, . . . , θ − 1},

µk→θ =
q
(

−qβ−k − kq + k + qβ−θ + qθ − θ
)

(q − 1)2 re

.

To derive this expression, we needed to correct an error in Khantha and Balakrishnan (1983) in
going from their Eq. (6) to Eq. (7): the inner expression in their Eq. (7) should read (m − m0) +
(f−m−f−m0)/(f −1) instead of (m−m0)− (f−m−f−m0)/(f −1). The variance of the first passage
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time from reset to threshold is given by

σ2
0→θ =

q2
(

−4(β(q − 1) − q(θ + 1) + θ)qβ−θ + q2(β−θ) − q2β + 4(β(q − 1) − q)qβ + (q2 − 1) θ
)

(q − 1)4 r2
e

.

The output firing rate is then given by rout = 1/µ0→θ, the asymptotic spike count variance is
σ2

out = σ2
0→θ/µ

3
0→θ and the output Fano factor is Fout = CV2

out = σ2
0→θ/µ

2
0→θ = σ2

out/rout (Cox,
1962). Simplified expressions for rout and CVout are given in the Methods.

Other univariate statistics can be found from the infinitesimal generator matrix of the membrane
potential process, V (t) (Karlin and Taylor, 1975). The off-diagonal terms (i 6= j) of this matrix are
given by

Bij := lim
h→0

1

h
Pr(V (t + h) = j | V (t) = i) =











re j = i + 1

ri j = i − 1

re i = θ − 1, j = 0

(20)

The diagonal terms are then chosen so that each row sums to zero: Bii = −∑j 6=i Bij . The

distribution of V (t) is then given by P (t) = P (0)eBt where P (t) is a time dependent vector
with Pj(t) = Pr(V (t) = j) and P (0) is the initial distribution. The stationary distribution
p(j) = limt→∞ Pj(t) is then given by the left eigenvector corresponding to the dominant left
eigenvalue, λ0 = 0. The remaining eigenvalues have negative real part. The non-zero eigenvalue
with maximal real part, λ1, determines the timescale with which Pj(t) → p(j). In particular,
|Pj(t) − p(j)| ∼ e−t/τmem where τmem = −1/Real(λ1).

The univariate stationary distribution, p(j), can be found by deriving the dominant left eigen-
vector as discussed above, which is equivalent to solving the detailed balance equation p = peB.
This is a linear recurrence equation and can be solved using a computer algebra system or by hand
using the method of generating functions. We obtained the solution

p(k) = lim
t→∞

Pr(V (t) = k) =
q − 1

qβ − qθ(qβ + θ − qθ)
×







(qθ+k − qk) β ≤ k ≤ 0

(qθ − qk) 0 < k < θ
. (21)

The output rate, derived from the first passage properties above, is also given by the probability
flux across threshold: rout = rep(θ − 1).

We now consider the case of two dLIF neurons driven by correlated Poisson inputs (see Methods).
We will use Eq. (19) to calculate the correlation coefficient, ρout, between the output spike trains.
First we must calculate the stationary distribution of the bivariate process, (V1(t), V2(t)). We first
enumerate the state space, θ1 × θ2 into a single vector of length θ1θ2 and calculate the infinitesimal
generator matrix, in a similar fashion to the univariate case described above. Complicated boundary
conditions make it impractical to include the full bivariate generator matrix in the text. The
commented Matlab code that accompanies this paper can be used to generate this matrix.

The bivariate stationary distribution, p(k1, k2), is the the basis vector for the one-dimensional
nullspace of the transpose of A, equivalently it is the left eigenvector of A associated with the left
eigenvalue λ = 0. There are a variety of numerical techniques for finding this vector. Note that the
vector must be normalized so that its elements sum to 1 since p(k1, k2) is a probability distribution.
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A synchronous output spike occurs whenever both cells are just below threshold and receive a
synchronous excitatory input. The rate of synchronous outputs spike is therefore given by rs =
p(θ1 − 1, θ2 − 1)ρee

√
re1re2 . The output synchrony is then S12 = rs/

√
rout1rout2 .

