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Irrational phase synchronization

M. S. Baptista:* S. Boccalettt: K. Josi,? and I. Leyva
Ystituto Nazionale di Ottica Applicata, Largo E. Fermi 6, 150125 Florence, Italy
Department of Mathematics, University of Houston, Houston, Texas 77204-3008, USA
(Received 29 October 2003; published 28 May 2004

We study the occurrence of physically observable phase locked states between chaotic oscillators and rotors
in which the frequencies of the coupled systems are irrationally related. For two chaotic oscillators, the
phenomenon occurs as a result of a coupling term which breaksrilievariance in the phase equations. In
the case of rotors, a coupling term in the angular velocities results in very long times during which the coupled
systems exhibit alternatively irrational phase synchronization and random phase diffusion. The range of pa-
rameters for which the phenomenon occurs contains an open set, and is thus physically observable.
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In recent years, synchronization of coupled chaotic sysnontrivial state in coupled chaotic systems. In particular, we
tems has been a topic of much interest. Different types oflemonstrate that for chaotic systems it is meaningful to con-
chaotic synchronization have been studied theoretiddlly —sider states whera, s=|iy, —rys| (with r an irrational num-
and observed in natuf@], controlled laboratory experiments ber) oscillates around a constant val@ with amplitude
[3], and space extended or infinite dimensional systgths  smaller thanr.

Phase synchronizatioPS of chaos refers to the phe- To motivate this discussion, consider a pair of round
nomenon in which the phases of two interacting systemglates coupled by a belt running along their perimeter. As-
evolve in step with each other, even when the correspondingume that the belt does not slip around the first plate, but
amplitudes are only weakly correlat¢l]. PS is frequently may slip as it moves around the second, and that the first
considered to be the chaotic counterpart of phase lockinglate is rotating uniformly. If the radii of the two plates are
between periodic systems. irrationally related we can assume that the force on the sec-

m:n phase locking of periodic oscillatox®L) has been ©ond plate is proportional to the difference in its angular ve-
studied since the 17th centu]. It can be thought of as the locity and the velocity of the belt, so thgb=—e(¢,— 1),
appearance of a stable limit cycle on the invariant torus dewherer is an irrational number. We ignore inertia in this

fined by the cross product of the phasgs ¢, of the two  simplified approach. Integrating this equation we obtjn
coupled oscillators. If the two systems are phase locked, a”¥—e(¢/2—r¢1)+eH+z;/;2(O) where H=y(0)=r(0). It is

(277/ a;czivan(c:je ing, is accomganied_ tby a corrgspo:ding easy to see that the lifts of the phases approach the relation
m/n)2m advance ing, (m,n being integer numbersAn T L Sen o 00”0 0). Thus a 2r

equivalent statement can be formulated in terms/pfand ) . e
i, the lifts of the two phases to the real line. If these lifts advance iny; corresponds to B2 advance inj,. A similar

satisfy [, —(m/n)yy| <C, with C a positive constant, the COmMputation shows that ifyy,=—€(yp-riy)+7(t), with
two systems are said to be phase locked. n(t)_<F is some bounded, integrable function, the same con-
Similarly m:n frequency locking(FL) occurs when the clusion follows, up to an error bounded by e. Thus irra-

systems adjust their mean frequencigsand w, so that they _tflotrrl1al phatse synch(onlzst|?n tﬁ pt)otismle in this syst(?m (taven
satisfy w,=(m/n)w,. For a wide class of coupled nonlinear It the system IS noisy. Note that ne appearance ot a term

oscillators this condition is satisfied in a finite region of pa- G(lﬂz‘“ﬂ%) mha two-'dlmenfsmnal(ﬁD) dynamical s%/stenr .
rameter space called the resonance tonfje It is well means that there exists a force t at_depend_s on the relative

