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Deciding whether a set of objects are the same or different is
a cornerstone of perception and cognition. Surprisingly, no
principled quantitative model of sameness judgment exists. We
tested whether human sameness judgment under sensory noise
can be modeled as a form of probabilistically optimal inference. An
optimal observer would compare the reliability-weighted variance
of the sensory measurements with a set size-dependent criterion.
We conducted two experiments, in which we varied set size and
individual stimulus reliabilities. We found that the optimal-ob-
server model accurately describes human behavior, outperforms
plausible alternatives in a rigorous model comparison, and ac-
counts for three key findings in the animal cognition literature.
Our results provide a normative footing for the study of sameness
judgment and indicate that the notion of perception as near-
optimal inference extends to abstract relations.
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According to William James, the “sense of sameness is the
very keel and backbone of our thinking” (1). Judging

whether a set of stimuli are all the same (in one or multiple
features) indeed seems to be a fundamental component of per-
ception and cognition. When segmenting a visual scene, we make
use of the fact that features such as orientation and color tend to
be the same within an object and different between objects (2).
Learning to categorize objects requires evaluating the aspects in
which they are the same or different. Sameness judgment is also
thought to play a role in the development of the abstract notion
of equivalence, fundamental to learning mathematics (3). The
central role of sameness judgment in perception and cognition
is reflected in its prevalence in many psychophysical tasks, in-
cluding matching to sample (4), change detection (5, 6), oddity
search (7, 8), and causal inference (9).
The ability to judge sameness seems to have a long evolu-

tionary history. In addition to humans, honey bees (10), pigeons
(11), parrots (12), dolphins (13), Old World monkeys (5), New
World monkeys (14, 15), and apes (6, 7) can all learn to report
whether pairs of objects are the same or different. This ability
extends to larger groups of objects in both humans and non-
human animals (16–21). It has been suggested that human ca-
pacity to recognize sameness at abstract levels is closely linked to
the evolution of prefrontal cortex (22).
In animal cognition experiments on sameness judgment, sev-

eral intriguing trends have not yet been fully explained. First,
when pigeons are trained to discriminate arrays of identical
objects from arrays of different objects, their probability of
reporting “different” is found to gradually increase with the
amount of variability in the array (23, 24). For example, when an
array contained four subsets of four icons each, with icons being
identical within a subset, subjects reported “different” more
frequently than when two subsets of eight icons were shown.
Second, sameness judgment becomes easier with increasing
number of stimuli (set size) for both pigeons and baboons (16,
17). Third, when stimuli are blurred, pigeons more frequently
respond “same” on “different” trials, but performance is more or
less unchanged on “same” trials (20).
Despite the ecological importance of sameness judgment and

the abundance of experimental data, the computations un-
derlying sameness judgment are not well understood. According

to one proposal, organisms assess sameness of a set of simulta-
neously presented items by estimating the entropy of the set (24),
but this turned out to be inadequate as a general model (20). The
more recent “finding differences” model (20) posits that same-
ness judgment is based on local differences between items. Al-
though this model is a step forward in terms of fitting behavioral
data, it is descriptive and lacks a normative basis: it does not
explain why subjects base their sameness judgments on an esti-
mate of stimulus variability, and it postulates rather than derives
the observer’s mapping from stimuli to response probabilities.
Here we propose that observers attempt to maximize perfor-

mance in their judgments of sameness in the presence of sensory
noise in the measurements. This simple principle leads to a pre-
cise mathematical model in which no ad hoc assumptions are
needed—the optimal-observer model. As we will see, this model
predicts that observers judge sameness by using the reliability-
weighted variance of the sensory measurements as their decision
variable. We find that this model provides an accurate quanti-
tative description of human data, outperforms alternative mod-
els, and accounts for the above-mentioned animal cognition
findings.

