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Abstract

We examine the dynamical mechanisms that lead to the loss of predictability

in low dimensional stochastic models that exhibit three main types of oscillatory behavior:
damped, self-sustained, and heteroclinic. We show that the information that an

initial ensemble provides about the state of the system decays non-uniformly in time.

Long intervals during which the forecast provided by the ensemble does not loose any of

its power are typical in all three cases. Moreover, the information that the forecast

provides about the individual variables in the model may increase, despite

the fact that information about the entire system always decreases. We analyze the fully
solvable case of the linear oscillator, and use it to provide a general heuristic explanation for
the phenomenon. We also show that during the intervals during which the forecast loses little

of its power, there is a flow of information between the marginal and conditional distributions.
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Abstract

We examine the dynamical mechanisms that lead to the loss of predictability in low
dimensional stochastic models that exhibit three main types of oscillatory behavior:
damped, self-sustained, and heteroclinic. We show that the information that an
initial ensemble provides about the state of the system decays non-uniformly in time.
Long intervals during which the forecast provided by the ensemble does not loose
any of its power are typical in all three cases. Moreover, the information that the
forecast provides about the individual variables in the model may increase, despite
the fact that information about the entire system always decreases. We analyze the
fully solvable case of the linear oscillator, and use it to provide a general heuristic
explanation for the phenomenon. We also show that during the intervals during
which the forecast loses little of its power, there is a flow of information between
the marginal and conditional distributions.
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1 Introduction

Due to atmospheric uncertainty, statistical predictions involving Monte-Carlo
simulations for an ensemble of trajectories are frequently used in weather and
climate forecasting. The evolution of such ensembles, and, in particular, their
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spread can be used to quantify the reliability of predictions. Several mea-
sures that quantify “potential predictability” of dynamical systems in this
sense have been utilized in atmosphere/ocean science. These include the Root
Mean Squared Error [5], Anomaly Correlation Coefficient [4] and Potential
Prediction Utility [2,6]. Other measures of predictability, inspired by dynami-
cal systems theory, include Lyapunov exponents [3,20] and various notions of
entropy [15,12].

A measure that appears to be particularly well suited to quantify the pre-
dictability of a stochastic dynamical system is relative entropy [14] (also called
Kullback-Leibler divergence). The relative entropy can be interpreted as the
amount of information provided by a particular prediction [7]. Unlike some
other measures of utility, it reflects differences in all moments, including the
mean and variance, of two distributions. In addition, relative entropy satisfies
several important mathematical properties which make it a relatively unique
measure of predictability.

Typically, the predictability properties of a given system are characterized by
the behavior of the relative entropy averaged over the equilibrium distribu-
tion of the system obtained by Monte-Carlo simulations with an ensemble of
ensembles. Each individual ensemble in the simulation describes the decay of
the utility of prediction for an initial state. The mean of each initial state is
chosen at random from the equilibrium distribution, and their variances reflect
uncertainties due to imperfect measurements.

The overall predictability of the model can then be characterized by averaging
the relative entropy over all initial states thus generated.

The goal of this article is to show that even for Markov systems the mecha-
nisms that leads to the loss of predictability have surprising and counterin-
tuitive aspects. While utility of ensemble predictions typically decays expo-
nentially in time (see [14,19], for example), it can behave very differently for
each individual ensemble. This implies that the predictability of a model can
be considered as a functional dependent on the initial state used for the pre-
diction, and significant information may be lost by averaging over all initial
states [16].

In particular, we show that for a certain class of models and initial states there
are large intervals of time during which the utility of the prediction remains
nearly constant. Therefore, the predictability of these particular forecasts is
very different from the exponentially decaying averaged predictability of the
system. Oscillatory transport of the initial ensemble towards and away from
peaks of a spatially nonuniform equilibrium distribution is the primary mech-
anism behind this behavior. During the times of extended predictability the
ensemble mean resides in areas where the mass of the equilibrium distribution



is small, and predictability is lost during the transient returns of the ensemble
mean.