Since the univariate statistics are known in closed form (see above), the only quantities from
Eq. (19) left to calculate are E[τ1 | V2 ր θ2] and E[τ2 | V1 ր θ1]. First define the conditional
distribution,

p1(k1 | V2 = θ2 − 1) =
p(k1, θ2 − 1)

p2(θ2 − 1)

where p2(θ2 − 1) is the value of univariate stationary distribution for V2(t) at θ2 − 1 from Eq. 21.
From here, we need to calculate the conditional distribution p1(k1 | V2 ր θ2) which represents the
distribution of V1 given that V2 has just crossed threshold. This can be calculated by evolving a
proportion ρee

√

re1/re2 of the probability mass in p(k1 | V2 = θ2 − 1) by one excitatory spike and

evolving a separate proportion ρi1e2

√

ri1/re2 by one inhibitory spike (see the linked Matlab code).
We can then use the mean first passage times derived above to calculate

E[τ1 | V2 ր θ2] =

θ1
∑

k=β1

p(k | V2 ր θ2) µk→θ1.

An identical method is used to calculate E[τ2 | V1 ր θ1]. Now, ρout can be calculated from Eq. (19).

We now describe how to calculate time dependent statistics for Figs. 5 and Fig. 17A. Let B1 be
the infinitesimal generator matrix of the marginal process V1(t) (see Eqn. (20) above). Given an
initial distribution, V1(0), the distribution of V1(t) is given by eB1tV1(0). The conditional distribution
of V1(t) after a spike in V2 is then given by Pr(V1(t) = k | V2(0) ր θ2) =

[

eB1tV1(0)
]

k
where [·]k

denotes the kth component and the initial distribution is the conditional distribution described
above, [V1(0)]k = p1(k | V2 ր θ2).

The time dependent conditional mean and standard deviation for the top row of Fig. 5 can be
calculated directly from p1(k1 | V2 ր θ2). The instantaneous firing rate, given an initial distribution
V1(0) is given by the flux across threshold, ν(t | V1(0)) = re

[

eB1tV1(0)
]

θ1−1
. The conditional intensity

function, H12(t), is then given by ν(t | V1(0)) with [V1(0)]k = p1(k | V2 ր θ2). The auto conditional
intensity function, H11(t) is given by ν(t | V1(0)) with [V1(0)]k = δ0,k. The functions H21(t) and
H22(t) are derived analogously. The auto- and cross-covariance functions are then given by Rij(t) =
rj(Hij(t) − ri).

For the bottom row of Fig. 5, we needed to calculate the cumulative distribution of the first
passage time of V1 over θ1 given an initial distribution. This can be achieved by adding an absorbing
state at threshold, θ2, to the marginal infinitesimal generator, B1. Then the cumulative distribution
of the waiting time until the next spike is simply given by the amount of mass in the absorbing
state at time t. That is, Pr(τ1 ≤ t) =

[

eB1tV1(0)
]

θ1
where B1 has an absorbing state at θ1 and V1(0)

is the appropriate initial distribution. The conditional distribution (solid line in the bottom row of
Fig. 5) is found by setting [V1(0)]k = p1(k | V2 ր θ2) as above. The stationary case (dashed line) is
found by setting [V1(0)]k = p1(k) where p1(k) is the marginal stationary distribution from Eq. 21.
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E Generalizations of the PIF model

In this section, we generalize Theorem 1 to take synaptic variability and coupling into account in
the PIF model, thereby obtaining the main equations in Secs. 5 and 6.

E.1 The PIF with random post-synapitc responses

Suppose that the ith excitatory input to neuron j increments Vj(t) by a random amount di
ej

and

that the ith inhibitory input to neuron j decrements Vj(t) by a random amount di
ij
. Each di

ej
(di

ij
)

is drawn independently from a distribution with mean dej
(dij) and variance σ2

dej
(σ2

dij
) for j = 1, 2.

To guarantee positive firing rates routj
= (rej

dej
− rijdij)/θj > 0 we assume µYj

= rej
dej

− rijdij > 0.
This model equivalent to a PIF with inputs

Yj(t) =
∑

ti∈Γej

di
ej

δ(t − ti) −
∑

ti∈Γij

di
ij
δ(t − ti), j = 1, 2.