Experiment 1: Varying Set Size
In experiment 1, observers (n = 8, with 2,700 trials each) were
asked to judge whether the orientations of a set of ellipses si-
multaneously presented for 67 ms were the same or different
(Fig. 1 A and B). Set size was 2, 4, or 8 in separate blocks.
“Same” and “different” trials both occurred with probability 0.5.
On each trial, an orientation μ was drawn from a uniform dis-
tribution over all possible orientations. On a “same” trial, the
orientations of the individual ellipses were all equal to μ. On
a “different” trial, these orientations were drawn from a Gauss-
ian distribution with mean μ and SD σs = 10°.
The proportion of “different” responses is shown as a function

of set size in Fig. 1C. Performance improves on both “same” and
“different” trials as more stimuli are presented. The effect of set
size was highly significant for both trial types [repeated-measures
ANOVA; F(2,14) = 15.4, P < 0.001, and F(2,14) = 120, P <
0.001, respectively]. Even though on “different” trials, ori-
entations are always drawn using the same SD of σs = 10°, the
SD of the actually presented orientations varies widely from trial
to trial. Therefore, a more detailed representation of the data is
provided by the proportion of “different” responses as a function
of the sample SD of the presented stimuli (Fig. 1D; normalized
by N − 1). We observe a clear effect of sample SD.

Optimal-Observer Model. The statistical structure of the task
(generative model) is illustrated in Fig. 2A. We denote the ori-
entation of the stimulus at the ith location by si, and model its
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measurement by the observer, denoted xi, as a Gaussian random
variable with mean si and SD σσ.) Judging whether the ori-
entations of a set of N stimuli, s = {s1,. . .,sN}, are the same or
different, amounts to inferring sameness (C = 1 for same, C =
−1 for different) from x= {x1,. . .,xN}. A probabilistically optimal
observer computes, on each trial, the posterior probability that
the stimuli have equal orientation, p(C = 1|x), and responds
“same” when this probability exceeds 0.5. This probability is
obtained from the likelihood function over C, p(x|C), that is, the
probability of the measurements, x, if the true state of the world
is C. Because the true orientations, s, and their mean, μ, are
unknown to the observer, the likelihood is computed by aver-
aging over all possible values of these quantities, a computation
known as marginalization:

pðxjCÞ ¼ ∬pðxjsÞ pðsjC; μÞpðμÞdsdμ:
The optimal observer responds “same” when the posterior
probability p(C = 1|x) is greater than p(C = −1|x), or, equiva-
lently, if log pðC¼1jxÞ

pðC¼− 1jxÞ> 0. This condition translates into a condi-
tion on the variance of the measurements (SI Appendix),

Var x<
1

Nðw− ~wÞ
��
N − 1Þlog w

~w
þ 2log

psame

1− psame

�
; [1]

where psame = p(C = 1) is the observer’s prior probability of
sameness, w = 1/σ2, and ~w ¼ 1=ðσ2 þ σ2s Þ. Eq. 1 states that the
optimal strategy is to report “same” when the variance of the
measurements, Var x, is smaller than a decision criterion that
depends on set size, reliability w, and prior probability of
sameness. Larger Var x implies a higher probability that the
observed differences are not only due to internal noise but also
due to differences among the stimuli. The optimal decision
boundary is formed by the points x for which Eq. 1 is an equality
(Fig. 2B). In many binary classification tasks, the optimal de-
cision boundary is a plane in a high-dimensional space. By
contrast, the left-hand side of Eq. 1 is a quadratic form in x, and
the corresponding decision boundary is a cylinder. This is an
indication of the complexity of this inference problem.

We let the noise level at each set size, σ, be a free parameter.
Three further parameters define multiple variants of the optimal
model. For the prior over sameness, the observer could be using
the correct value (psame = 0.5) or a different value. To account for
the latter possibility, we consider a model variant in which psame is
a free parameter. Similarly, for the theoretical SD of “different”
stimuli, the observer could be using the correct value, σs = 10°, or
a different value. Finally, blinking, lapses in attention, and other
factors may cause subjects to guess randomly on some trials.
Therefore, there might or might not be a nonzero lapse rate. In
total, we therefore consider 2 × 2 × 2 = 8 variants with anywhere
from three to six free parameters (SI Appendix, Table S1).

