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Abstract

We study networks of coupled phase oscillators and show that network architecture
can force relations between average frequencies of the oscillators. The main tool of our
analysis is the coupled cell theory developed by Stewart, Golubitsky, Pivato, and Török,
which provides precise relations between network architecture and the corresponding
class of ODEs in R

M and gives conditions for the flow-invariance of certain polydiag-
onal subspaces for all coupled systems with a given network architecture. The theory
generalizes the notion of fixed-point subspaces for subgroups of network symmetries
and directly extends to networks of coupled phase oscillators.

For systems of coupled phase oscillators (but not generally for ODEs in R
M , where

M ≥ 2), invariant polydiagonal subsets of codimension one arise naturally and strongly
restrict the network dynamics. We say that two oscillators i and j coevolve if the
polydiagonal θi = θj is flow-invariant and show that the average frequencies of these
oscillators must be equal. Given a network architecture, it is shown that coupled cell
theory provides a direct way of testing how coevolving oscillators form collections with
closely related dynamics. We give a generalization of these results to synchronous clus-
ters of phase oscillators using quotient networks, and discuss implications for networks
of spiking cells and those connected through buffers that implement coupling dynamics.

Running title: Networks of phase oscillators
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1 Introduction

Oscillatory phenomena are ubiquitous in nature. It is frequently possible to describe the
dynamics of a stable periodically oscillating system using only the phase of the oscillation [22,
16]. While the original system evolves in RM , where M may be large, or even infinite, the
phase-reduced system evolves in S1, which typically simplifies the analysis considerably. For
oscillatory systems coupled together to form networks [29], the reduction to phase coordinates
can also be performed [19, 17]. Examples of such reductions frequently used in neuroscience
are reviewed in Appendix A.

We refer to the individual units in a network as cells, and their interactions determine
the architecture of the network. The architecture is in turn represented by a directed graph,
reflecting which cells are identical and how they are coupled. The precise relations between
this directed graph and the equations that govern the network dynamics are discussed in
[28, 15] and are reviewed in Section 5.

When the dynamics of the cells is determined by their phases, the reduced system is a
network of phase oscillators whose equations have the form

θ′ = F (θ). (1.1)

Here θ = (θ1, . . . , θN) ∈ TN , F = (f1, . . . , fN) ∈ RN , and each coordinate satisfies 0 ≤
θj < 1, so that the phase space of each oscillator is the unit interval [0, 1] with endpoints
identified.

The goal of this paper is to show that network architecture alone, regardless of any further
structure of the underlying equations, can force relations between the winding numbers and
average frequencies of cells in phase oscillator networks. The strongest result is easiest
to describe for all-to-all coupled networks of identical cells. In this case, the number of
oscillations, or windings around the origin, for any pair of cells and any solution differs by
at most one on any time interval. Therefore, the average frequencies of the cells are equal.
This kind of relation between certain pairs of cells exists in a variety of networks. In the
following we describe how these restrictions arise, and how they can be identified from a
given network architecture.

The paper is organized as follows: In Section 2 we define winding numbers and average
frequencies, and introduce the notion of coevolving pairs of oscillators. We also show that
coevolving oscillators and those that are part of an appropriately defined collection have
related winding numbers and average frequencies. In Section 3 we define ‘spiking’ phase
oscillator networks, motivated by neuroscience, and show that coevolving oscillators have
related ‘spike counts.’ The next task is to determine how network architecture results in
coevolving pairs of oscillators. Examples of networks that illustrate the underlying ideas are
given in Section 4. The abstract network formalism of [15] is reviewed and is used to derive
results for general networks in Section 5, and the notion of quotient networks is used to
extend these results to synchronous clusters of oscillators in Section 6. In Section 7 we show
that the same criteria for coevolution hold when the cells are coupled through intermediate
‘buffer’ cells that could be used to model the time dependence of neural synaptic variables.
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We also describe networks for which cells that coevolve do so regardless of the presence of
buffer cells. A brief discussion, including comments on neural applications, then brings the
paper to a close. The Appendix gives an outline of the derivation of phase equations.

2 Winding numbers and coevolution

In this section we introduce the notions of winding number and average frequency which
describe the temporal behavior of solutions of (1.1). We then show that these are related
for coevolving oscillators in a network.

Let FL : RN → RN denote the lift of the vector field F : TN → RN in (1.1). Suppose
that θ(t) is a solution to (1.1) with initial condition θ(0) = θ0. The lift of θ(t) ∈ TN to RN

is the solution to x′ = FL(x) satisfying x(0) = θ0 and is denoted by θL(t).
The winding number of cell j for a solution to (1.1) over a time interval τ = [t1, t2] is

the number of oscillations, or “windings” around the origin, that cell j undergoes during the
interval τ . The following definition makes this precise.

Definition 2.1 Let θ(t) be a solution of (1.1) on an interval τ = [t1, t2]. The winding
number of θj(t) on the interval τ is given by

ρτ
j = θL

j (t2) − θL
j (t1). (2.1)

In general ρτ
j is not an integer. However, if θ(t) is a T -periodic solution to (1.1), then the

lift satisfies
θL(t + T ) = θL(t) + ρ (2.2)

where ρ = (ρ1, . . . , ρN) ∈ ZN is a vector of integers. The winding number satisfies ρ
[0,T ]
j = ρj,

and is therefore an integer which equals the number of full oscillations of cell j during one
period of θ(t). In the remainder of the paper, the winding number of θj in a periodic orbit

will always refer to ρ
[0,T ]
j = ρj, where T is the minimal period for the solution as a whole.

The winding number is closely related to the frequency of oscillation. Given an interval
τ = [t1, t2], we define the average frequency ντ

j over τ by

ντ
j =

ρτ
j

t2 − t1
. (2.3)

If the limit
νj = lim

|τ |→∞
ντ

j

exists, we say that νj is the average frequency of cell j.
In the case of a T -periodic solution, we have

νj = lim
t→∞

ν
[0,t]
j = lim

t→∞

ρ
[0,t]
j

t
= lim

N→∞

ρ
[0,NT ]
j

NT
=

ρj

T
,

so that νi equals the number of oscillations per unit time. Similarly, νi for a nonperiodic
solution is the average number of oscillations per unit time, which justifies the name average
frequency. In the following we will assume that the average frequencies exist.
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Coevolving oscillators

The property of the network that imposes relations between winding numbers is described
in the following definition.

Definition 2.2 Two phase oscillators i and j coevolve if the codimension one torus {θ ∈
TN : θi = θj} is flow-invariant.

Proposition 2.3 proves that winding numbers for a periodic solution are equal for any
pair of coevolving oscillators. In fact, more is true. In Proposition 2.4 we prove that, for
arbitrary solutions on any interval, winding numbers of coevolving cells differ by at most
1. It then follows that if average frequencies are defined for two coevolving cells, then these
average frequencies are equal. This type of behavior is similar to frequency locking [25],
but we emphasize that in the present case frequency refers to the average number of full
oscillations per unit time.