Relative entropy decays monotonically in time for Markov processes, since
information that is lost cannot be regained [11]. Therefore the utility of a
prediction cannot increase in time for Markov models, and in the language of
atmosphere/ocean science, there is no return of skill [1]. However, this result
holds only for the full density of the system being modeled, and does not
apply to the marginal densities. Indeed, we show that the marginal relative
entropies of all variables in the model may increase simultaneously in time,
while the relative entropy of their joint distribution decays. Therefore, while
information about the total state of the system is necessarily lost over time,
information about its attributes may be regained. Surprisingly, information
about all attributes may be regained simultaneously. We illustrate that the
mechanism leading to the return of skill and the near constancy of relative
entropy over certain time intervals are closely related.

As the marginal relative entropies may change either in concert or in oppo-
site directions, it may be difficult to make sense of the flow of information
between the variables defining a Markov model. It is sometimes more natu-
ral to consider the flow of information between the different conditional and
marginal distributions. We also show that the phenomena described above can
be understood in terms of such a flow of information.

The rest of the paper is organized as follows. In Section 2 we present gen-
eral properties of the relative entropy functional and discuss it’s relevance
to other measures of predictability. In Section 3 we consider the stochasti-
cally perturbed linear oscillator. This example is solvable analytically, and is
utilized here to explain the mechanism behind the non-uniform decay of rela-
tive entropy and return of skill in noisy oscillatory systems. We consider the
stochastic perturbation of a nonlinear oscillator (obtained from the normal
form of a Hopf bifurcation) and homoclinic cycle (obtained from the Duffing
equation) in Sections 4.1 and 4.2, respectively. Conclusions are presented in
Section 5.

2 Relative entropy for SDEs

Consider a stochastic dynamical system model of climate, which we assume
to be Markov. Let ¢(Z) be the invariant (climatological) distribution, and let
p(Z, t) be the probability density corresponding to the ensemble of realizations
predicting the state of the system at time ¢t. The relative entropy, or Kullback-



Leibler divergence between these two distributions is defined as

RO, 0.0 = 10) = [ otz 1ox (U5 0
This can be thought of as a measure of “distance” between the distributions
p(Z,t) and ¢(Z) *. More precisely R(t) corresponds to the amount of infor-
mation that the distribution p(Z,t) provides about the state of the system in
excess of that given by the equilibrium distribution ¢(Z). It is therefore natural
to interpret R(t) as a measure of the utility of the prediction provided by an
ensemble of particular realizations.

Relative entropy reflects differences in the mean and variance, as well as other
moments of two distributions: an increase in the utility of a prediction may be
due to the narrow spread of the ensemble (reflected in a difference between the
variances of p and ¢q), or the fact that this ensemble indicates a large departure
from normal conditions (reflected in a difference between the means of p and

q)-
Relative entropy also satisfies three important mathematical properties:

(1) it is invariant under well behaved non-linear transformations of state
variables,

(2) it is non—negative and,

(3) it declines monotonically in time for Markov processes.

The fact that relative entropy decreases in time can be naturally interpreted
as a decline in the utility of a prediction, or skill.

In this section we recall the relative entropy between multivariate Gaussian
distributions, and provide an expression that will be used to analyze its decay
in the model systems we consider subsequently.

2.1 Relative entropy for Gaussian distributions

Suppose that ¢(%) and p(Z,t) are n-dimensional multivariate Gaussian distri-
butions with means p, and p, and correlation matrices o, and o, respectively.
In this case a closed form for the relative entropy can be obtained [14]

n=; 10%(322;%3% Te(o2(02) ™) + (1) (02) () =0 | (2)

signal term

1 Care needs to be taken in interpreting R as a distance since R(p,q) does not in
general equal R(q,p).



For the Gaussian case the relative entropy can be naturally decomposed into
two parts: the signal (the third term in the sum) and the dispersion (the
remaining terms). The signal component accounts for the difference in the
means of the two distributions, ¢(Z) and p(Z,t), while the dispersion reflects
the difference in their variances. Therefore, the signal and dispersion terms
are analogous to the Anomaly Correlation Coefficient and Root Mean Squared
Error, respectively.

2.2 Relative entropy as a Lyapunov functional for the Fokker-Planck equation

We next consider the Fokker-Planck equation

op(Z,t) 0 ——
o __Zij 5o @ 1)) + 5 Z@xlax] i (D)p(T 0], (3)

corresponding to a model stochastic differential equation [11]. Here A(Z,t) is
the drift vector, B(Z,t) is the diffusion matrix, and the distribution p(z,0)
provides the initial data for the Fokker-Planck equation. We assume that the
system under consideration has a unique equilibrium solution ¢(Z).