Alternative Models. We compare the optimal model against the
following suboptimal models. In the single-criterion (SC) model,
the observer uses the decision rule Var x < k, where k is in-
dependent of set size, reliability, and prior (it is a free parameter
in the model). This model has four free parameters. In the
blockwise-criterion (BC) model, the observer uses one criterion
per block type. Because blocks only differed by set size, the de-
cision rule is Var x < kN, where kN is the decision criterion at set
size N. At the cost of having more free parameters (3 σs and 3
ks), the BC model has more freedom in fitting the decision cri-
teria than the optimal model, in which the decision criteria at
different set sizes are linked through Eq. 1. We will compare the
fitted BC and optimal criteria. In the maximum-absolute-differ-
ence (MAD) model (21), the decision rule is to respond “same” if
the largest unsigned difference between any two measurements
is smaller than a criterion k (i.e., max

i; j
jxi − xjj< k). Again, this

criterion may or may not differ by block type, leading to two
models: MAD with a single criterion (MAD-SC, four free
parameters) and MAD with a blockwise criterion (MAD-BC, six
free parameters). Finally, each of the alternative models may or
may not have a lapse rate, which means that each of them comes
in two variants (SI Appendix, Table S1).

Results. For each model, we computed the probability of
reporting “different” on each trial given the stimuli on that trial.
From this, we computed the probability of all of a subject’s
responses given a model and its parameters (SI Appendix). We
fitted parameters by maximizing this parameter likelihood.
Model fits to subject data are shown in Fig. 3A. For each subject
and each model, we used the maximum-likelihood fit from the
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Fig. 1. Experimental procedure and psychometric curves. Error bars indicate
SEM over subjects. (A) Subjects reported through a key press whether the
orientations of the ellipses were identical. (B) Experimental conditions. In ex-
periment 1, set size was 2, 4, or 8. In experiment 2, set size was 6 and stimuli all
had high reliability (HIGH), all low reliability (LOW), or were mixed (MIXED).
(C) Proportion of “different” responses in experiment 1 as a function of set
size. (D) Proportion of “different” responses in experiment 1 as a function of
the SD of the presented orientations. All “same” trials have an SD of 0.
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Fig. 2. Statistical structure of the task and a geometrical interpretation of the
optimal decision rule. (A) Each node represents a random variable, each arrow
a conditional probability distribution. This diagram specifies the distribution of
measurements, x. The optimal observer “inverts” the generative model and
computes the probability of C given x. (B) Geometrical interpretation of the
optimal decision rule at N = 3. The axes represent the observed stimulus ori-
entations, x. Each dot represents the set of measurements on a single trial. On
“same” trials (red), the dots lie—on average—closer to the diagonal than on
“different” trials (blue). The optimal strategy is to respond “same”when x lies
within the green cylinder, whose axis is the diagonal.
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most likely model variant. Comparing the RMS errors, the op-
timal model (0.032) fits approximately as well as the BC (0.029)
and MAD-BC (0.029) models and much better than the SC
(0.087) and the MAD-SC models (0.136).
We computed model likelihoods using Bayesian model com-

parison, a method that uses the stimulus–response pairs on in-
dividual trials and automatically takes into account differences
between models in numbers of free parameters (SI Appendix).
For each model, we averaged the likelihoods of all its variants.
The differences in log likelihood between the optimal model and
the SC, BC, MAD-SC, and MAD-BC models were 25.7 ± 5.3,
−0.70 ± 2.3, 63.5 ± 8.3, and 5.06 ± 2.5, respectively (Fig. 3B).
Hence, the optimal model and the BC models describe the data
better than the SC models. However, these data cannot distin-
guish between the optimal and the BC models.
The optimal model is a special case of the BC model: in the

former model, the decision criterion has a prescribed de-
pendence on set size, whereas in the latter, it is a free parameter
at each set size. Hence, if subjects followed the optimal strategy,
then we should find that the BC model, despite its greater
freedom in setting the criterion, closely approximates the opti-
mal model when fitted to the subject data. This is exactly what we
found. The decision criteria from the best BC model variant are
nearly identical to those predicted by the best optimal-model
variant (Fig. 3C). (Different variants of the optimal model fit
best for different subjects; SI Appendix, Table S2) Paired t tests
did not reveal a significant difference at any of the three set sizes
(P = 0.09, P = 0.12, and P = 0.58 at N = 2, 4, and 8, re-
spectively). Similarly, the fitted noise levels in the BC and the
optimal model are also nearly identical (Fig. 3C), with no sig-
nificant difference in any of the set sizes (P = 0.72, P = 0.49, and
P= 0.67 at N= 2, 4, and 8, respectively). The noise level exhibits
a weak dependence on set size, with a power of 0.16 ± 0.03 in
a power-law fit. We conclude that the decision criteria used by
the human subjects were close to optimal. To assess the gener-
ality of these results, we repeated the experiment by varying
a different stimulus feature, namely color. The pattern of results
is similar (SI Appendix).

