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Chaos synchronization is often characterized by the existence of a continuous function between the
states of the components. However, in coupled systems without inherent symmetries, the synchro-
nization set might be extremely complicated. For coupled invertible systems, the synchronization
set can be nondi®erentiable; in the more severe case of coupled noninvertible systems, the synchro-
nization set will in general be a multivalued relation. We will discuss how existing methods for
detecting synchronization will be hampered by these features.

Since the surprising discovery that chaotic systems can
synchronize [1,2], many di®erent kinds of nonlinear syn-
chrony have been considered in the literature [3]. In this
Letter we focus on the concept of generalized synchro-
nization (GS) [2,4,5] of coupled nonidentical systems. GS
is a useful concept in the analysis of physical and bio-
logical systems comprised of multiple components. For
instance, neuronal dynamics is highly nonlinear and the
nervous system consists of many interacting, noniden-
tical units. Emergent features within such a system are
characterized by the coherent behavior among its compo-
nents. The perception of sensory input may correspond
to the synchronized activity between layers of the cor-
tex [6]. The experimental detection and classi¯cation of
such states is challenging, and recently attempts have
been made to broaden the concept of GS with a special
emphasis on applications in biology [7,8].

Geometrically GS is characterized by the existence of
a continuous map Á : X ! Y between the phase spaces
X;Y of two systems. This map associates a state of the
¯rst system to a state of the second, in such a way that
graph(Á) is invariant under the evolution of the coupled
system and attracting [9]. In the presence of symmetries
graph(Á) frequently has a simple structure.

In drive{response systems GS is equivalent to asymp-
totic stability [5] if the driving system is invertible, and
has a compact attractor. A response system is asymp-
totically stable if for any given initial state x0 within
the basin of the drive's attractor limn!1 jjyn(y0

0;x0) ¡
yn(y00

0;x0)jj = 0 for any two initial response states
y

0
0;y

00
0 within some open region in the response's phase

space. As a consequence, a common drive can enslave
multiple copies of the response [10] which is similar to
the idea of \reliable response" in the generation of neu-
ronal signals [11,12].

The detection of GS in practice relies strongly on the
continuity of Á [4,7,13], and in general also requires a cer-
tain degree of smoothness of Á. Tight clusters of points
in X need to be mapped to similarly clustered points in

Y under Á. The existence of GS has been demonstrated
in both physical [14] and biological systems [7] using this
concept. However, variations and mismatches are typ-
ical for coupled systems in nature and, as we show in
this Letter, coupled systems lacking intrinsic symmetries
can exhibit synchronization sets with very complicated
structures. In particular, for coupled invertible systems,
the synchronization set can become nondi®erentiable by
\wrinkling", developing cusps, and in the more severe
case of noninvertible systems, it can become \smeared".
If \smearing" occurs, though the response is still asymp-
totically stable, the function Á is in general replaced by a
multivalued relation. These features may severely ham-
per the detection of nonlinear synchrony.

We propose a categorization of the structures which
arise in such synchronization states, and link these struc-
tures to universal features of the component's dynam-
ics. While we expect the situation to be similar in bi-
directionally coupled systems, to simplify the analysis we
consider a drive-response system as our model:

xn+1 = f(xn)
yn+1 = g(xn;yn; c): (1)

The drive x 2 X and the response y 2 Y are state vectors
and both f and g are smooth or piecewise smooth maps.
The parameter c characterizes the interaction strength.