. L . velocities, commonly associated with dissipative viscous
known that for nonlinear periodic oscillators resonanc

i irrational f ) Sorces found in mechanical systems. In addition, to the pre-
tongues corresponding to irrational frequency rat@es  \joys mechanical example, such a viscous term can also be
=rw,, With r irrational) are of zero measure.

o ) ~found in two pendula attached end to epW, or in two
In periodic systems PL is not a threshold phenomenon, inyistons attached to moving cylinders. Such type of dissipa-

the sense that even two uncoupled periodic oscillators cafjve viscous forcing term can also be used to control oscilla-

exhibit PL if their frequencies happen to be rational multiplestions in a shipboard crane, as it was done in Re}.

of each other. The situation is different in the case of chaotic There are a few important features that distinguish this

or noisy periodic systems. Due to the phase diffusion, tWQ:ase from examples of coupled oscillators typically found in

uncoupled systems may exhibit only FL, but not PL. In thisthe |iterature. In the present case, there is no preferred phase

case PL is a genuine threshold phenomenon. We use thiifference between the two rotating plates, the asymptotic

distinction to argue that irrational phase synchronization is &tate being determined by the initial conditions. Moreover,
the phase locked state does not appear in a saddle node bi-
furcation, and hence the phase slips typical of noisy phase
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Following this example, we say that two systems exhibit ~ -30 A - s
phase synchronizatio(r-PS if phase variables can be de- n o 1
fined such that their lifts to the line,;, and ¢, satisfy |y 45 | =27 0
—ri,—C|=|A, - C| <K < . In the present example the con- j\:_ -
dition K< 7 is essential, since otherwise the phase of one -60 oo i -0.01
system would not tell us anything about the relation of the t . | time (au) 1 . . R
phases in the original systems, and the two systems could nc(a) 0 2500 5000 (b) 0.0025 0.005
be called synchronoyd.0]. 0.01 : . 0.1
A more concrete example is provided by a pair of coupled LAs 1
chaotic Rossler oscillatofd 1] 0 F HH44444 R
- {1 008
X1’2: —_ w1,2}’1,2_ 21,21 -0.01 - W |
. 002 L4 L . 0.06 . .
Y1,2= @121 2+ aY1 2, © o 10 20 (d) o 10 20
-2112: f+ 21,2(X1,2‘ 0), (1) FIG. 1. Numerical integration of syste(®). (a) Time evolution

of Ay =yn(t)-2ryp(t) for different values ofn at £=0.004
wherea=0.15,/=0.2,c=10. The systems are in the chaotic, [marked with an arrow in}j. (b) Third and fourth Lyapunov expo-
phase coherent regime, with approximate angular frequements in the spectrum vs the coupling strengtit n=20. (c) Third
cies w; and w,. Rewriting the equations in cylindrical coor- and fourth Lyapunov exponents in the spectrum vs the index
dinates (X1,2591,2C03ﬂ1,27Y1,2E Ql,ZSinwl,Z)a and adding a £=0.04.(d) First and second Lyapunov exponents in the spectrum
term coupling the phases of the two systems we obtain VS the indexn at £=0.04. Units are dimensionless.

01,27 — 21,00t o) + Q1 SIF (Y o), see Fig. 1d)] and is in agreement with observations in the
case ofn:m phase synchronizatiofiL4]. In Figs. Xc) and
1(d) we graph the third and fourtkthe first and second

: . 215 .
P,2= w1 o+ ACOK P D)SIN(Y o) + zzs'n(‘ﬁl,z) Lyapunov exponents in the spectrum versus the indlet
’ £=0.04 [marked with an arrow in Fig. (b)], showing that
+ &1 P14, ), their values become independentmpfasn increases. This is
consistent with P-PS characterized by the conditid(t)
2y ,=f+2; J01 04 ») —C], (2 —2ryn(t)-C| < 7 (with r=0), and the presence of two posi-
tive, one zero, and one negative Lyapunov exponents in the

where 94 (0,) and ¢ (i,) are the amplitude and phase of
the first(second oscillator, e, , are two real parameters con-
trolling the strength of the coupling, anBl (i, ,):R?

spectrum.