Thus by Theorem 1, σ2
out1 =

σ2
Yj

θ2
j

, γout =
γY1Y2

θ1θ2
, and ρout = ρY1Y2.

The accumulated effective input process NYj
(t) =

∫ t

0
Yj(s)ds can be written as

NYj
(t) =

Nej
(t)

∑

i=1

di
ej
−

Nij
(t)

∑

i=1

di
ij

(22)

The two terms on the right hand side of Eq. (22) are random sums with variances (Karlin and
Taylor, 1975) given by

var(NYj
(t)) = var(Nej

(t))d
2

ej
+ E[Nej

(t)]σ2
dej

+ var(Nij(t))dij + E[Nij(t)]σ
2
dij

.

Dividing by t and taking t → ∞ gives

σ2
Yj

= lim
t→∞

1

t
var(NYj

(t)) = σ2
ej

d
2

ej
+ rej

σ2
dej

+ σ2
ij
d

2

ij
+ rijσ

2
dij

.

Covariances can be derived similarly to obtain,

γY1Y2 = de1de2γe1e2 + di1di2γi1i2 − de1di2γe1i2 − di1de2γi1e2 .

Thus,

σ2
outj

=
(

σ2
ej

d
2

ej
+ rej

σ2
dej

+ σ2
ij
d

2

ij
+ rijσ

2
dij

)

/θ2
j ,

and
γout =

(

de1de2γe1e2 + di1di2γi1i2 − de1di2γe1i2 − di1de2γi1e2

)

/ (θ1θ2) ,
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and therefore

ρout =
de1de2γe1e2 + di1di2γi1i2 − de1di2γe1i2 − di1de2γi1e2

√

(

σ2
e1

d
2

e1
+ re1σ

2
de1

+ σ2
i1
d

2

i1
+ ri1σ

2
di1

)(

σ2
e2

d
2

e2
+ re2σ

2
de2

+ σ2
i2
d

2

i2
+ ri2σ

2
di2

)

.

In the symmetric case discussed in the text, this simplifies to Eq. (10).

To combine variable PSP amplitudes (i.i.d. random jumps, di, with CV=CVd) with synaptic
failure (probability of release p), we can multiply each jump di by an i.i.d. binomial variable, bi (with
Pr(bi = 1) = p) to obtain the “effective” jumps. In the symmetric case, the CV of this product is

given by
√

(CV2
d + 1 − p)/p. Making the substitution CVd →

√

(CV2
d + 1 − p)/p in Eq. (10) gives

Eq. (11).

E.2 The PIF with coupling

Now suppose that the subthreshold membrane potentials V1(t) and V2(t) of the PIFs driven by the
stationary signals in1(t) and in2(t) obey the coupled equations

dV1 = in1(t)dt + c1out2(t)dt

dV2 = in2(t)dt + c2out1(t)dt,

with out1 and out2 the output spike trains. Thus, each output spike from neuron 2 increments V1

by an amount c1 and vice versa. We assume that cj < θj so that a spike from one neuron cannot
drive the other from reset to threshold. Then the output spike counts obey the coupled equations,

Nout1(t) =
Nin1(t) + c1Nout2(t) + V1(0) − V1(t)

θ
(23)

Nout2(t) =
Nin2

(t) + c2Nout1(t) + V2(0) − V2(t)

θ
.

Defining nj(t) = Ninj
(t) + Vj(0) − Vj(t), we can solve Eq. (23) for Noutj

(t) to obtain

Nout1(t) =
θ2n1(t) + c1n2(t)

θ1θ2 − c1c2
, Nout2(t) =

θ1n2(t) + c2n1(t)

θ1θ2 − c1c2
. (24)

Thus, in order to have non-zero firing rates, we must assume that θ2µin1 + c1µin2 > 0 and θ1µin2 +
c2µin1

> 0 and the firing rates are rout1 = (θ2µin1
+ c1µin2

)/(θ1θ2 − c1c2) and rout2 = (θ1µin2
+

c2µin1)/(θ1θ2 − c1c2).

The following theorem gives the total output correlation.