The relative entropy R(p(Z,t),q(Z¥)) = R(t) is dependent on the initial data
p(Z,0), corresponding to the distribution of initial conditions of an ensemble
in a Monte-Carlo simulation. We will show in the next section that the decay
of relative entropy can vary markedly for different choices of initial ensembles.

In this case the relative entropy, defined in equation (1), is a Lyapunov func-
tional for the Fokker-Planck equation [11]. Indeed, a direct calculation shows
that the relative entropy decays monotonically in time. Using the definition
of relative entropy we obtain

B [P iy 1 - 2 (BED)]

Let us assume that ¢(¥) is a stationary solution of (3), and that ¢(Z) is non-
zero everywhere, except at infinity, where it and its first derivatives vanish.
The contributions to dR/dt stemming from the drift (( - )d " ) and diffusion

((%)diﬁ) terms in the Fokker-Planck equation can also be obtained by the

same calculation:

() = 55 [t (S52)] 0
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Fig. 1. Left: The equilibrium distribution ¢(Z) for the linear oscillator (8). Right:
Average relative entropy in the case of the stochastic linear oscillator. Parameters:
a = 0.4573,0 = 0.2435,7y = § = —1.0852, and ¢ = 0.1.

Under the given assumptions on ¢(%) it can be shown that

d d
<—R> ~0  and <—R> <0, (7)
dt ] qrift dt ] qifr

It follows that the decrease in relative entropy is due only to diffusion terms.
This is not surprising from an information theoretic viewpoint since it is the
diffusion terms that correspond to the stochastic components of the equation
that lead to information loss. While the most immediate effect of these terms
is to increase the spread in the ensemble forecast, they interact in a nontrivial
way with the drift terms to determine the rate of this decrease. We illustrate
this point in the next section.

3 The stochastic linear oscillator

We next consider the fully solvable example of the damped stochastic linear
oscillator which has been used as a prototype model of the El Nifio/Southern
Oscillation [13]. Even in this simple model relative entropy decays non-mo-
notonically, and the marginal relative entropies can oscillate. The results of
this section were obtained using analytical expressions for the relative entropy
which we do not report in full due to their complexity.

The model is given by the following two-dimensional stochastic differential
equation:

dx1 = axdt + (xadt,

dxe =yx1dt + dxodt 4+ edW,



where W is a Wiener process, ¢ is the noise level, and the remaining parameters
are chosen so that with ¢ = 0 the system exhibits damped oscillations. Figure
1 (Left) shows the contour plot of the equilibrium distribution in one specific
case. Although we use the same parameters for all subsequent simulations in
this section, we show below that our observations hold under very general
conditions.

The Fokker-Planck equation describing the evolution of an initial density is
given by equation (3) with

00
A= @b and B =

v o 0e

This equation can be solved analytically assuming a deterministic initial con-
dition p(#,0) = dz0(Z) where 7° = (29, 29) [11]. The solution at time ¢ is a
Gaussian with mean

and covariance matrix

<x,1 > < Ty, To > t ~[ 00 )
b b :/Odt’eA(t_t) ATt (10)

< Xo, T > < To, Ty > 0 e?
Since the equilibrium distribution ¢(Z) can also be computed explicitly, equa-
tion (2) can be used to obtain the relative entropy analytically in this case.

3.1 The decay of relative entropy

The overall predictability of a model is determined by the average rate of de-
cay of the relative entropy, where the average is taken over all deterministic
initial conditions weighted by the stationary probability density. In general,
this requires Monte-Carlo simulations with a collection of ensembles [14]. Each
ensemble consists of a number of initial conditions distributed according to a
narrow Gaussian or a delta function centered at a point sampled randomly
from the equilibrium distribution. As noted earlier, averaging over the equilib-
rium distribution provides a measure of the average predictability of a given
model. The average relative entropy for the linear oscillator (8) averaged over
initial ensembles corresponding to densities 6z (Z) is shown in Figure 1 (Right).
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Fig. 2. Left: Relative entropy for a particular initial condition (z9,29) = (1,1)
(solid), and the contribution to the relative entropy due to the signal term in equa-

tion (2) (dashed). Right: Behavior of (%l_?)diﬁ‘ (solid) and I3 (dashed) in time for

an initial condition (z9,29) = (1,1). Parameters as in Figure 1.