Note that ate=0 the right-hand side of systeii®) is
. , - g invariant under z phase translations. The coupling term
— R are coupling functions specified below. Couplings af-peaks this invariance. Hence the present system differs from
fecting only the phases of oscillators are used in models Ofe gnes studied in Refl4], since it cannot be transformed
physical systems such as Josephson junciid2kand phase irectly back into rectangular coordinates. Given syst@n

locked loops[13]. with F =-F =e(2rfp—i), let ygp-2r
A difficulty in showing irrational phase synchronization in =My slélﬁt?l’al?) 2 ) =20 ), =2y
r

system(2) is due to the fact that in numerical simulations all

quantities are represented by rational numbers. We consider Ay =(e+2re)(Apth) + w1 — 2rw,

w1=1, w,=1.3, e1=ey=e, and  Fy(y1, ) =—Fa(if1, ) -

=e(2r 4~ ), Wherer,=a,/a,.;, anda, is thenth element +g(codyn 9, sinY 2. 21,2010, )

of the Fibonacci series. As a resfilt} is a series of rational where g is easily determined from the original equations.

numbers converging to the golden medlim,_.r,=c  The numerics show thatando remain bounded, which may

~0.6180. also be proved using a Lyapunov function argument. There-
Figure 1 summarizes the main results of the simulationdore, there exists a constantsuch thaig| <L for all time. It

of system (2). At £=0.004 the phase differencesy follows that

= i (t) — 2r,yh,(t) exhibit small oscillations around a constant

t
value for each [Fig. 1(a)]. Furthermore, fon=5 the phase e 2NN, yit) — Ag h(0)| < f e, o + L|ds
differencesAzrn oscillate around a value that is essentially 0
independent oh. This has been checked upne 20, corre- |Agw+ L|(ee¥Zet— 1)
sponding to the maximum precision allowed by our com- = -(e+2rg)

puter. Figure {b) shows the third and fourth Lyapunov ex-

ponents in the spectrum versus coupling strergétn=20.  whereA, w=w;-2rw,. Therefore
2r-PS occurs when the Lyapunov exponent which is initially _(e+2re)t
zero becomes negative. This occurs before the smallest posi- Ay < IL+Ay0l(1-e ) + e (Er2rotp 4(0)
tive Lyapunov exponent becomes negatfi@ comparison x e+ 2re o '
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FIG. 2. Temporal behavior of\; s for w,=0.5 () and w;, FIG. 3. Temporal evolution of\,# for Aw=2.099 904x 107

=0.499 999 390 009 €b) for ry=1, r,=1.047,r3=1.047 19755, (@) and forAw=1073 (b). The two boxes in@ show stroboscopic
andr,=1.047 197 551 196 59. I®) PS is lost as is approaching  yannings of the attractak, X i, for time intervals where diffusive
/3. In (b_), PS is robust within an |nte_rval_ of values _Whose (left box) and regular(right box) behavior inAy is observeds
boundary is very close tor/3. The coupling ise=20. Units are -5 Notice the very large time scale-3x 10°) over which the
dimensionless. transient dynamics takes place. Units are dimensionless.