The ¯rst type of nontrivial structure has been studied
in [15,16], and we include it for completeness. Following
[15] we use the following choice for the maps in (1),

un+1 =
½

¸un; vn < ®
¸ + (1 ¡ ¸)un; vn ¸ ®

vn+1 =
½

vn=®; vn < ®
(vn ¡ ®)=(1 ¡ ®); vn ¸ ®

yn+1 = cyn + cos 2¼un+1;

(2)

where x = (u; v), y is a scalar, and 0 · ¸; ® · 1.
The drive is the generalized Baker's map taking the unit
square to two nonoverlapping rectangles as shown in Fig.
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1(a). The response y is a ¯lter of the drive's variable u
with c controlling the contraction rate. If jcj < 1 the
response is asymptotically stable for all x. As pointed
out in [15,16], the synchronization set will typically be-
come nondi®erentiable if the average contraction within
the drive becomes larger than the contraction in the re-
sponse. In particular, if hd is the least negative past-
history Lyapunov exponent of the drive and hr is the
contracting Lyapunov exponent in the transverse direc-
tion (with jhrj < jhdj), then Á is generally nondi®eren-
tiable with a HÄolder exponent [17] given by jhr=hdj < 1
[15]. Since the generalized Baker's map has uniform mea-
sure in v, the synchronization set can be visualized in the
uy plane. Graphs demonstrating both the di®erentiable
and nondi®erentiable case are given in Fig. 2(a) and (b)
respectively. We call this development of nondi®erentia-
bility \wrinkling".

The wrinkling of the synchronization manifold is a lo-
cal feature, and the smoothness in the vicinity of a single
orbit depends on the ratio of the exponents hr and hd
along this orbit. Thus there typically exists invariant sets
embedded in the synchronization set on which Á has dif-
fering degrees of regularity [18]. As we will demonstrate
below, there are situations in which nondi®erentiability
on these \smaller" sets may become important.

In an experimental situation, the loss of smoothness
of Á can mask the underlying coherence in the coupled
system. Consider the following numerical test based on
the ²¡± de¯nition of continuity. After transients die out,
pick a point (x;y) on the attractor and a small number
±, and iterate the full system until the x-component of
the trajectory lands in the ball B[x; ±] a large number of
times. Keep track of these points, and denote by ²max
the largest distance between their y-components. If Á is
di®erentiable, then typically ²max ! 0 linearly as ± ! 0.
This is not the case when jhdj > jhrj = j ln cj; instead,
²max ! 0 sublinearly as ± decreases. Since the slope of
the function ²max(±;x) corresponds roughly to the HÄolder
exponent of Á at x, we have plotted an ensemble of these
scaling curves for a collection of random x. When jhdj <
j ln cj, Á is smooth almost everywhere and ²max depends
linearly on ± as shown in Fig. 3(a) and when jhdj > j ln cj,
²max decreases sublinearly with ± (Fig. 3(b)) and Á is only
HÄolder continuous.

This ²max ¡ ± test is the idea behind all GS detection
methods based on the continuity criterion. A ¯nite data
set and an experimental noise °oor will adversely a®ect
any attempts at detecting synchrony, and if the wrinkling
is large compared to the size of the attractor, it may not
be possible to reliably predict the response from the drive
even if the drive can be measured with high accuracy.

The second type of structure that can develop within
the synchronization set results from critical points in the
drive's attractor. At a critical point, the Jacobian ma-
trix of f is singular, so that within a neighborhood of
these points we can expect the existence of orbits in X

along which the contraction is large as compared to the
magnitude of hr. As a result graph(Á) will typically not
be di®erentiable near the critical points. Although the
local mechanism resulting in the nondi®erentiability of Á
is similar to wrinkling, the structure of the synchroniza-
tion set and the resulting limits on synchrony detection
are di®erent. We demonstrate this di®erence using the
following modi¯cation of the drive in (2),

un+1 =
½

4¸[(un ¡ 1=2)3 + 1=8]; vn < ®
¸ + (1 ¡ ¸)un; vn ¸ ®

vn+1 =
½

vn=®; vn < ®
(vn ¡ ®)=(1 ¡ ®); vn ¸ ® ;