Experiment 2: Varying Stimulus Reliabilities
To further distinguish the models, specifically the optimal model
from both BC models, we tested a prediction unique to the op-
timal model, namely that the observer weights the measurements
within a single display by their respective reliabilities (25, 26). This
can be tested by experimentally varying stimulus reliability across
stimuli in the same display. In experiment 2, we manipulated

stimulus reliability through the eccentricity (elongation) of the
ellipse (27) (Fig. 1B; Materials and Methods). Two eccentricity
values were used, which we call low and high. Three reliability
conditions were presented in separate blocks: LOW, HIGH, and
MIXED. In the LOW and HIGH conditions, all ellipses had low
and high eccentricity, respectively. In the MIXED condition, the
eccentricity of each ellipse on each trial was set to the high or the
low value independently and with equal probability. The experi-
mental procedure was identical to experiment 1. Ten observers
each completed 2,700 trials.

Optimal Model. In the optimal decision rule in experiment 1, Eq.
1, the observer compared the variance of the measurements with
a criterion. Here, each term entering in the variance is weighted
by the reliability of the respective measurement. Evidence from
an elongated ellipse is weighted more heavily than that of a more
circular one. The resulting “reliability-weighted variance” is
compared with a criterion that depends on the stimulus reli-
abilities and the prior (SI Appendix). In the N-dimensional space
of measurements, the optimal decision boundary is an elliptic
cylinder, with the size and shape of the ellipsoidal cross section
depending on the specific set of reliabilities on a given trial. In
the MIXED condition, these reliabilities vary from trial to trial,
and the decision boundary reshapes accordingly.

Alternative Models.We consider the same four suboptimal models
as in experiment 1, except that in the BC and MAD-BC models,
the decision criterion now varies not by set size but by reliability
condition (LOW, HIGH, or MIXED). Thus, the respective de-
cision rules are Var x < kblock and maxi, j |xi − xj| < kblock, where
kblock is the decision criterion for a given block type (this intro-
duces three free parameters). None of the alternative observers
take into account item-to-item reliability.

Results. In each reliability condition, the optimal model accounts
well for the proportion of “different” responses as a function of
sample SD (Fig. 4A). It fits the data better than any of the al-
ternative models (RMS errors: optimal: 0.024; SC: 0.074; BC:
0.062; MAD-SC: 0.075; MAD-BC: 0.035). The noise parameters
corresponding to high- and low-eccentricity ellipses were esti-
mated to be 6.1° ± 0.2° and 10.7° ± 0.4°, respectively.
To distinguish the models further, we grouped trials by the

number of high-reliability stimuli, denoted Nhigh (0 in LOW, 0–6
in MIXED, 6 in HIGH). We found that the proportion of
“different” reports increased with Nhigh on “different” trials,
whereas it decreased on “same” trials (Fig. 4B). These effects
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were significant for both trial types [repeated-measures ANOVA:
F(6,54) = 15.8, P < 0.001, and F(6,54) = 19.8, P < 0.001, re-
spectively]. The optimal model provides the best fit to these data
(RMS errors: optimal: 0.020; SC: 0.052; BC: 0.058; MAD-SC:
0.052; MAD-BC: 0.039) (Fig. 4B). On “different” trials in the
MIXED condition, the optimal model makes a qualitatively dif-
ferent prediction from all other models, namely that the propor-
tion of “different” responses increases with Nhigh. This can be
understood from the distributions of the decision variable (SI
Appendix, Fig. S2). As these distributions change with Nhigh, the
optimal observer adjusts the decision criterion accordingly (Fig.
4C and SI Appendix, Fig. S2), but the alternative observers keep
using the same criterion. The proportion of “different” responses
on “different” trials increases with Nhigh in the optimal model
because the distributions become better separable, and decreases
with Nhigh in the alternative models because the distributions shift
to lower values.
Bayesian model comparison shows that the optimal model