One of the essential properties of the relative entropy is its monotonic decay
in time reflecting the loss of information due to the stochastic forcing as each
ensemble of initial conditions is propagated forward in time. Simple estimates
show that initially diffusive terms dominate, and relative entropy has a loga-
rithmic singularity at the origin. Therefore, there is a boundary layer around
t = 0 during which the relative entropy decays as — log(¢). This is followed by
a long interval during which relative entropy decays exponentially, as shown
in Figure 1 (Right).

However, the situation can be different for any particular initial ensemble
whose mean is sufficiently far from the mean of the equilibrium distribution.
Rather than decreasing exponentially, there are intervals during which the rel-
ative entropy remains nearly constant. This is illustrated in Figure 2 (Left),
using the relative entropy for an ensemble of trajectories with the initial con-
dition (29, 29) = (1,1) so that p(Z,0) = &(1,1)(Z). The ensemble is generated
utilizing independent realizations of the Wiener process.

In particular, during the time intervals [5...10], and [22...27] the rate of
relative entropy decay is nearly zero. During these intervals, the forecast skill
remains nearly constant, and our confidence in the prediction based on an
ensemble of possible projections does not decrease.

Relative entropy decays in a similar manner for any initial density whose
mean differs sufficiently from that of the equilibrium distribution. However,
the plateaus in relative entropy do not occur at the same time, and we show
below that their position in time depends on the phase of the mean of the initial
ensemble. Therefore, the average over different initial ensembles provides a
somewhat misleading picture: compared to the rate of decay of relative entropy
for a particular ensemble the rate corresponding to the average is much larger
during the plateaus, or much smaller between the plateaus.
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Fig. 3. Case with matrix A defined by (11) for an initial condition (z9,29) = (3,0).
Left: Trajectory of the mean of the distribution. Middle: Relative entropy behavior.
Right: Difference between the full relative entropy and the signal term.

As we will see in the next section, this effect is due to the fact that after a
transient the value of relative entropy is mainly determined by the location
of the mean of an ensemble, and the means corresponding to different initial
data can oscillate in- or out of phase.

3.2 Analysis of the rate of decay of R(t)

We can explain the nonuniform decay of the relative entropy by considering

equation (2). After an initial quick increase in the variance of the transient
dR

W)diﬁ ~
—1/t, further changes in the variance occur at a timescale slow compared to
that of the oscillations (see the top row of Figure 4). Therefore the signal term
in expression (2) can be expected to dominate. That this is indeed the case is

illustrated in Figure 2 (Left).

distribution p(¥, t) resulting in a logarithmic singularity of R(t¢), and (

We illustrate the analysis in the case

: (11)

|
>
T = o=

B as above, and 23 = 0. The general case is very similar, but more tedious.
The mean of the solution of equation (3) with this initial data is, by (9),

T1(t) = 2%* cost, Ty (t) = bade ¥ sint,

so that k is a damping coefficient, and b determines how the solutions are
stretched in the y direction. For fixed values of k£ and b of the same order,
k> 1, and b > 1, small noise and x;(0) sufficiently large, the signal term
dominates all other terms in equation (2) (an example with & = 10, b = 10,
e =0.1, and 2?9 = 3 is shown in Figure 3).



The signal term of the relative entropy has the form

20 (29)? (1 4 k* + cos(2t) + k sin(2t))
ek3

Rsignal(t) - 6_%

In the parameter regime of interest the term proportional to e~ sin(2t) de-
termines the non-uniformities in the decay of relative entropy.

The plateaus in relative entropy therefore occur at the times in which sin(2¢)
is increasing. Those intervals correspond to the time during which |zo(t)] in-
creases from 0 to b, and the mean of the transient distribution moves away
from the mean of the stationary distribution (see the left panel of Figure 3).
Similarly, information is lost rapidly during the times at which |x4(t)| decreases
from b to 0.

Intuitively, this is a consequence of the fact that information is gained as the
means of the transient and equilibrium distribution move apart, and this gain
balances the loss of information due to the increase in the variance of the
transient distribution through diffusion. As the means of the two distribu-
tions move together, i.e. during the times during which sin(2¢) is decreasing,
information is lost due to changes in both mean and variance. These inter-
vals correspond to the rapid loss of information following the plateaus. Similar
estimates and arguments apply to the example of the previous section. The
interval between the first two panels in the top row of Figure 4 correspond to
a plateau, while the interval between the last two panels corresponds to the
sharp drop following a plateau.