We can conclude thah, i will always be bounded, no With a rational andb irrational, an_d|a—b|<1, i.e., we dem-
matter whatz is. However, a smalt implies the possibility ~Onstrate irrational PS by showing the robustnessr-6fS.
of |arge excursions and a slow decay @£r¢ Therefore within a parameter Intgrval Whose. open bOUndary IS an Irra-
2r-PS will occur only for sufficiently strong coupling. Note tional (up to the numerical resolution of our compyter
also that if we defined 5=y — ZF ), for T #r, then Eq(3) We first _setw2:0.5, s:20_, and varyr Wlthl_n _the m_terval
will contain an additional term which will grow approxi- [1,7/3], with /3 approximated to 15 digits. Figure 2
mately linearly. It is easy to see that such a term will lead toshows that, as we changefrom a rational numbefr;=1)
slow linear growth inAz so that the two systems exhibit toward an irrational one by selecting a sequence of values
2r-PS for a unique value of, in a set containing an open f2<r3<-- <r,<rn,,<w/3, the rational PS disappears.
subset of parameter space. The inset represents a magnification of the evolution af
Since the coupling in syste(@) breaks the 2 periodicity ~ for caser=r;. For @,=0.499 999 390 009 6 the behavior of
of the right-hand side of the equations, it is not clear how toA¢# is very different, as illustrated in Fig(&). In this case
interpret such a coupling physically. We next consider afor all r within the interval[1,#/3], the phase difference
more realistic system composed of a pair of chaotic rotorsA,#(t) behaves intermittently, alternating between epochs of
described by approximately constant behavior, theminar phaseor pla-
B i _ _ teay and epochs of diffusive behavior. During the intervals
Yot yioh ot T o) =F1 ) £e(tifo1— 1 2), (4) of diffusive behavior, the phase difference evolves appar-

. ently randomly to another closeby plateau. Setti /3,
where  f; ()=exp{l0cos )~ 1]}sin(8y), Fy D=0, y Y yp nam

. Fig. 3(@ shows that this intermittent phenomenon persists
+ 1 5Sin(w; 5t). Equation(4) can model resistively coupled g. 3@ P P

3 ) ) over a very long time interval, with plateaus of approxi-
Josephson junctions, subject to external currents ofadc

: mately the same length. Finally a quasiperiodic state is
componentszy ; (81 7) [15]. The state variablg represents  yoached in which the phases exhibit nonchao®sS. It must

the angle(phase variablewhile ¢ represents the rotation be highlighted that only this latter state rigorously satisfies
velocity (angular frequengy In the following we sety; our condition forr-PS. Nevertheless, also during the chaotic
=v,=0.1, 3,=1.03,8,=1, a;=a»,=0.01, andw,;=0.5. transient the laminar phases persist over intervals much
In Ref. [16] it was argued that syste) exhibits 1:1 PS larger than the characteristic time scale of the systdma
in a special set of parameters, so thds—;| remains phase difference temporarily satisfy the condition for phase
bounded for all time. We are interestedritPS, withr irra-  locking in intervals of time of the order of a million rota-
tional, i.e., a state in whicHA,—C|<m, with A =y tions). As a consequence, such a transient behavior can be
—ri,. Following the ideas given above, we show thatRS  observed experimentally as a transient phase synchronization
state persists within an interval ofvalues given byfa,b]  regime[17].
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FIG. 4. The phase difference\(\¥ mod 27, for Aw
=0.000 000 5, and the broken gray thick line below represents whe
the maximum of the functiofsin(w;t)—sin(w,t)| is higher than 1.
Units are dimensionless.

FIG. 5. Parameter spacew vs €. Points represents parameters
fbr which a plateau of length=100 000 is found. In this picture we
set ')/1:’)/2:0.1, 5121.03, ,82:1, 0[1:C¥2:0.01, andw1:0.5. Note
that the horizontal axis represemis which is equal tojw;—wy|.

. Units are dimensionless.
Next we analyze the dependence of the laminar phases on

the forcing frequency mismatchhw=|w,—w,| when r

z’77'/3 Our aim _iS to ShOW that there eXiStS an inter\/-al Ofmerica"y that the average |aminar peridd"am>’ Sca|es as
valuesAw for which the system exhibits the type of switch- (T =BAw™, with B=0.203+0.006. We emphasize that
ing between laminar and diffusive behavior illustrated in Fig.phase synchronization during the laminar chaotic states oc-