Theorem 2. The output correlation coefficient between the output of a pair of coupled PIFs driven

by correlated stationary inputs, in1(t) and in2(t) with coupling terms c1 and c2 is

ρout =
(θ1θ2 + c1c2)γin + c2θ2σ

2
in1

+ c1θ1σ
2
in2

√

(

θ2
2σ

2
in1

+ c2
1σ

2
in2

+ 2c1θ2γin

) (

θ2
1σ

2
in2

+ c2
2σ

2
in1

+ 2c2θ1γin

)

. (25)
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Proof. From Eq. (24)

γout = lim
t→∞

1

t
cov (Nout1(t), Nout2(t))

= lim
t→∞

1

t
cov

(

θ2n1(t) + c1n2(t)

θ1θ2 − c1c2
,
θ1n2(t) + c2n1(t)

θ1θ2 − c1c2

)

=
1

(θ1θ2 − c1c2)
2 lim

t→∞

1

t
cov (θ2n1(t) + c1n2(t), θ1n2(t) + c2n1(t))

=
1

(θ1θ2 − c1c2)
2

(

(θ1θ2 + c1c2)γn1n2 + c2θ2σ
2
n1

+ c1θ1σ
2
n2

)

.

By an identical argument,

σ2
out1

=
1

(θ1θ2 − c1c2)
2

(

θ2
2σ

2
n1

+ c2
1σ

2
n2

+ 2c1θ2γn1n2

)

,

with a a symmetric expression for σ2
out2

. Therefore,

ρout =
γout

σout1σout2

=
(θ1θ2 + c1c2)γn1n2 + c2θ2σ

2
n1

+ c1θ1σ
2
n2

√

(

θ2
2σ

2
n1

+ c2
1σ

2
n2

+ 2c1θ2γn1n2

) (

θ2
1σ

2
n2

+ c2
2σ

2
n1

+ 2c2θ1γn1n2

)

. (26)

All that is left is to is to show that σnj
= σinj

and γn1n2 = γin. We have

γn1n2 = lim
t→∞

1

t
cov (n1(t), n2(t))

= lim
t→∞

1

t
cov (Nin1(t) + V1(0) − V1(t), Nin2(t) + V2(0) − V2(t))

= lim
t→∞

1

t
(cov (Nin1(t), Nin2(t)) + o(t)) (27)

= γin

where (27) follows from Lemma 1 and the assumption that (V1(t), V2(t)) is ergodic with finite second
moments. By an identical argument, we have σ2

nj
= σ2

inj
, j = 1, 2.

In the symmetric case, we define u = c/θ and obtain Eq. (12).
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neural spike trains increases with firing rate. Nature, 448(7155):802–806.

Ecker, A., Berens, P., Keliris, G., Bethge, M., Logothetis, N., and Tolias, A. (2010). Decorrelated
neuronal firing in cortical microcircuits. Science, 327(5965):584.

Feller, W. (1991). An introduction to probability theory and its applications, Vol. 2. New York:
Wiley.

Fusi, S. and Mattia, M. (1999). Collective behavior of networks with linear (VLSI) integrate-and-fire
neurons. Neural Comput, 11(3):633–652.

38



Gardiner, C. (1985). Handbook of stochastic methods. Berlin: Springer.

Gawne, T. and Richmond, B. (1993). How independent are the messages carried by adjacent inferior
temporal cortical neurons? J Neurosci, 13(7):2758–71.

Gerstein, G. and Mandelbrot, B. (1964). Random walk models for the spike activity of a single
neuron. Biophys J, 4:41–68.

Gibson, J., Beierlein, M., and Connors, B. (1999). Two networks of electrically coupled inhibitory
neurons in neocortex. Nature, 402(6757):75–9.

Gutnisky, D. and Dragoi, V. (2008). Adaptive coding of visual information in neural populations.
Nature, 452(7184):220–4.

Helias, M., Deger, M., Rotter, S., and Diesmann, M. (2010). Instantaneous non-linear processing
by pulse-coupled threshold units. PLoS Comput Biol, 6(9):e1000929.

Hertz, J. (2010). Cross-correlations in high-conductance states of a model cortical network. Neural

Comp, 22(2):427–447.

Hessler, N., Shirke, A., and Malinow, R. (1993). The probability of transmitter release at a mam-
malian central synapse. Nature.
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