According to the discussion in Section 2, the decay of relative entropy is en-
tirely due to diffusion. Therefore the fact that the decay of relative entropy is
dominated by the behavior of the mean whose evolution is completely deter-
mined by the drift appears somewhat counterintuitive. We next explain this
apparent contradiction.

For the stochastic linear oscillator in (8) the diffusion part of the corresponding
Fokker-Planck equation (6) reduces to

2

iR T -
() = 5/ aw@n gy est@ i) - 02

This can be evaluated using a straightforward, but lengthy calculation. The
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Fig. 4. Probability density functions of the transient distribution (dashed line) and
the equilibrium distribution (solid line) for times t=17.5 (left), t=25 (center) and
t=35 (right). The arrows indicate the direction in which the transient distribution
moves at the time of the snapshot.

expression (12) can be rewritten as

<dR> 2| [ar e <M>2_2 | i iy 2D Do ()

dt diff 2 oy oy dy
11 12
(13)
L (Blogq(@))
I3

A direct computation shows that only the third integral (I3) depends on
the mean of the transient distribution p,, while the first two integrals I,
and I, depend only on the variances o and o7. Moreover, this integral is
exactly the time-derivative of the signal part of the relative entropy, i.e.

(I3) = 41(1p)" (02) " (1p)]. Thus, since the relative entropy is dominated by

the signal term, the behavior of (%)Mr nearly equals I3, as depicted in Fig-
ure 2 (Right). Therefore, although the time-decay of the relative entropy is
entirely due to diffusive terms in the equation, the magnitude of (%) s

diff
almost completely determined by the mean of the ensemble forecast.

We have shown that the relative entropy of the full distribution decreases
monotonically to zero, although at a non-uniform rate. As we will see next,
the situation is quite different for the relative entropies of the marginal distri-
butions p(z1,t) and p(zy,t) which may increase in time.

11



3.3 Return of skill for marginal entropies

We next consider the marginal entropies of the stationary and transient dis-
tributions. The relative entropy R, (t) and R,,(t) for the two marginal dis-
tributions are again defined using equation (1), and can be interpreted as the
amount of information that the marginal distribution p(x1,t) provides about
the state of the variable x; at time ¢ in excess of the information provided
by the marginal stationary distribution g(x;). We emphasize that marginal
entropies are not invariant under coordinate changes, so that the results of
this section are highly coordinate dependent.

Note that in contrast to the full relative entropy, the marginal relative en-
tropies do not necessarily decay in time. However, we can relate their behavior
using conditional relative entropies which are defined by the following equation

Rasjay (1) = R(p(w2|21, 1), q(22|21)) (14)

p(x2|21,
_/p xy,t /p To|x1,t) log ((2‘|; ))d 1dxs.
1

Here p(zs|z1,t) denotes the conditional distribution of z5 at time t given z,
and Ry, |q,(t) is the excess information provided by the marginal distribution
p(za]xy, t) over q(xa|zy).

The chain rule for relative entropy [11] relates the full, marginal and condi-
tional relative entropy

R(t) = Ruyja, (1) + Ray (1) (15)

We start by calculating the relative entropy of the marginal distributions which
can be obtained analytically using equation (2). The evolution of the marginal
relative entropies is shown in Figure 5. For the initial condition (9,z9) =
(1,1) the oscillations are well pronounced. This observation implies that the
information about the variables z; and zy taken separately can increase in

time, while information about their joint distribution must always decrease.

The top and bottom panels of Figure 4 compare the evolution of the full and
marginal distributions. The increases in marginal relative entropy correspond
to the times at which the mean of the marginal distribution moves away from
the mean of the stationary distribution, i.e. the plateaus in the full relative
entropy. The main factors contributing to this behavior can be identified as in
the previous section, and here we provide an equivalent intuitive explanation.