3(@). FOIteZZO,.thIS Sce”a';"’ |ssobserved fgr all chmces Ofcurs only as a transient phenomenon, on time scales much
Aw within th.e mterval[l({ '1g . Inde.ed, increasing the larger than the time scale of the oscillatigis,18, and the
frequency mismatch tdw=10"" results in unbounded evo- | pg congition is therefore only satisfied intermittently. The
lution of the phase differencgsee Fig. 8)]. Increasinge | _pg condition is satisfied fully only during the final noncha-

results in increasing the size of tlzteu interval over which 4 state, indicating that ful-PS emerges when the system
r-PS can be found. We have verified that the very same sC&guttjes onto its quasiperiodic attractor.

nario 8persissts for a large set of parameters givenAay The r-PS phenomenon observed in E¢#. has some in-
=[107,10], €=[10,30, B,=0.9, and,=[0.87,0.89. teresting features. The transient chaotieS state leads to a
In Fig. 3a), the top small insets show stroboscopic recon-ing| quasiperiodic state. Although the transient state can be
structions of thej, X ¢ attractor, for diffusive phase differ- very long, it invariably terminates in &PS quasiperiodic
ence(left) and for a plateagright). Both attractors are typi- state. Phenomenologically, this suggests that the transient,
cal of chaotic motion, and are neither quasiperiodic norchaotic r-PS state corresponds to a chaotic saddle in the
periodic. phase space of the system. This leads us to analyze the pa-
Successive plateaus are characterized|®yy—C|<m7  rameter space to detect such transieRS states. Since the
with different, uncorrelated values of C. This means that theransients can be very long, we assume that whenever a pla-
transient behavior is not characterized by a preferred phageau is observed a final quasiperiodic state is reached, occa-
difference in the system, equivalent to the system of coupledionally checking that this is indeed the c448].
rotating plates given in the introduction. The result are shown in Fig. 5, a parameter space for
Next, we analyze the dependence of the plateau length oiw=[10"*,5.6x 10%] ande=[10, 28, with the resolution of
Aw. In Fig. 4 we show that the phase differenkgs mod 2 10 points in the vertical axis and 200 points in the horizontal
m, at Aw=5X10", exhibits plateaus precisely when axis. For small values afw, ther-PS regions are dense, and
|sin(wqt) —sin(w,t)| is above a certain threshoiih this case therefore, were not shown in this figure. We note that there
the threshold is L Performing an analysis similar to the one are many open areas wherePS is observed. As is in-
leading to Eq(4), we can conclude that, ¢ can be expected creased the region in whighPS exists becomes more dense,
to exhibit diffusive behavior, exactly whersin(w;t)  showing that the coupling is responsible for th®S phe-
-sin(w,t)| exceeds a critical value, in agreement with nu-nomena.
merical observations. From this analysis it follows that the In conclusion, we have presented examples of coupled
length of the laminar phase is inversely proportional to thechaotic systems which exhibit irrational phase synchroniza-
frequency differencéw,—w,|. In fact, we have found nu- tion. This type of synchrony is characterized by the
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emergence of a phase locked state with irrational frequencygation (chaoticr-PS with phase diffusion, eventually lead-
ratio. In particular, we have shown that, unlike in the case oing to the setting of a quasiperiodic state where irrational
periodic systems, irrational phase synchronization is physiphase synchronization holds. The range of parameters for
cally meaningful concept for coupled chaotic systems. Simiwhich this phenomenon occurs contains an open set, and is
lar results can be expected for noisy periodic systems. Fahus physically observable.

chaotic oscillators, such a phenomenon is induced by a cou-

pling term involving the difference in the lifts of the phases  We thank J. Kurths, A. Pikovsky, M. Rosenblum, and M.
which breaks the # invariance in the phase equations. A Zaks for many fruitful discussions. Work partially supported
more realistic example is given by coupled chaotic rotorshy EU Contract No. HPRN-CT-2000-00158, MIUR Project
where a coupling term in the angular velocities can result ifFIRB No. RBNEO1CW3M_001 and Fundacdo de Amparo a
alternating epochs of temporary irrational phase synchroniPesquisa do Estado de Sdo PaHAPESB.
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