outperforms the SC, BC, MAD-SC, and MAD-BC models by
39.6 ± 8.7, 23.9 ± 4.4, 41.2 ± 8.6, and 24.7 ± 4.6 log likelihood
points, respectively. Moreover, the optimal model best describes
the behavior of each individual subject (Fig. 4D). Different
variants of the optimal model fit best for different subjects (SI
Appendix, Table S2).
All suboptimal models considered so far used a decision cri-

terion that was constant within a block. The optimal model was
the only model in which the decision criterion changed from trial
to trial. A very strong test of the optimal model would be to
compare it against a suboptimal model in which the decision
criterion is allowed to vary from trial to trial. We implemented
such a model by assuming that the observer averages, on each
trial, the reliabilities of the stimuli on that trial and uses this
average in the decision rule. This rule is equivalent to Var x < k,
where k depends in a specific way on Nhigh. Unlike in the optimal
model, the measurements, xi, are not individually weighted by

their respective reliabilities. We found that this suboptimal
model is less likely than the Bayesian model by 27.0 ± 9.1 log
likelihood points. Together, our results constitute decisive evi-
dence in favor of the optimal model and indicate that humans
weight measurements by reliability when judging sameness.

Reexamination of Sameness Judgments by Animals
We examined three findings from the animal cognition literature
on sameness judgment from the perspective of the optimal-ob-
server model (details in SI Appendix). First, Young et al. (24),
using picture stimuli, reported that the probability that pigeons
respond “different” strongly correlates with the entropy of the
stimulus set (Fig. 5A, Upper). We simulated the optimal observer
on an equivalent task with orientation stimuli and found that the
responses show the same strong correlation (Fig. 5A, Lower). In
the optimal-observer model, the intuition behind this correlation
is that the probability of responding “different” depends on the
variance of the stimulus set, and entropy is correlated with var-
iance. Thus, instead of detecting entropy per se (24), pigeons
might be using a decision rule similar to the optimal observer
when judging sameness.
Next we tested whether the optimal-observer model can ac-

count for the effects of set size on animals’ reports of sameness.
Wasserman and colleagues found that proportion correct in-
creased with set size on both “same” and “different” trials (Fig.
5B, Upper) (16, 17). The optimal-observer model reproduces
these effects (Fig. 5B, Lower). The slightly steeper slopes seen in
the data could be due to the fact that in picture stimuli more
than one feature can be used to determine sameness, leading to
a greater “effective” set size. The effects of set size can be un-
derstood by recognizing that optimal observers use the vari-
ance of the measurements, Var x, to discriminate “same” from
“different” (Eq. 1). At larger set sizes, x contains more elements
and therefore Var x will vary less from trial to trial. This, in turn,
will lead to less overlap between the distributions of Var x on
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“same” and “different” trials, which improves discrimination
accuracy. In other words, each additional stimulus provides ad-
ditional evidence for “same” or “different.” This stands in con-
trast to visual search (19) and change detection (18) with a single
target, in which performance decreases with set size in part be-
cause every additional stimulus is a distractor and decreases
the signal-to-noise-ratio.
Finally, we examined the effect of stimulus visibility on

sameness judgment. Young and colleagues (20, 28) reported that
decreasing stimulus visibility increased pigeons’ tendency to re-
spond “same” on “different” trials but had very little effect on
responses on “same” trials (Fig. 5C, Upper). The optimal-ob-
server model quantitatively accounts for the observed trends
(Fig. 5C, Lower) by using a prior that slightly favors “same.” Such
a prior has recently been found in an unrelated same–different
task in pigeons (29). As stimulus visibility decreases, this prior
influences the animal’s decision more strongly, pushing the
proportion of “different” responses toward zero. Gray lines in
Fig. 5C show the model prediction when the prior is equal to 0.5.
We predict that when the prior for “same” is ≤0.5, performance
on “same” trials will decrease with decreasing visibility. This is
to be compared to Young et al. (20), who predict “same” per-
formance will remain unaffected.
Altogether, these results show that the optimal-observer model,

without modifications, accounts for several key findings from the
animal cognition literature. Earlier models (20, 24) mapped
a measure of variability within a display to a probability of
responding “different.”However, both the variability measure and
the mapping were postulated rather than derived. The optimal-
observer model, by contrast, derives the relationship between
stimuli and response probabilities from the principle that the
observer maximizes performance. It should be noted, however,
that the picture stimuli used in the animal studies were complex and
high-dimensional, whereas our model assumes one-dimensional
stimuli. The similarities between data and model suggest that the
strategy of comparing the variance of the measurements to a
criterion, Eq. 1, captures the essence of sameness judgment even
for more complex stimuli.