The bottom panels of Figure 4 shows that the variance of the distribution
p(1|z2,t) remains nearly constant during one oscillation. However, during the

12
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Fig. 5. Left: means of the variables |xi| (solid line) and |z3| (dashed line).
Right: marginal relative entropies R, (¢) (solid line) and R, (t) (dashed line) and
Ry |z, (t) (solid-star line) and R,,|,,(t) (dashed-star line) for an initial condition
(‘T(l)?xg) = (1,1).

time between the first two panels the mean of the distribution moves away
from 0 which leads to an increase in R,,(t). Similarly, the movement of the
transient to the stationary marginal distribution during the period between
the last two panels leads to a decrease in R,, (t). The fact that both marginal
relative entropies R,, (t) and R, (f) increase at the same time, is a consequence
of the fact that for the solution of the corresponding deterministic system both
Z1(t) and Zy(t) can increase at the same time. Note that this would not be
true in a different coordinate system. In particular, for the matrix A in (11),
Z1(t) and Z5(t) and the marginal relative entropies oscillate out of phase.

It is natural to ask how the information contained in the marginal distributions
of z1 and x5 is generated. Equation (15) provides the answer: With an increase
in information about the marginals comes a decrease in information about the
conditional distribution, that is, a decrease in the excess of information that
a knowledge of x; provides about the state of x5 over that provided by the
stationary distribution g(zz|x;1) (see Figure 5 (Right)).

We also note that there is no direct “flow of information” between the vari-
ables x; and z5. However, one can think of a flow of information between
the marginal and conditional distributions when the full relative entropy is
approximately constant, since during that time the sum of the two is approx-
imately constant as well.

4 Nonuniform decay of R(t) in general systems

The results of the previous section extend to much more general stochastic
systems. The nonuniform decay of relative entropy occurs whenever the main
mass of the distribution p(Z,t) approaches, and then diverges from the main
mass of the stationary distribution ¢(Z). Oscillations in the marginal relative

13



entropies occur when such divergence occurs in the marginal distributions.
The following two examples show that such behavior can be expected both in
the case of stochastic oscillators, when the mass of the stationary distribution
is distributed non-uniformly around the limit cycle, and in the case of stochas-
tically perturbed homoclinic and heteroclinic cycles. Such dynamical behavior
is often credited for the complex evolution in various prototype atmospheric
models [8,9].

4.1 Decay of relative information for nonlinear oscillators

In this section we show that the behavior of relative entropy described in
the previous section can be observed in the case of nonlinear oscillators. In
particular, we consider a planar, stochastic system with a limit cycle arising
from a supercritical Hopf bifurcation:

dry = paydt — cwzadt + Oz (22 + Pad)dt + edWy,
(16)

[N

dry = (wxl + cpxy 4+ cOxy(x] + c2x§)) dt + edWs,

here W, 5 are independent Wiener processes. Since the corresponding Fokker-
Planck solution cannot be solved analytically, we examine the system numer-
ically using the parameter values y = 0.5, w = 1.0, ¢ = 0.6, and © = —1.0.
Similar behavior can be observed over a wide range of parameters. In the
absence of white noise the system in (16) has a stable periodic orbit

x1(t) = ,/—%cos(wtjL ®0), xo(t) = %,/—%sin(wtﬂL ®0),

with period Ty, = 27/w. For small noise, the invariant measure is concen-
trated sharply around the vertical extrema of the unperturbed orbit. Similar
to the linear oscillator, the invariant measure is stretched in the x5 direction
to better illustrate the non-uniform decay of relative entropy. Note that the
speed at which a trajectory moves around the attracting periodic orbit of the
deterministic system is at a minimum at the top and the vertical extrema of
the orbit. These are therefore the places at which the equilibrium distribution
will have local maxima. Similar behavior can be observed for other values of
¢ for which the equilibrium measure is distributed non-uniformly along the
limit cycle.

The relative entropy is evaluated numerically by discretizing the phase space
into a uniform mesh. Stochastic Euler method is used to integrate the equa-
tion. The equilibrium distribution ¢(Z) is estimated utilizing bin-counting from

14
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Fig. 6. Top: Probability density function for time=3 (left) and time=>5 (right). Bot-
tom Left: Full relative entropy R(t). Bottom Right: marginal relative entropies
R, (t) (solid) and Ry, (t) (dashed) in simulations of (16) with initial ensemble cen-
tered at (z9,29) = (0.5,0) and € = 0.1.

a single long realization. The initial non-equilibrium ensemble is a 250, 000-
member ensemble generated from the uniform distribution with width 0.3 x0.3
centered at (z1,72) = (0.5,0), away from the mean of the equilibrium distri-
bution. Numerical estimates for relative entropy R(f) and marginals relative
entropies are shown in Figure 6.