First we motivate these results and then give a precise proof. Since the torus θi = θj is
assumed to be flow-invariant, the projections θi(t) and θj(t) of the trajectory θ(t) are either
identical or cannot cross. In other words, oscillators i and j cannot “lap” or “pass” one
another. Therefore, the winding numbers ρi and ρj for a periodic orbit θ(t), must be equal.
Furthermore, for a general solution on an interval τ , ρτ

i and ρτ
j can differ at most by 1, since

this is the greatest extent to which the phases can be separated without passing.

Proposition 2.3 For any pair of coevolving oscillators the winding numbers of a periodic
solution to a phase oscillator system (1.1) are equal.

Proof By definition, oscillators i and j coevolve if θi = θj is flow-invariant for (1.1). It
follows that the codimension one subspace V = {θ ∈ RN : θi = θj} is also flow-invariant for
the lift FL.

If θL(t) ∈ V for some time t, then θL
i (t) = θL

j (t) for all t and hence the winding number
ρi = ρj. We now assume θ(t) 6∈ V for all t. Without loss of generality we may assume that
θL

i (t) < θL
j (t) for all t. It follows from (2.2) that

θL
i (kT ) = θL

i (0) + kρi and θL
j (kT ) = θL

j (0) + kρj

Hence θL
i (kT ) < θL

j (kT ) implies that

θL
i (0) < θL

j (0) + k(ρj − ρi)

for all integers k. This statement is false if ρj 6= ρi. Thus coevolving oscillators have the
same winding number. 2

Proposition 2.3 can be extended to apply to nonperiodic solutions of (1.1) as shown in
the following.

Proposition 2.4 For any solution to a phase oscillator system (1.1) on an interval τ , the
winding numbers of coevolving oscillators differ at most by 1.
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Proof By assumption the torus θi = θj is flow-invariant. Therefore, as above, if θi(t1) =
θj(t1), then θi(t) = θj(t) for all t so that the winding numbers on the interval τ are identical.
Therefore, if the lifted solution satisfies θL

i (t1) = θL
j (t1) + p for some integer p, then θi(t1) =

θj(t1) and the winding numbers are identical.
Next suppose that the solution satisfies θi(t1) 6= θj(t1). Then, there is an integer p such

that
θL

i (t1) + p < θL
j (t1) < θL

i (t1) + p + 1. (2.4)

These inequalities are strict and hold when t1 is replaced by an arbitrary time t. It therefore
follows from (2.4) that

p < θL
j (t) − θL

i (t) < p + 1

In terms of the winding numbers defined by (2.1) on the interval τ = [t1, t2], we see that

|ρτ
j − ρτ

i | = |(θL
j (t2) − θL

i (t2)) − (θL
j (t1) − θL

i (t1))| < 1.

Hence, the winding numbers of oscillators i and j differ by at most 1 on τ . 2

The following is an immediate corollary.

Corollary 2.5 Suppose that oscillators i and j coevolve. If the average frequency νi is
defined, then the average frequency νj is defined as well and νj = νi.

Moreover, for coevolving oscillators i and j, ντ
i ≈ ντ

j for long intervals τ . In addition, for
a T -periodic solution θ(t), the individual coevolving oscillators θi(t) and θj(t) must have
equal winding numbers and equal periods T , but they do not necessarily have the same
minimal periods. The phenomenon of multirhythms, in which different cells of a network
have different minimal periods, will be addressed in [11] (also see [12]).

Remark 2.6 Note that a flow-invariance condition analogous to Definition 2.2 for pairs of
cells evolving in in Rk, k ≥ 2, does not necessarily give any restrictions on winding numbers,
unless phase reduction is valid (see Appendix A). The reason is that the corresponding
flow-invariant subspace is of codimension k greater than one, and hence does not sufficiently
obstruct trajectories. 3

Coevolution is not transitive

We now make a curious observation. Consider the three-cell network in Figure 1. The set
of equations modelling such a network is

θ′1 = f(θ1, θ2)
θ′2 = f(θ2, θ1)
θ′3 = f(θ3, θ2).

(2.5)

It is easy to check that the manifolds Y1 = {θ : θ1 = θ2} and Y3 = {θ : θ1 = θ3} are flow
invariant; however, Y2 = {θ : θ2 = θ3} is not, in general, flow invariant. So the cell pairs (1, 2)
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1 2 3

Figure 1: A network that exhibits nontransitivity of coevolving cells.

and (1, 3) coevolve, whereas the cell pair (2, 3) does not. Therefore, while the trajectories of
cells 1 and 2, and those of 1 and 3 cannot cross on S1, the trajectories of 2 and 3 may cross.

This example implies that coevolution is not a transitive property, and therefore does
not lead to an equivalence relation. However, Propositions 2.3 and 2.4 imply that relations
between winding numbers exist for cells i and k, which do not coevolve with each other, but
both coevolve with a third cell j. This is formalized in Corollary 2.8.

Collections and ordered collections of cells

The network of Figure 1, which demonstrates that coevolution among pairs of individual cells
is not transitive, suggests two issues that we now address. First, despite this nontransitivity,
we still expect some dynamical characteristics to be shared by oscillators that are related
by a chain of coevolving oscillators. Second, while nontransitivity prevents us from directly
using coevolution to partition a network into equivalence classes with ‘similar’ dynamics,
another relationship does permit such a partition to be specified.

Definition 2.7 Two oscillators i and j are in the same collection if there exists a chain of
distinct oscillators i = k0, ..., km+1 = j such that all pairs (k0, k1), . . . , (km, km+1) coevolve;
m is the length of this chain.

Note that if i and j coevolve, then the minimal length m of a chain connecting them is zero.
Collections of cells may be visualized by constructing the collection graph as follows.

Start with N vertices, where N is the number of oscillators in the network. Construct an
edge between vertices i and j if oscillators i and j coevolve. The components of the resulting
graph correspond to the collections of Definition 2.7. Figure 2 gives an example of the
collection graph of the network of Figure 1.

2 1 3

Figure 2: The collection graph for the network of Figure 1.

Being in the same collection is clearly a transitive relation on cells. Therefore, cells in a
given network can be partitioned into a unique set of collections.

An immediate consequence of Propositions 2.3 and 2.4 is the following.

Corollary 2.8 The collections of oscillators in a network have the following properties
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(a) Winding numbers of a periodic solution are equal for all cells in the same collection.

(b) If average frequency is defined for one cell in a collection, then it is defined for all, and
this average frequency is the same for all cells in the collection.

(c) Let i and j be two cells in the same collection and let m the length of the shortest chain
of oscillators relating them. Then for a general solution the winding numbers of cells
i and j on an interval differ at most by m + 1.

Note that m + 1 in Corollary 2.8(c) is an upper bound. Further constraints on the
dynamics exist if any pair of oscillators in a collection coevolves, as we show next.

Definition 2.9 A set of oscillators is in the same ordered collection if, for each pair i and j
belonging to the set, i and j coevolve.