Discussion
In a visual version of sameness judgment, we found that the
optimal strategy consists of comparing the reliability-weighted
variance of the measurements with a decision criterion that

depends both on set size and on the reliabilities of the mea-
surements. Human decisions are consistent with this strategy. In
particular, observers use information about the reliabilities of
individual items on each trial. These results provide a normative
and mathematically precise footing for the study of sameness
judgment and indicate that the notion of perception as near-
optimal inference extends to perceptual relations.
The use of complex stimuli, such as photographs and clip art,

might have hampered previous modeling of sameness judgment.
Such stimuli are difficult to parameterize and therefore difficult
to use as a basis for quantitative models. Here, we modeled
sameness judgment in a single feature dimension. An important
challenge that lies ahead is to extend the optimal-observer
framework to more complex stimuli.
Sensory noise is not the only possible cause of uncertainty in

sameness judgment. For example, judging whether a pair of dots
or line segments belong to the same contour or to different
contours is nontrivial even in the absence of sensory noise, be-
cause a given pair can be consistent with both hypotheses (30,
31). This is a form of ambiguity (see also ref. 32). Optimal-ob-
server models have been successful in accounting for human
behavior in such classification tasks (30–32). A logical extension
of the present work would be to examine sameness judgment in
the simultaneous presence of sensory noise and ambiguity. A
particularly interesting manipulation in contour detection tasks
would be to vary the reliability of the elements unpredictably
from trial to trial, similar to experiment 2, to investigate whether
knowledge of sensory uncertainty is optimally combined with
knowledge of stimulus classes.
Human ability to efficiently take into account unpredictable

local variations in reliability during sameness judgment supports
the notion that the brain encodes entire likelihood functions over
stimuli (33, 34) instead of only point estimates. This idea is al-
ready well known in the domain of cue combination (26). Cue
combination, however, has a rather simple statistical structure.
Many perceptual tasks, including sameness judgment, are more
complex because of the presence of multiple relevant stimuli
(spatial complexity) or because stimulus information must be
integrated into an abstract categorical judgment (structural
complexity). Only recently has weighting by reliability in tasks
with such complexities begun to be explored (27). Weighting by
reliability could potentially also be studied in high-level, cogni-
tive forms of sameness judgment (22, 35).
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Fig. 5. Comparison between sameness judg-
ment in animals and the optimal observer. (A)
Upper: Data from Young and Wasserman (24).
The proportion of “different” responses in
pigeons correlates strongly with the entropy of
the stimulus set. Lower: Results from an optimal-
observer simulation. (B) Upper: Data replotted
from Wasserman, Young, and Fagot (16). Thin
lines represent individual experiments, the thick
line their mean. Performance of baboons in-
creases with set size. Lower: Results from an
optimal-observer simulation. (C) Upper: Data
from Wasserman and Young (28). Increasing
the amount of blur in the stimulus set results
in more “same” responses on “different” trials,
but leaves the responses on “same” trials largely
unaffected. Lower: Black, results from an opti-
mal-observer simulation with a prior psame = 0.6
and a guessing rate of 0.25. Gray, same with
psame = 0.5.
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Our findings constrain potential neural implementations of
sameness judgment. Any candidate neural network would have
to propagate information about the sensory uncertainties as-
sociated with individual items on a given trial and use this
information near-optimally in subsequent computation. The
framework of Poisson-like probabilistic population codes (34)
has previously been used to solve this problem for cue combi-
nation (34), decision-making (36), and visual search (27). Ap-
plying it to sameness judgment could produce a network that
approximates the correct posterior probability of sameness on
each trial.