The non-uniform decay of relative entropy and oscillations in marginal relative
entropies are clearly visible after a short transient period. Since the periodic
orbit given in (17) is stable, the transient period is due to the fast initial
transition of the initial ensemble to the vicinity of this orbit.

After this initial phase, the relative entropy decays more slowly. As in the
case of the damped linear oscillator, the variance of the transient distribution
increases slowly compared to the time of the oscillations. Figure 6 shows that
the plateaus in relative entropy correspond to the times during which the
mass of the transient distribution moves away from a peak in the mass of the
stationary distribution. Therefore the plateaus occur at twice the frequency
w, and the nonuniform decay of relative entropy is due to the mechanism
discussed in the previous section.
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4.1.1  Return of skill for marginal entropies

Marginal entropies depicted in Figure 6 exhibit strong out of phase oscilla-
tory behavior with frequency 2w, consistent with the frequency of plateaus
of the full relative entropy. The marginal stationary distribution g(z;) is ap-
proximately unimodal. As in the case of the linear oscillator, the minima of
the marginal entropies R,,(t) occur at the times at which the mean value
of the transient marginal distribution coincides with the mean value of the
equilibrium distribution (top right of Figure 6).

Since the marginal distribution ¢(z3) is strongly bimodal, the situation is
somewhat different. The minima of R,,(t) occur at the times when the mean
of the transient distribution p(zs) is between the two peaks in the stationary
distribution ¢(z2). Since this occurs exactly when the distribution p(z2) is at
its farthest distance from ¢(x), the marginal relative entropies R, (t) and
R, (t) oscillate out of phase.

4.2 Stochastically Perturbed Duffing Equation

We next consider a system of nonlinear stochastic differential equations ex-
hibiting coherence resonance [17,10]. Although the deterministic analog of this
system is very different from both previous examples, stochastic perturbations
lead to intervals of extended predictability and the return of skill for marginal
distributions.

The model is given by the Duffing equations driven by white noise [18]

d{L’l = [L’gdt + EdWl,
(17)
dry = (z1 — 23 — yao + Brizy)dt + cdWy,

where W, 5 are independent Wiener processes, and v, # and € are parameters.
For ¢ = 0 and parameters v = 0.4 and § = 0.497 this system has an attracting
double homoclinic cycle (Figure 7 (Left)) to the saddle point at the origin.
The signature of the homoclinic connection is clearly visible in the invariant
density of the stochastic system in (17) shown in Figure 7 (Right).

To demonstrate the existence of extended regions of predictability and the re-
turn of skill for marginal distributions we chose a particular 250, 000-member
initial ensemble centered at x; = 0.25, x5 = 0.25, and estimate the relative
entropy numerically as in the previous example. The distributions p(Z,t) are
computed utilizing the Monte-Carlo simulations with the initial ensemble gen-
erated from the uniform distribution on [0.3] x [0.3]. (see Figure 7 (Left)).
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Fig. 7. Left: Homoclinic loop for Duffing equation with ¢ = 0. Right: Contour plot
of probability density function for € = 0.01.

The computed relative entropy for € = 0.01 is presented in the bottom left
panel of Figure 8. As in the linear oscillator case the relative entropy is almost
constant over several time intervals. There are four plateaus in the graph of
relative entropy, although the nature of the first plateau (at times [4...8]) is
somewhat different from the subsequent ones.

Recall, that the decay in relative entropy is only due to the diffusion in equa-
tion (6). For the model (17) the diffusion term becomes

dR\ e 0 p(z1,72)\]”
<E>diff S22 /dxldxz p(ajbxz)i:zl;z [&m <log Q(xbx?)ﬂ ' 18)

For the stochastic Duffing equation the behavior of the (%)d.ﬁ is more com-

plicated than in the case of linear oscillator. Namely, the value of (Cil_}t%)d'ﬁ
depends not only on the means, but also on all terms involving variances of

the invariant and transient distributions.

Since the initial ensemble is chosen on one side of the heteroclinic loop, differ-
ent trajectories do not separate during the first passage along the heteroclinic
loop (see the first two top panels in Figure 8). As the cluster of initial condi-
tions moves away from the origin we observe the long plateau in the graph of
relative entropy, since the transient distribution moves away from the origin
where the main mass of the equilibrium distribution is located. Indeed, Figure
9 illustrates that the mean of transient distribution is largest at times [4...8],
coinciding with the first plateau in relative entropy R(t).