Since coevolution is generally not an equivalence relation an oscillator may belong to
several ordered collections at once.

The orientation of oscillators in an ordered collection is dynamically invariant, due to
the flow invariance of every codimension one torus {θ : θi = θj} for each pair of phases
belonging to the ordered collection. Specifically, let (θ1, . . . , θb) represent the phases in an
ordered collection of size b . An orientation on this ordered collection is an ordering of the θj

around the circle T1. There are (b − 1)! different orientations on a given ordered collection,
so that there are distinct orientations only for ordered collections comprised of three or more
phases.

3 Phase oscillator models of spiking neuronal networks

Phase oscillators are frequently used as models of spiking neurons, and we interpret the
results of the previous section in the case of such models.

The phase equations for neuronal oscillators possess a phase ϕ corresponding to the point
on the limit cycle (of an uncoupled neuron) where a rapid transient in voltage occurs; that
is, the point at which a spike is fired [7, 4]. The phase velocity around this point must be
positive for any physically plausible coupling, as neurons cannot “cross backwards” through
the spike branch of their limit cycles. Thus motivated, we introduce

Definition 3.1 A spiking cell system is a system of coupled oscillators θ̇j = fj(θ) for j =
1, . . . , N where there exist spike phases ϕ1, . . . , ϕN such that fj(θ) > 0 whenever θj = ϕj.
Let θ(t) be a solution for a spiking cell system. The cell j spikes at time t if θj(t) = ϕj.

Let {tjk} be the (ordered) set of spikes for cell j. Note that requiring that fj(θ) > 0 when
θj = ϕj implies that θL

j (tjk+1) = θL
j (tjk)+1; in other words, θj must increase by a full rotation

between the times it spikes. This is illustrated in Figure 3 where ϕi = ϕj = 0 is assumed:
The horizontal lines are the lifts of θj = 0, and the vertical lines are the lifts of θi = 0.
For a spiking system, the flow increases past these lines and winding numbers increase by
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one between spikes. Recalling that trajectories cannot cross {θ : θi = θj} (dashed lines), we
additionally see that neuron i must fire between successive firings of neuron j, and vice-versa.

θi

θj

θi

θj

Figure 3: Projection of representative allowed trajectories onto coordinates θi and θj for
a system in which θi and θj coevolve, for a general system (left) and a spiking system
(right). Dashed lines represent the lift of {θ : θi = θj} and bound the flow-invariant strips
{θL : θL

j + m < θL
i < θL

j + m + 1}. The horizontal and vertical lines are the lifts of θj = 0
and θi = 0 respectively; when these are crossed, cell i or j, spikes, respectively. For a
general system, trajectories may cross a given lift of the set {θi = 0} multiple times; in
spiking systems, such multiple crossings are not allowed, as θ′i > 0 on these sets. As a result,
winding numbers increase by one between spikes (see text).

Furthermore, suppose we have a periodic solution in a spiking system. The reasoning
above shows that a given neuron (cell) j spikes repetitively only if the winding number
ρj is positive, whereas neurons with rotation number 0 undergo ‘subthreshold’ oscillations
without spiking. Proposition 2.3 therefore implies that, for a periodic orbit, all cells that
coevolve either spike or undergo subthreshold oscillations together.

We formalize the above as follows:

Proposition 3.2 If a pair of oscillators with the same spike phase ϕ0 coevolve in a spiking
cell system, then either both spike coincidentally or each spikes between successive spikes of
the other. Hence, their spike counts on any time interval differ by at most one, and their
average spiking frequencies are equal.

Proof Label the two coevolving cells i and j, and let tik be the time of the kth spike
of θi as above. If θj(t

i
k) = θi(t

i
k), then the oscillators are synchronized for all time (as in

Proposition 2.4), so that all of their spikes are coincident.
Otherwise, as in Proposition 2.4, the strict inequality (2.4) holds at all times. By defini-

tion, θL
i (tik) = s+ϕ0 for some integer s, and θL

i (tik+1) = s+ϕ0 +1. Substituting these values
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into (2.4) at times tik and tik+1 gives

θL
j (tik) < s + ϕ0 + p + 1 < θL

j (tik+1) .

Continuity of solution trajectories implies that θL
j must have crossed s+ϕ0+p+1. Therefore,

cell j spikes at some time between the successive spike times tik and tik+1 of cell i. 2

An immediate corollary is:

Corollary 3.3 Consider a network of spiking oscillators with the same spike phase ϕ0.

(a) For oscillators in the same collection, the spike counts of cells i and j over any interval
differ at most by m + 1, where m is the size of the shortest chain between them.

(b) No oscillator can spike twice without all others in the same ordered collection spiking
in between (or coincidentally). Therefore, for a given solution, there is a fixed, possibly
repeating sequence in which all such oscillators spike.

As in Corollary 2.8(c), the number m + 1 in Corollary 3.3(a) is an upper bound. Exam-
ple 4.5 shows that this upper bound can be achieved. Corollary 3.3(b) implies that for an
ordered collection of size b, there are (b−1)! distinct, dynamically invariant spiking sequences
that may be displayed, depending on initial conditions.

In general, the spike phases ϕj may differ amongst oscillators. In Section 5 below, we
introduce the notion of different oscillator types, and we will see that cells of the same type
are the only cells that can generally be expected to coevolve. For consistency, we require that
cells of the same type have the same spike phase. Therefore the assumption of Proposition 3.2
that there is a single relevant spike phase ϕ0 for coevolving cells is natural, and we will tacitly
take it to be true in all that follows.

Before moving to an illustrative special case, we emphasize that Propositions 2.3, 2.4,
and 3.2 hold without assumptions on phase equations beyond their network architecture, and
that while they were shown for phase reduced systems, they also describe the corresponding
dynamics in the full state space as long as the phase reduction remains valid (see Section A.1).

Integrate and fire oscillators

Another type of model frequently used in neuroscience applications is the integrate and fire
(IF) equation. Under certain conditions, the results of this section can also be expected to
apply to networks of IF neuron models, although they are not strictly phase oscillators. The
simplest form of such equation is given by the leaky integrate and fire (LIF) model:

v′
i = −vi + g(v)

vi(t
+) = vreset whenever vi(t) = vθ,

(3.6)

where g(v) specifies the coupling between the cells. Once the voltage vi reaches the threshold
voltage vθ the cell is assumed to fire (i.e., spike), and vi is reset to vreset. This implies that
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the points vθ and vreset can be identified when v crosses vθ (it can only be crossed from
below). On the other hand, if vreset is crossed, no resetting occurs. Due to this fact, the
phase space of equation (3.6) can be thought of as the branched manifold shown in Figure 3.
The reduction of an excitable neuron model in RN to an LIF equation is described in [10].

vreset

vθ

vθ vreset=

Figure 4: The phase space of an Integrate and Fire (IF) oscillators is a branched manifold
when the points vθ and vreset are identified. The flow on the branched manifold is defined so
that any trajectory moving counterclockwise across the branch point vreset continues along
the straight (hyperpolarized) branch.