Materials and Methods
Experiment 1: Orientation. Subjects viewed the display on a 19″ LCD monitor
from a distance of 60 cm. Background luminance was 30 cd/m2. Stimuli
consisted of a set of N gray (40 cd/m2) oriented ellipses with an area of 0.5
deg2 (we use “deg” to denote degrees of visual angle, and “°” for stimulus
orientation or angle in the display). Ellipse eccentricity (elongation), which is
defined as (1 − b2/a2)0.5, where a and b are the lengths of the semimajor and
semiminor axes, respectively, was fixed at 0.94. Set size was 2, 4, or 8. On
each trial, the mean of the presented set of stimuli was randomly drawn
from the range [0°, 180°], and the probability of a “same” trial was 0.5.
Subjects were informed in advance about the way the stimuli were gener-
ated. The items were presented on an imaginary circle centered at fixation
with a radius of 8 deg of visual angle. The position of the first stimulus was
chosen at random on each trial; the other stimuli were placed in such a way
that the angular distance between two adjacent stimuli was always 45°. This
ensured that the average distance between two neighboring stimuli was
constant across set sizes. Both the x and y position of each item was further
subjected to a Gaussian random jitter with zero-mean and an SD of 0.25 deg.
Each trial began with a presentation of the central fixation cross (500 ms),
followed by the stimulus display (67 ms), followed by a blank screen until the
subject responded. Feedback was given by coloring the fixation cross. The
experiment consisted of three parts, each with a different set size (2, 4, or 8),

presented in random order. Each part consisted of six blocks of 150 trials.
The experiment was split into two sessions; the sessions took about 1 h each
and were performed on different days. One author and seven paid, naïve
subjects participated in the experiment. All stimuli were controlled using
MATLAB (MathWorks) with Psychtoolbox. The color version of this experi-
ment is described in SI Appendix.

Experiment 2. The stimuli, conditions, and procedure of experiment 2 were
identical to those of experiment 1, except for the following differences. The
set of stimuli consisted of six ellipses of fixed area. The angular distance
between each two consecutive stimuli was 60 deg. The set of all stimuli was
rotated around fixation over a random angle on each trial. Their reliability
was controlled by ellipse eccentricity. Two values of eccentricity were used.
The high value was always 0.94. To determine the low value, subjects per-
formed five threshold measurement blocks before the main experiment; in
these, all six stimuli had the same eccentricity, randomly chosen on each trial
from 10 values linearly spaced between 0.5 and 0.94. Each of these blocks
consisted of 150 trials. On the basis of these data, a psychometric curve was
mapped out that related accuracy to ellipse eccentricity. A cumulative
Gaussian function was fit to these data (accuracy as function of eccentricity),
and the eccentricity at which a subject performed 70% correct was defined as
their low eccentricity value. The first two thresholdmeasurement blocks were
considered practice and were not included in this analysis. In the testing
blocks, only two values of eccentricity were used, as described in the main
text. Ten observers each performed three LOWblocks, three HIGH blocks, and
12MIXED blocks, presented in random order and each consisting of 150 trials.
Two authors and eight paid, naïve subjects participated in this study.

ACKNOWLEDGMENTS. We thank David Krueger for his work on a pilot
version of experiment 1 and Tony Wright for useful discussions. W.J.M. is
supported by National Eye Institute Award R01EY020958. R.v.d.B. is sup-
ported by The Netherlands Organisation for Scientific Research. K.J. was
supported by National Science Foundation Grants DMS-0817649 and DMS-
1122094 and a Texas Advanced Research/Technology Program award.

1. James W (1890) The Principles of Psychology (Henry Holt, New York).
2. Gibson JJ (1950) The Perception of the Visual World (Houghton Mifflin, Boston).
3. Daehler MW, Bukatko D (1985) Cognitive Development (Knopf, New York).
4. Nissen HW, Blum JS, Blum RA (1948) Analysis of matching behavior in chimpanzee.

J Comp Physiol Psychol 41:62–74.
5. French RS (1953) The discrimination of dot patterns as a function of number and

average separation of dots. J Exp Psychol 46:1–9.
6. Rensink RA (2002) Change detection. Annu Rev Psychol 53:245–277.
7. Robinson EW (1933) A preliminary experiment on abstraction in a monkey. J Comp

Psychol 16:231–236.
8. Bravo MJ, Nakayama K (1992) The role of attention in different visual-search tasks.