(3)

where the response y is as in (2). In this example,
the drive maps the unit square onto two nonoverlap-
ping rectangles (see Fig. 1(a)), however, the contrac-
tion rate in the u direction is no longer uniform. The
linear map (un+1 = ¸un) is replaced by a cubic map
(un+1 = 4¸[(un ¡ 1=2)3 + 1=8]), which is invertible and
has a critical point at u = 1=2. The dependence of the
contraction rate on u is indicated by the gray scale in
Fig. 1(a). Along the line u = 1=2 the contraction rate
is in¯nite. As in the previous example, the synchroniza-
tion set can be visualized as a graph in the uy plane
(see Fig. 2(c)). The parameters are chosen so that for
almost every orbit the past-history Lyapunov exponent
hd in the drive is less than the normal contraction rate
hr = ln c. Since jhr=hdj > 1 for almost every orbit, the
synchronization set is smooth almost everywhere. How-
ever, graph(Á) is not completely smooth since \cusps"
are formed at and near the critical point and its iterates.
The biggest cusp appears at u = ¸=2 which is the for-
ward image of u = 1=2. The HÄolder exponent at u = ¸=2
is zero regardless of hr, and the shape of graph(Á) at
u = ¸=2 is consistent with this prediction.

This graph also contains an in¯nite number of smaller
cusps. Since the cubic map in (3) maps the critical line
u = ¸=2 to two lines at u0

1 = ¸2

2 (¸2 ¡ 3¸ + 3) and u0
2 =

¸
2 (3 ¡ ¸) (marked by triangles in Fig. 2(c)), two more
cusps appear at these locations, and further cusps appear
under subsequent iterates of the critical line [19].

Although graph(Á) is not smooth in either the cusped
or the wrinkled case, its global structure in the two cases
is di®erent. The wrinkles in the ¯rst example depend on
the strength of the contraction rate in the y-direction,
and for c < min(¸; 1 ¡ ¸), graph(Á) is di®erentiable ev-
erywhere. On the other hand, the critical line in the
cusped case is an intrinsic feature of the drive, and the
HÄolder exponent at u = ¸=2 and its forward iterates will
vanish for all values of the contraction rate hr = ln c.
In this case graph(Á) is nondi®erentiable for all values of
c. Secondly, the nondi®erentiability in the wrinkled case
will typically have a stronger e®ect on the detectibility
of GS. Since wrinkling occurs almost everywhere when
jhr=hdj < 1, the ²max ¡ ± test typically fails at almost
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every point in the drive. In the cusped case, the cusps
occur at and near the critical line u = 1=2, and decrease
in size at its forward iterates due to contraction. Thus
they will not a®ect the ²max ¡ ± test as severely. The
di®erence between the two cases can be described more
quantitatively using wavelet analysis [18].

Figure 3(c) shows an ensemble of scaling curves for the
²max ¡ ± test in the cusped case. ²max depends linearly
on ± at most points x up to the resolution of the data,
as expected. Occasionally a scaling curve has slope less
than one indicating the lack of regularity of Á for a value
of u near one of the \cusps".

The third type of structure which may hinder the de-
tection of GS is the development of striations in the
synchronization set when the drive is noninvertible. Al-
though many systems can be modeled by ordinary dif-
ferential equations and are thus assumed to have time{
invertible dynamics, there are important physical and bi-
ological examples in which noninvertibility plays an im-
portant role. Traditional descriptions of population dy-
namics in biology utilize noninvertible maps [20]. Models
with time{delays for which temporal invertibility is not
guaranteed [21], are typical in neuronal processes. Most
importantly, the dynamics reconstructed from discrete-
time samples of systems with strong dissipation is fre-
quently best approximated by noninvertible maps [22].

Due to noninvertibility, a typical state of the drive will
have a whole tree of possible histories, and recurrences
in the drive may thus occur along di®erent routes. Each
such route provides a di®erent driving signal, and this
occurs independently of the coupling strength c. There-
fore even if the response is asymptotically stable, to each
point in the drive there will typically correspond a Cantor
set of points in the response, one for each history of the
drive (see Fig. 2(d)) [8] resulting in a striated structure
of the synchronization set [23].