The concepts of Section 2 carry over directly to networks of IF cells. For example, consider
a periodic solution in a network of such IF cells, and assume that cells i and j coevolve. Then
the branched manifold structure of the state space of the IF model implies that the only way
oscillator i can have a higher winding number than oscillator j is if vj(t

k
i ) < vreset, where tki

is a spike time of the ith IF neuron (that is, a time at which vi(t
k
i ) = vθ). If this is not the

case, the trajectories vi(t) and vj(t) would have to cross, which is not possible. If both vi

and vj are above vreset, that is, if both vi and vj are on the circular part of the branched
manifold in Figure 3 when either spikes, the arguments of the preceding section show that
the winding numbers of the periodic solution must be equal for the two oscillators.

Frequently, excitatory interactions in IF networks are modelled by increasing the volt-
age of a postsynaptic neuron either instantaneously, or through an increase in the “phase
velocity” v′. In such networks vi ≥ vreset for all oscillators in the network. More generally, if
v′

i(t0) > 0, for any t0 such that vi(t0) = vreset, all our results relating coevolution to winding
numbers and spike orderings carry over directly.

If inhibitory interactions are allowed, the situation is more subtle. These are typically
are characterized by a synaptic ‘reversal potential’ vsyn [20], which is the lowest value of a
cell’s voltage v at which these interactions contribute a negative term to v′. If vsyn ≥ vreset,
then the above condition that v′

i > 0 when vi = vreset holds, and hence so do our results
relating coevolution to oscillator dynamics. However, if vsyn < vreset, then this condition
no longer holds (as inhibitory interactions can then force voltages below their reset values),
with potentially strong consequences for the dynamics of the coupled cell network.

Therefore, care is required when defining network models using integrate-and-fire cells,
and in comparing the dynamics that they produce for different parameter values. For exam-
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ple, in a network of two identical IF cells with identical coupling (i.e., with S2 symmetry),
one oscillator can undergo full oscillations and spike periodically while ‘inhibiting’ the other
so that the second undergoes only subthreshold oscillation only if vsyn < vreset. Proposi-
tion 2.3 states that this is not possible in a network of two identical phase oscillators, or in
a IF model for which the subthreshold branch is inaccessible.

Remark 3.4 Propositions 2.3 and 2.4 rely on the uniqueness of the solutions for the sys-
tem (1.1). If F is discontinuous, as in the LIF model (3.6), this uniqueness may be
violated. However, a simple assumption about oscillator dynamics in the neighborhood
of discontinuities guarantees uniqueness of solutions, and hence that the polydiagonals
∆i,j = {θ ∈ TN : θi = θj} will be invariant for LIF models with a given architecture
whenever they are invariant for smooth models with the same architecture. This assumption
is as follows: let the components fi of F be discontinuous only at the sets Θi = {θ : θi = c}
but smooth away from these sets, and let the solutions cross these sets in the direction of
increasing θi. A network of LIF oscillators with excitatory coupling satisfies these conditions.
3

4 Network Examples and Simulations

In this section we illustrate how details of network architecture not captured by symmetry can
force cells to coevolve. Symmetries of the network do provide some, but not all information
about which cells in the network coevolve. We also illustrate by example that a network in
which cells form synchronous clusters can be quotiented by identifying all cells in a cluster.
As in [28], identical ‘node’ symbols for individual cells imply identical internal dynamics and
identical arrow types imply identical coupling.

Network symmetries and synchrony

It is well understood that network symmetry can lead to the existence of invariant poly-
diagonals and synchrony. Suppose that a network has N cells 1, . . . , N and that σ is a
permutation of these cells. Then σ acts on θ ∈ Tn and F ∈ RN in (1.1) by

σθ = (θσ−1(1), . . . , θσ−1(N)) and σF = (fσ−1(1), . . . , fσ−1(N))

The permutation σ is a network symmetry if system (1.1) satisfies the equivariance condition

F (σθ) = σF (θ)

or, alternatively, σ is a symmetry of the network graph (see [28, 15]). For example, all-to-all
coupled networks with identical couplings have full SN permutation symmetry.

The fixed-point subset of a permutation σ is

Fix(σ) = {θ ∈ Tn : σθ = θ}
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Note that fixed-point subsets of permutations are polydiagonals, that is, they are just defined
by equality of certain cell coordinates. It is well known, and straightforward to prove, that
fixed-point subsets are flow-invariant subsets [14].

All-to-all coupled systems

As discussed, network symmetry can imply the existence of flow-invariant subsets and hence
relations between winding numbers. The simplest example occurs in all-to-all coupled sys-
tems, which have the full group of permutation symmetries SN .

Corollary 4.1 In an SN -equivariant phase oscillator system (1.1) any pair of oscillators
have winding numbers that differ by no more than one on any interval. Hence all oscillators
have the same average frequency. Furthermore, if the network is a spiking system, then
between (or coincidentally with) any two subsequent spikes of a given cell, all other cells in
the network must spike.

Proof For each pair of phases i and j, the 2-cycle (i j) is in SN . Hence Fix(i j) = {θ ∈
TN : θi = θj} is flow-invariant, and oscillators i and j coevolve. Therefore there is a single
ordered collection containing all oscillators. 2

Note that Corollary 4.1 implies that in an all-to-all coupled spiking system of identical cells,
all neurons either spike or they all undergo subthreshold oscillations, and no mixed states
are possible.

Example 4.2 Consider a six-cell all-to-all coupled phase oscillator network with equations
of the form

θ̇i = ω + z(θi)
∑

j

αijg(θj) (4.1)

where

z(θi) =
1

2
(1 − cos(2πθi)),

which is the phase response curve for the ‘theta neuron’ model valid near saddle node bifur-
cations on an invariant curve (with ϕ0 = 0) [7] ; see Section A.2. Note that all αij = α in an
all-to-all coupled network. Additionally, we choose the coupling function g to be a smoothed
“pulse” with finite width:

g(θj) =















1 if θj ∈ [0, c]
e · exp( 1

((θj−c)/δ)2−1
) if θj ∈ [c, c + δ)

e · exp( 1
((θj−1)/δ)2−1

) if θj ∈ (1 − δ, 1]

0 otherwise.

(4.2)

All oscillators, while not necessarily synchronous, coevolve. Hence, as shown in Corollary 4.1,
their winding numbers and spike counts over any interval differ at most by 1; furthermore,
there is a single ordered collection, so all spike times are interleaved. An example is given in
Figure 5. 3
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Figure 5: Time series of a trajectory in a six cell, all-to-all coupled phase oscillator network of
the form (4.1) with c = 1.42

2π
, δ = 0.05

2π
, ω = 0.5

2π
, and αij = α = 1.3

2π
. Similar results hold in for

a range of parameter values. Asterisks indicate spike times. Each cell spikes 10 times on the
interval shown; furthermore, all spike times are interleaved, and there is a fixed, repeating
sequence in which the spikes occur (see Cor. 3.3).