Percept Psychophys 51:465–472.
9. Körding KP, et al. (2007) Causal inference in multisensory perception. PLoS ONE 2:

e943.
10. Giurfa M, Zhang S, Jenett A, Menzel R, Srinivasan MV (2001) The concepts of

‘sameness’ and ‘difference’ in an insect. Nature 410:930–933.
11. Katz JS, Wright AA (2006) Same/different abstract-concept learning by pigeons. J Exp

Psychol Anim Behav Process 32:80–86.
12. Pepperberg IM (1987) Acquisition of the same/different concept by an African Grey

parrot (Psittacus erithacus): Learning with respect to categories of color, shape, and
material. Learn Behav 15:423–432.

13. Mercado E, Killebrew DA, Pack AA, Mácha IV, IV, Herman LM (2000) Generalization
of ‘same-different’ classification abilities in bottlenosed dolphins. Behav Processes
50:79–94.

14. Katz JS, Wright AA, Bachevalier J (2002) Mechanisms of same/different abstract-
concept learning by rhesus monkeys (Macaca mulatta). J Exp Psychol Anim Behav
Process 28:358–368.

15. Robinson JS (1955) The sameness-difference discrimination problem in chimpanzee.
J Comp Physiol Psychol 48:195–197.

16. Wasserman EA, Young ME, Fagot J (2001) Effects of number of items on the baboon’s
discrimination of same from different visual displays. Anim Cogn 4:163–170.

17. Young ME, Wasserman EA, Garner KL (1997) Effects of number of items on the pi-
geon’s discrimination of same from different visual displays. J Exp Psychol Anim Behav
Process 23:491–501.

18. Phillips WA (1974) On the distinction between sensory storage and short-term visual
memory. Percept Psychophys 16:283–290.

19. Estes WD, Taylor HA (1964) A detection method and probabilistic models for assessing
information processing from brief visual displays. Proc Natl Acad Sci USA 52:446–454.

20. Young ME, Wasserman EA, Ellefson MR (2007) A theory of variability discrimination:
Finding differences. Psychon Bull Rev 14:805–822.

21. Wilken P, Ma WJ (2004) A detection theory account of change detection. J Vis 4:
1120–1135.

22. Holyoak KJ, Thagard P (1995) Mental Leaps: Analogy in Creative Thought (MIT Press,
Cambridge, MA).

23. Wasserman EA, Young ME, Cook RG (2004) Variability discrimination in humans and
animals: Implications for adaptive action. Am Psychol 59:879–890.

24. Young ME, Wasserman EA (1997) Entropy detection by pigeons: Response to mixed
visual displays after same-different discrimination training. J Exp Psychol Anim Behav
Process 23:157–170.

25. Yuille AL, Bülthoff HH (1996) Bayesian decision theory and psychophysics. Perception
as Bayesian Inference, eds Knill DC, Richards W (New York Univ Press, New York), pp
123–161.

26. Knill DC, Pouget A (2004) The Bayesian brain: The role of uncertainty in neural coding
and computation. Trends Neurosci 27:712–719.

27. Ma WJ, Navalpakkam V, Beck JM, Berg R, Pouget A (2011) Behavior and neural basis
of near-optimal visual search. Nat Neurosci 14:783–790.

28. Wasserman EA, Young ME (2010) Same-different discrimination: The keel and back-
bone of thought and reasoning. J Exp Psychol Anim Behav Process 36:3–22.

29. Wright AA, Katz JS, Ma WJ (2012) How to be proactive about interference: Lessons
from animal memory. Psych Sci, in press.

30. Geisler WS, Perry JS (2009) Contour statistics in natural images: Grouping across
occlusions. Vis Neurosci 26:109–121.

31. Feldman J (2001) Bayesian contour integration. Percept Psychophys 63:1171–1182.
32. Feldman J, Tremoulet PD (2006) Individuation of visual objects over time. Cognition

99:131–165.
33. Pouget A, Dayan P, Zemel RS (2003) Inference and computation with population

codes. Annu Rev Neurosci 26:381–410.
34. Ma WJ, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with probabilistic

population codes. Nat Neurosci 9:1432–1438.
35. Kroger JK, Holyoak KJ, Hummel JE (2004) Varieties of sameness: The impact of re-

lational complexity on perceptual comparisons. Cogn Sci 28:335–358.
36. Beck JM, et al. (2008) Bayesian decision-making with probabilistic population codes.

Neuron 60:1142–1145.

6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1108790109 van den Berg et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1108790109/-/DCSupplemental/sapp.doc
www.pnas.org/cgi/doi/10.1073/pnas.1108790109