The striated structure of this synchronization set is
best understood in a two dimensional piecewise linear
version of system (1),

xn+1 = f(xn) =
½

2xn; xn < 0:5
2(xn ¡ 0:5); xn ¸ 0:5

yn+1 = g(xn; yn; c) = cyn + xn+1:
(4)

f is noninvertible with two pre-images for each xn+1. For
jcj < 1, the synchronization set is asymptotically stable.
Fig. 2(d) is a typical picture of the synchronization set
which is a Cantor set of lines. Although the topology
of the synchronization set for a more general noninvert-
ible drive-response system will be di®erent, the structure
illustrated by this example is typical.

The structure of this synchronization set can be un-
derstood using a linear transformation of the full (x; y)
system by a matrix T(c), (~x ~y)T = T(x y)T where

T(c) =
µ

1 0
¡2(1 ¡ c)=c (2 ¡ c)(1 ¡ c)=c

¶
: (5)

In the new coordinates the system (4) becomes the \thin"
Baker's map given by,

~xn+1 =
½

2~xn; ~xn < 0:5
2(~xn ¡ 0:5); ~xn ¸ 0:5

~yn+1 =
½

c~yn; ~xn < 0:5
c~yn + (1 ¡ c); ~xn ¸ 0:5 :

(6)

Under one iteration, the two halves of the unit square are
mapped into two rectangles as shown (see Fig. 1(b)). For
c < 0:5, this map is area contracting with a rate given by
2c. After n iterations, the original unit square is mapped
to 2n horizontal strips of height cn, and the limiting set
of this map is a Cantor set of lines. The attracting set of
the original map (4) (see Fig. 2(d)) is the image of this
Cantor set of lines under the transformation T¡1(c).

Figure 3(d) demonstrates the e®ect of these striated
structures on the ²max ¡ ± test. Since the synchroniza-
tion set is a graph of a one{to{1 relation, ²max > 0 for
all values of x and ±. Once ²max reaches the thickness
of the striated set it no longer decreases as a function of
±. This can be seen in the saturated scaling curves in
Fig. 3(d). Consequently, the ability to predict the state
of the response system from the state of the drive will be
severely limited, and the situation cannot be improved by
increasing the precision of the measurements. The stri-
ated structure and the resulting limits on GS detection
are consequences of the noninvertibility of the drive.

In summary, we have shown that for coupled systems
without symmetries, the synchronization sets can de-
velop very complicated structures. If such structures are
present, the dynamical coherence of the coupled system
will be di±cult to detect, despite the asymptotic stabil-
ity of the response. Although the synchronization sets
in our examples exhibited only a single type of structure
for each case, di®erent types are likely to coexist in more
general systems.

This work was supported by the NSF-IBN 9727739 and
NIH 2R01MH50006 (P.S., S.S.), 7K0ZMH01493 (S.S),
and 1K25MH01963(E.B.).

FIG. 1. (a)Generalized Baker's Map. Gray scale indicates
the contraction rate in (3). (b)\Thin" Baker's Map.

FIG. 2. Complicated structures in synchronization sets:
(a)Smooth case with jhdj < jhrj(hr = ln 0:3):; b) Wrinkled
case with HÄolder exponent given by jhr=hdj < 1(hr = ln 0:8).
In both (a) and (b), ¸ = 0:8 and ® = 0:7. This choice gives
hd = ¡0:64. (c)Cusped case with ¸ = 0:2; ® = 0:3, and
c = 0:2. hd = ¡0:90 in this case. The cusps occur at the for-
ward iterates of the critical point at u = 1=2, and the largest
three (indicated by markers) are located at u =0.1, 0.0488,
and 0.28. (d)Smeared case with c = 0:35.
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FIG. 3. Result of the ²max ¡ ± test: (a)Smooth,
(b)Wrinkled, (c)Cusped, (d)Smeared. The thick solid line is
the expected linear scaling if Á is di®erentiable. Parameters
are the same as in Fig. 2.
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