Coevolution as a consequence of network architecture

In the next example, network architecture, and not symmetry alone, results in the coevolution
of cells in the network.

Example 4.3 An asymmetric three-cell network from [28] is depicted in Figure 6. The
general system of differential equations associated with this network has the form

θ′1 = g(θ1, θ2, θ3)
θ′2 = g(θ2, θ1, θ3)
θ′3 = h(θ3, θ1).

(4.3)

The two distinct cell types in the network result in two distinct functions g : T3 → R and
h : T2 → R. Moreover, g does not satisfy any invariance condition since cells 1 and 2 each
receive two different kinds of inputs.

1 2

3

Figure 6: A nonsymmetric three-cell network.
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The torus Y = {θ ∈ T3 : θ1 = θ2} is flow-invariant for all equations of the form (4.3)
since the equations for θ′1 and θ′2 restricted to Y have the form

θ′1 = g(θ1, θ1, θ3)
θ′2 = g(θ1, θ1, θ3).

Therefore, cells 1 and 2 in this network coevolve and hence must have equal average frequen-
cies, and winding numbers and spike counts differing by no more than one on any interval.
Note that the network architecture imposes no such relations between the dynamics of os-
cillators 1 and 3 or 2 and 3. 3

As illustrated by Example 4.3, network architecture, not merely network symmetries,
can force the existence of synchronous subsets of cells. This idea is developed further in
Sections 5 and 6.

The following example shows that network architecture may also force synchronous clus-
ters within the network to have equal average frequencies. The generalization of this ob-
servation will require the machinery of quotient networks developed in [15] and reviewed in
Section 6, but its essence is illustrated in the following example.

Example 4.4 Consider the six-cell network shown in Figure 7 (left). Incidentally, this
network has D4 × S2 symmetry. The general system of equations based on this network
architecture has the form

θ′1 = f(θ1, θ4, θ2)

θ′2 = f(θ2, θ1, θ3)

θ′3 = f(θ3, θ2, θ4)

θ′4 = f(θ4, θ3, θ1)

θ′5 = g(θ5, θ6, θ1, θ2, θ3, θ4)

θ′6 = g(θ6, θ5, θ1, θ2, θ3, θ4),

(4.4)

where f(a, b, c) = f(a, c, b) and g is invariant under any permutation of cells 1-4. It is easy
to check that the tori

Y1 = {θ ∈ T6 : θ1 = θ3}, Y2 = {θ ∈ T6 : θ2 = θ4}, Y3 = {θ ∈ T6 : θ5 = θ6},

as well as the 3-torus Y = Y1 ∩ Y2 ∩ Y3, are flow-invariant. It follows that the pairs (1, 3),
(2, 4), and (5, 6) each (separately) coevolve. Figure 7 (right) illustrates these dynamics,
using the form of the coupled system in Example 4.2. In particular, note that there are
three different winding numbers in this network, as permitted by Proposition 2.4.

Restricting the system to the torus Y , in which the oscillators are grouped into three
synchronous clusters, we can conclude even more about the system. If θ1, θ2, θ5 are taken as
representatives of the clusters, then (4.4) restricted to Y becomes

θ′1 = f(θ1, θ2, θ2)

θ′2 = f(θ2, θ1, θ1)

θ′5 = g(θ5, θ5, θ1, θ2, θ1, θ2).

(4.5)
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Figure 7: (Left) Network architecture with D4×S2 symmetry. There are three coevolving cell
pairs: {1, 3}, {2, 4}, and {5, 6}. (Right) Simulated trajectories for (4.1) with α5,6 = α6,5 =
−0.13

2π
, αi,j = −1.3

2π
for connections between the oscillators in the outer ring, and αi,j = 1.3

2π

for connections from the outer to the inner ring (these are chosen to be unidirectional). The
remaining αi,j are set to 0. Cell pair {1, 3} exhibits subthreshold oscillations; cell pair {2, 4}
spikes 4 times on this interval; and cell pair {5, 6} spikes 6 times.

The restricted equations (4.5) are the general system that corresponds to the quotient
network in Figure 8 (left). The quotient network can be obtained by projecting all cells
in a synchronous cluster to a single cell, and projecting all arrows between these cells in a
consistent manner. It will be shown in Section 6 that the resulting graph can be used to
obtain the following conclusions, which we obtain here by examining directly the form of the
ODEs.

The 2-torus X = {(θ1, θ2, θ5) ∈ T3 : θ1 = θ2} is a codimension one flow-invariant torus
for (4.5). Hence, the cluster phases θ1 and θ2 coevolve; that is, any solution of (4.4) lying in
Y has the property that either θ1(t) = θ2(t) or θ1(t) 6= θ2(t) for all t. This is not the case for
solutions that do not lie in Y (when the oscillators do not form synchronous clusters).

Using these observations, and following the arguments of the preceding examples, we can
conclude that if the oscillators form synchronous clusters θ1(t) = θ3(t), θ2(t) = θ4(t), and
θ5(t) = θ6(t), then the average frequencies of oscillations must be the same, and their winding
numbers differ at most by 1. The reader can check that the last conclusion holds even when
θ1 = θ3, θ2 = θ4, but θ5(t) 6= θ6(t) in this system. Figure 8 illustrates the dynamics of
these clusters. Comparing with the dynamics before forming the three synchronous clusters
(Figure 7) we see that now cells 1, 2, 3 and 4 have the same frequency (here, zero). In general
there is no relation between the average frequencies of the cells in the outer ring and the
inner cells. 3

Next we show that the upper bound discussed in Corollary 3.3 may in fact be achieved.

Example 4.5 As discussed in Section 2, for the network architecture depicted in Figure 1
the cell pairs (1, 2) and (1, 3) coevolve, whereas the cell pair (2, 3) does not. Figure 9 shows
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Figure 8: When coevolving oscillators form synchronous clusters given by the coloring shown
here, additional frequency relations must exist. These are obtained by considering the quo-
tient network (Left), which results from collapsing all cells in synchronous clusters to a single
cell. In this case the two groups of oscillators (1,2,3,4) and (5,6) share the same frequency
(that of the first group being zero), while there is no set relation between the frequency of
these groups (Right).

the timeseries for three cells in a particular example of such a network. Note that on the given
interval cells 1, 2 and 3 spike one time, zero times and two times respectively. Therefore the
spike numbers of cells 2 and 3 differ by 2, which is the upper bound given in Corollary 3.3(a).