After the first transition, individual realizations return close to the origin, but
separate following the two different branches of the homoclinic loop. There-
fore, the mean of the ensemble is approximately zero (see Figure 9). Due to
coherence resonance [10,17,18], most of the mass of the transient distribution
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Fig. 8. Top: Probability density function for time=>5 (left), time=10 (middle) and
time=15 (right). Bottom Left: Full relative entropy R(t), Bottom Right: marginal
relative entropies Ry, (t) (solid) and R,,(t) (dashed) in simulations of (17) with
initial ensemble centered at (z,29) = (0.25,0.25) and € = 0.01.

30

is ejected from the vicinity of the origin around the same time. The second
plateau in the graph of relative entropy occurs when the two main portions of
the transient distribution are at their farthest distance from the main mass of
the equilibrium distribution at times [15...17]. The bimodality of the tran-
sient distribution during this time implies that the oscillatory behavior is
manifested strongly through the variance of the ensemble (see Figure 9).

Although the details are somewhat different from the previous examples, the
non-uniform decay in relative entropy is again due to the fact that the station-
ary distribution is concentrated in one area of the phase space, and oscillations
in the system that take the transient distribution recurrently close to the main
mass of the stationary distribution.

4.2.1 Return of skill for marginal entropies

Marginal relative entropies for x; and x5 are shown in the bottom right panel of
Figure 8. The mechanism leading to the oscillations in both marginal entropies
is similar to the one described in the preceding examples. An inspection of Fig-
ure 8 shows that the marginal entropies are at a maximum at the times during
which the main mass of the marginal transient distribution diverges maximally
from the marginal of the stationary distribution. The fact that the transient
and stationary distribution for x; are bimodal and trimodal, respectively,
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Fig. 9. Left: mean in z; (dashed line), mean in zo (solid line), Right: variance in
x1 (dashed line), variance in x (solid line) in simulations of the stochastic Duffing
equation in (17) with € = 0.01. (Horizontal lines show equilibrium variances).

somewhat complicates the description. However, the animation provided at
http://www.math.uh.edu/~ilya/research/predict_stoch_osc illustrates
the entire process.

5 Conclusions

We considered the predictability of three models with particular emphasis on
the non-uniform decay of the utility of predictions and return of skill (oscilla-
tions in marginals) for dynamic variables. These models were constructed as
stochastic perturbations of linear oscillator, non-linear oscillator (Hopf nor-
mal form), and homoclinic cycle (Duffing equation), and are representative of
a wide class of stochastic oscillators.

Relative entropy is utilized to characterize the predictability properties of these
prototype systems. The averaged (with respect to many initial ensembles) pre-
dictability of all three systems decays exponentially in time. Nevertheless, as
a result of the oscillatory-like behavior, two related phenomena emerge in the
behavior of the relative entropy functional and marginal entropies for each par-
ticular ensemble simulation. In particular, (i) the full relative entropy decays
at a non-uniform rate, and (ii) there is return of skill (oscillatory behavior)
for the marginal entropies of all three systems.

Interestingly, we can also think of the return of skill as a flow of information
from the conditional to the marginal non-equilibrium distribution. Both of
these phenomena are driven by oscillations of the mean of the non-equilibrium
(forecast) ensemble, and an increase in the variance of the non-equilibrium
ensemble that is slow compared to the frequency of oscillation.
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The leading order effect in this case is the transport of the non-equilibrium
distribution in phase space by the underlying oscillatory dynamics. This results
in a slower rate of decay for the relative entropy when the mean of the non-
equilibrium ensemble is moving away from an area in which the invariant
measure is concentrated. The same mechanism causes oscillations of marginal
distributions and return of skill in each dynamic variable.

While the quantitative details differ between the oscillatory mechanisms con-
sidered, the qualitative behavior of the relative entropy functional is similar
in all three cases. The oscillatory behavior is manifested strongly for initial
ensembles concentrated in the tails of the invariant measure, but can also be
detected for other initial data. This suggests that similar behavior of various
predictability metrics can be detected in more complex systems, especially for
initial ensembles concentrated around rare events.
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