5 Balanced Relations and Coevolution

While Definition 2.2 is straightforward, it does not provide a direct way of checking when two
cells coevolve. In this section we show how network architecture can be used to determine
when two oscillators i and j coevolve, that is, to show when θi = θj is flow-invariant. The
theory of coupled cell networks developed in [28, 15] leads to two theorems that will allow
us to do this in general, as well as to extend the results of Section 2 to synchronous clusters
(see Example 4.4). The first theorem (Theorem 5.5) states that polydiagonals (subsets
of the torus TN defined by equality of certain coordinates) are flow-invariant for all cell
systems with a given network architecture if and only if the equivalence relation that defines
the polydiagonal satisfies a network combinatorial condition of a ‘balanced coloring.’ The
second theorem (Theorem 6.1) states that a restriction of a coupled cell system to a flow-
invariant polydiagonal representing the synchronous clusters defines a vector field that itself
corresponds to a coupled cell system, the quotient network. Moreover, the coupled cell
vector fields associated to the quotient network exactly determine the possible restricted
vector fields.

We use these two theorems as follows. The first theorem allows us to determine when the
polydiagonal {θ : θi = θj} is flow-invariant, as described in Corollary 5.6, the main result of
this section. The second theorem allows us to determine when clusters of synchronous os-
cillators coevolve by checking whether certain equivalence relations on the quotient network
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Figure 9: Trajectories for the three oscillators of the network of Figure 1. The ODEs have
the form of (4.1), but with z(θi) itself having a smooth, pulsed form identical to that given
in (4.2) (with width parameter for z(θi) chosen to be c = 0.5). As in other examples, g(·)
is also of the form of (4.2), ω = 1

2π
, c = 0.5

2π
, and αij equal to either 3

2π
or 0 as per the

architecture of Figure 1.

are balanced. The restrictions on rotation and oscillation numbers described in Section 2 for
pairs of coevolving oscillators also hold for coevolving clusters of oscillators, allowing us to
complete the present characterization of restrictions on network dynamics.

Although it is well known that symmetries of the network result in synchrony, it is less
well known that network architecture properties other than symmetry can do the same. As
we have shown in Example 4.3, the polydiagonal {θ ∈ T3 : θ1 = θ2} is flow-invariant for
all equations of the form (4.3) associated to the three-cell asymmetric network. The results,
developed in [28, 15] and explained below, can therefore be viewed as an extension of the
theory of symmetric networks.

Coupled cell networks and groupoids

We begin our discussion by recalling part of the theory developed in [15]. In this paper a
coupled cell network is a coded directed graph where each node symbol represents a system of
differential equations and each arrow symbol represents a type of coupling. Arrows emanate
from a tail cell, and end at a head cell. For example, a network that contains two types of
node symbol and three types of arrow symbol is shown in Figure 7.

The input set I(c) of a node or cell c is the set of all cells that are connected to c by some
arrow pointing to cell c. To be more precise, every cell b ∈ I(c) is identified with one arrow
from b to c.
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Note that we allow the possibility of self-coupling (that is, c ∈ I(c)) and multiple cou-
plings from cell d to cell c (that is, d may appear in I(c) multiple times, if there is more
than one arrow from cell d to cell c). See Figure 10 where I(2) = {2, 1}, and I(1) = {2, 2}.
These generalities may at first seem strange, but they are natural when considering quotient
networks. We do require one consistency condition: two arrows of the same type must have
head cells of the same type and tail cells of the same type.

12

Figure 10: Two cell network with self-coupling and multiple arrows.

Our goal is to associate to each coupled cell network a set of admissible systems of
differential equations. To do this we need to make precise the idea that two cells have
isomorphic input sets. Two cells c and d are input equivalent if there is an arrow type
preserving bijection β : I(c) → I(d), that is, for each cell b ∈ I(c) the type of arrow between
b and c is the same as the arrow type between β(b) and d. It follows from the consistency
condition that if there is an input isomorphism between the input sets of two cells c and d,
then c and d must be of the same type.

We denote the set of input isomorphisms from cell c to cell d by B(c, d). Note that B(c, c)
is a group, called the vertex group.

Example 5.1 To appreciate the importance of input sets in determining the existence of
synchrony subsets, consider again the network in Figure 6. While this system has no symme-
tries, there is an isomorphism taking all cells that provide inputs to cell 1 to cells that provide
inputs to cell 2 (see Figure 11), in the sense that cells of equal types can be mapped to each
other. Below we discuss the consequences of this isomorphism for the network dynamics. 3

1 2

3

1 2

3

1

3

Figure 11: The input sets for the three cells in the network shown in Figure 6.

Coupled cell phase equations

In this section we discuss how the general equations modelling coupled cell systems are fully
determined by the input sets of the cells in the network, and all isomorphisms between these
input sets. This follows the treatment in [28].
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Given an ordered subset I = {i1, . . . , is} of cells, where the cell indices can repeat, let

θI = (θi1 , . . . , θis).

The admissible differential equations associated with a coupled cell network have the form

θ′i = fi(θi, θI(i)), (5.1)

where I(i) is the input set of cell i, satisfying the following ‘groupoid’ restriction. Let
β : I(i) → I(j) be an input isomorphism. Then

fi(θi, θI(i)) = fj(θi, θβ−1(I(j))) . (5.2)

Note that the equation for cell i is invariant under the vertex group B(i, i); that is,

fi(θi, θI(i)) = fi(θi, θβ−1(I(i))).

Example 5.2 Consider the two-cell network in Figure 10, where I(1) = {2, 2} and I(2) =
{1, 2}, so that the corresponding ODEs have the form

θ′1 = f1(θ1, θ2, θ2)
θ′2 = f2(θ2, θ1, θ2).

(5.3)

By considering the input isomorphisms we further refine the form of the ODEs. These
bijections include (amongst others): β1 ∈ B(2, 2) for which β1(1) = 2 and β1(2) = 1, and
β2 ∈ B(1, 2) for which β2(2) = 1 and β2(2) = 2. The admissibility condition (5.2) for
β1 implies f2(θ2, θ1, θ2) = f2(θ2, θ2, θ1), whereas the admissibility condition for β2 implies
f2(θ2, θ1, θ2) = f1(θ2, θ1, θ2). Together this shows that the general form of admissible vector
fields for the network in Figure 10 is

θ′1 = f(θ1, θ2, θ2)

θ′2 = f(θ2, θ1, θ2)
(5.4)

where the overbar indicates that f : T3 → R satisfies f(a, b, c) = f(a, c, b). 3

Balanced colorings and robust polysynchrony

Next, we use the ideas developed above to prove Corollary 5.6, which allows us to test when
two oscillators coevolve. A coloring is obtained by assigning a color to each cell in the
network. The notion of a balanced coloring is of fundamental importance in our discussion.

Definition 5.3 A coloring is balanced if for every pair of cells c and d with the same color
there is a color preserving input isomorphism β : I(c) → I(d). That is, b and β(b) have the
same color for every b ∈ I(c).
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For example, the coloring of the network in Figure 8 (left) is easily seen to be balanced.
Note that if two cells in a balanced coloring have the same color, then these cells must be
input equivalent.

A coloring can be viewed as an equivalence relation. We write i ⊲⊳ j if the two cells i and
j share the same color. There is a 1:1 correspondence between colorings and polydiagonals,
where the polydiagonal associated to a coloring ⊲⊳ is the subset of TN defined by

∆⊲⊳ = {θ ∈ TN : θc = θd whenever c and d have the same color}

The polydiagonal ∆⊲⊳ is a torus in the phase space TN of the entire network with dimension
equal to the number of equivalence classes defined by the coloring ⊲⊳. The lift ∆L

⊲⊳ of ∆⊲⊳ to
RN is therefore a linear subspace.

Definition 5.4 Let ⊲⊳ be a coloring on a coupled cell network. Then ⊲⊳ is robustly polysyn-
chronous if ∆⊲⊳ is flow-invariant under every admissible vector field. 3

Equivalently, if ⊲⊳ is robustly polysynchronous, then trajectories θ(t) for any admissible
vector field have the following property: when initial conditions θ(0) ∈ ∆⊲⊳, then θ(t) ∈ ∆⊲⊳

for all t ∈ R.
The following theorem, proved for ODEs in Euclidean spaces in [15] and here adapted

to phase oscillator networks, shows the importance of balanced colorings in determining
invariant subspaces in the network of the system.

Theorem 5.5 Let ⊲⊳ be a coloring on a network of phase oscillators. Then ⊲⊳ is robustly
polysynchronous if and only if ⊲⊳ is balanced.

Proof Theorem 4.3 in [15] states that this theorem is valid for systems of ODEs with
Euclidean phase spaces. As noted previously, any phase oscillator system θ′ = F (θ) can be
lifted to an ODE system x′ = FL(x). The lifted system is an admissible vector field for the
same network but with phase spaces R rather than T1.

First, observe that the torus ∆⊲⊳ ⊂ TN is flow-invariant for F if and only if the subspace
∆L

⊲⊳ ⊂ RN is flow-invariant for the lift FL. Second, note that the phase network and the
ODE network correspond to identical graphs and that being balanced is a combinatorial
property only of the graph. It follows that if the phase oscillator network is balanced, then
the ODE network is balanced, the subspace ∆L

⊲⊳ is robustly polysynchronous, and the torus
∆⊲⊳ is robustly polysynchronous.

To prove the converse we must show that if the torus ∆⊲⊳ is flow-invariant for all phase
oscillator systems, then the subspace ∆L

⊲⊳ is flow-invariant for all admissible vector fields
— not just lifted vector fields. Then Theorem 4.3 in [15] would imply that ⊲⊳ is balanced.
However, a subspace is flow-invariant globally if it is locally flow-invariant and locally every
admissible ODE is the lift of a phase oscillator system (namely, the local projection of the
vector field on RN to the torus TN), so we have the required result. 2

It is easy to check that the equalities used to define the invariant subspaces Y in Ex-
amples 4.3 and 4.4 define a balanced coloring. This fact is also a consequence of Theorem
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5.5, since we have shown that the equivalence relations used to define these subspaces were
robustly polysynchronous.

Next we use Theorem 5.5 to provide a simple test to determine when two cells coevolve.
Given two different cells i and j, define the coloring ⊲⊳i,j so that cells i and j have the same
color and all other cells have distinct colors.

Corollary 5.6 Two cells i and j coevolve if the coloring ⊲⊳i,j is balanced.

Proof Theorem 5.5 implies that ∆⊲⊳i,j
= {θ ∈ TN : θi = θj} is flow-invariant. 2

For a given system of phase equations two cells may coevolve even when ⊲⊳i,j is not
balanced. However, Theorem 5.5 shows that such examples are not robust and are hence
atypical. The following Proposition provides a direct way of checking whether a coloring
⊲⊳i,j is balanced.

Proposition 5.7 Let i and j be cells. Then the coloring ⊲⊳i,j is balanced if and only if every
other cell in the network connects to both cells i and j with the same number (which may be
zero) of arrows of each type, and the arrows from i to j are the same in number and type as
those from j to i.

6 Quotient Networks

Using Theorem 5.5, the only synchronous clusters that are robust for a given network ar-
chitecture are defined by a balanced coloring ⊲⊳. In this section we show that restrictions
exist on the rotation and oscillation numbers of synchronous clusters in a network. These
restrictions are found by analyzing coevolution on an associated quotient network G⊲⊳ defined
by ⊲⊳, as in [15].

Example 4.4 illustrated how this process works in a sample network. In that example we
found the equations that govern the evolution of certain synchronous clusters explicitly by
restricting the equations to the invariant torus defined by those synchronous clusters. We
also showed that these restricted equations describe the evolution of a “quotient network”
which is determined by the given pattern of synchrony.

We now describe the formal procedure for deriving the architecture of the quotient net-
work. Let ⊲⊳ be a balanced equivalence relation on a coupled cell network G. The cells of
the quotient network G⊲⊳ are the colors (or, more formally, the ⊲⊳ equivalence classes) in the
balanced coloring. Observe that in Example 4.4 the cells in the quotient network Figure 8
(left) are in 1:1 correspondence with the colors in Figure 7 (left).

The arrows in the quotient network are found as follows. Choose a cell [c] in the quotient
network, which corresponds to a color, and choose a cell c in the original network that has
that color. The input arrows of [c] are the input arrows of c. The tail of a quotient arrow
is just the color of the tail cell of that arrow in the original network. The assumption that
⊲⊳ is balanced is sufficient to guarantee that the choice of quotient arrows is independent of
which cell c of a given color is used.
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Observe, for example, that there are five arrows in the quotient network in Figure 8 (left)
whose arrow head is the square cell labelled 5, 6. These arrows are just the five arrows whose
heads are cell 6 in Figure 7 (left). Moreover, one of the arrows entering cell 6 comes from
cell 5, and the other four arrows divide into pairs, with each pair consisting of arrows whose
tails are cells of the same color.

Finally, the phase space of the quotient network is just the torus ∆⊲⊳. The following
theorem is proved in [15] for ODEs in Euclidean spaces.

Theorem 6.1 ([15]) Let ⊲⊳ be a balanced coloring on a coupled cell network G.

(a) The restriction of a G-admissible vector field to ∆⊲⊳ is G⊲⊳-admissible.

(b) Every G⊲⊳-admissible vector field on the quotient lifts to a G-admissible vector field on
the original network.

Lifted vector fields induced in Euclidean space by G-admissible phase equations are admissi-
ble if and only if the phase equations are admissible. Theorem 6.1 then follows immediately
from [15, Theorem 5.2].

Theorem 6.1 implies that dynamical properties of synchronous trajectories on the original
network can be correctly inferred from the quotient network. In particular, part (a) shows
that coevolution in the quotient network imposes restrictions on synchronous dynamics in
the original network. Furthermore, part (b) implies that the only restrictions on synchronous
dynamics in the original network that hold for all admissible vectorfields may be inferred
from the quotient network itself, because admissible vector fields on the quotient always lift.

As an example of a balanced coloring, consider the three-cell bidirectional ring in Fig-
ure 12, number the cells 1, 2 and 3, and color cells 2 and 3 red and cell 1 blue. Note that
all arrows in this network are of the same type. The quotient network consists of two cells
(red and blue). To define the arrows in the quotient network, choose a representative from
each color, and simply keep all the input arrows. The blue cell therefore receives two arrows
from the red cell, whereas the red cell receives one arrow from a red cell and one arrow from
a blue cell. That is, the quotient network is just the two-cell network with self-coupling and
multiple arrows shown in Figure 10.

1

2 3

Figure 12: A bidirectional three-cell ring.

The following is a generalization of Definitions 2.2 and 2.7 to clusters of synchronous
cells:
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Definition 6.2 For a balanced coloring, a synchronous cluster consists of all cells of a given
color. Two synchronous clusters coevolve if the corresponding cells in the quotient network
coevolve. Two clusters i and j are in the same collection if there exists a chain of distinct
synchronous clusters i = k0, ..., km+1 = j such that all pairs (k0, k1), . . . , (km, km+1) coevolve.

Since all oscillators in a synchronous cluster are synchronous, the winding and spike
numbers of a member of a cluster can be used to define these numbers for the entire cluster.
The desired restriction on these numbers now follows immediately from applying Propositions
2.3, 2.4, 3.2, and Corollary 2.8 to the quotient network:

Proposition 6.3 Fix a balanced coloring in a phase oscillator network. Then

(a) Coevolving synchronous clusters in the same collection have equal winding numbers for
a periodic solution.

(b) If the average frequency for one synchronous cluster in a collection is defined then it
is defined and is equal for all synchronous clusters in the collection.

(c) For a general solution defined on an interval τ coevolving clusters have winding numbers
that differ at most by 1. Winding numbers of oscillators in the same collection differ
at most by m, the length of the shortest chain relating them.

It follows, as we saw in Example 4.4, that coevolution in quotient networks can add
restrictions on the winding, and spike numbers of synchronous solutions that cannot be
obtained from coevolution in the original network.

7 Coupling via buffer cells and ‘synaptic’ variables

In applications it is often the case that phase oscillators interact through auxiliary variables
which describe the time course of the coupling, such as synaptic conductances in neural
network models. We now show that the results of the previous sections may be extended to
this case.

In the case of phase oscillator models of neuronal networks, the effect of a spike in a
presynaptic neuron θi may be described by introducing a synaptic variable si ∈ Rs [6].
This variable is introduced since the time course of θi after a spike may be influenced by
the input from other neurons in the network. On the other hand, the time course of a
synaptic conductance is assumed to depend only on the history of the presynaptic neuron.
Additionally, delays can be modeled by introducing an auxiliary phase variable θd

i satisfying

d

dt
θd

i =
1

τ
(θd

i − θi),

and connecting θd
i rather than θi to other cells in the network. More variables can be added

to better approximate a delayed version of the variable θi. We treat any auxiliary coupling
variables such as the si and θd

i as intermediate or buffer cells in the network.
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For simplicity, assume that we begin with a homogeneous network of N phase oscillators
with just one type of coupling arrow. Therefore all cells and all arrows in the original network
are equivalent. We form a new network by inserting one buffer cell for each ‘phase’ cell in
the original network. Each phase cell is connected by one arrow to its companion buffer
cell and each arrow in the original network connecting phase cell c to phase cell d is now
replaced by an arrow from the buffer cell companion of c to phase cell d. In the new network
all buffer cells are equivalent and all arrows from phase cells to buffer cells are equivalent.
The new network has two types of cell (phase and buffer) and two types of arrow (phase to
buffer and buffer to phase). Finally, we assume that buffer cells evolve in a state space M,
which equals either Rs or Ts (or a product) with s ≥ 1. The state space of the new network
is TN × MN .

Two examples of homogeneous networks with associated buffer cells networks are shown
in Figures 13 and 14. We ask how the existence of buffer cells (modeling synaptic communi-
cation or delays in transmission) changes how phase cells coevolve and show through these
examples that the answer depends on the original network.

The analog of Theorem 5.5 for the state space TN × MN implies that the condition for
coevolution of phase oscillator pairs remains unchanged: phase oscillators i and j coevolve if
the coloring ⊲⊳i,j is balanced. In the case of a phase oscillator network with buffer cells, ⊲⊳i,j

denotes the coloring in which only cells θi and θj share the same color. Moreover, Propo-
sitions 2.3, 2.4, 3.2 and 6.3 carry over directly to networks with buffer cells, by considering
lifts from TN × MN to Euclidean space.

Proposition 5.7 implies that when direct connections between oscillators are replaced
by indirect connections via intermediate cells, balanced relations may be destroyed, as the
following example illustrates.

Example 7.1 Consider the network in Figure 13 (right) consisting of two identical phase
oscillators θ1 and θ2, each of which is identically connected to the other via buffer cells s1

and s2.
θ′1 = f(θ1, s2), s′1 = g(θ1)
θ′2 = f(θ2, s1), s′2 = g(θ2).

Proposition 5.7 implies that the coloring ⊲⊳1,2 is not balanced since I(1) = s2 and I(2) = s1,
so the phase oscillators do not coevolve in general. If the oscillators connected directly
without intermediate cells (as in Figure 13 (left)) the coloring ⊲⊳1,2 would be balanced. 3

1 2θ θ
θ θ 

s 

s 

1 2

2

1

Figure 13: A network consisting of two identical phase oscillators connected directly (left)
and through buffer cells (right).
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Thus, a balanced coloring can be destroyed by the addition of temporal dynamics in the
coupling. However, this is not always the case:

Example 7.2 Consider the network in Figure 14 (right) consisting of four identical phase
oscillators with D4 symmetry and four buffer cells. The colorings ⊲⊳1,3 and ⊲⊳2,4 are both
balanced, so the corresponding phase oscillator pairs coevolve. These pairs are also the only
pairs that coevolve in the original four-cell bidirectional ring in Figure 14 (left). 3

θ
1

θ2

θ4 θ3

θ θ 

θ θ 

s 

s1

1

4

4

3

s 3

2

2s 

Figure 14: A D4 symmetric network consisting of four identical phase oscillators connected
directly (left) and through buffer cells (right).

Therefore, in contrast to the previous example, the same pairs coevolve whether coupling
takes place through intermediate cells or not. The difference is that in Example 7.1 the
coevolving cells in the directly coupled network provide input to each other (via buffer
cells), which is not the case in Example 7.2. This observation can be generalized to obtain
the following corollary to Proposition 5.7.

Corollary 7.3 A coloring ⊲⊳i,j in a network of directly coupled cells remains balanced after
the addition of buffer cells if there are no arrows between i and j.

Remark 7.4 If an arrow from i to j does exist, ⊲⊳i,j remains balanced if the indirectly
coupled network is modified so that buffer cells si and sj provide additional, identical inputs
to cells i and j, respectively.

We illustrate Corollary 7.3 and Remark 7.4 using two subtly different realizations of
all-to-all (indirect) coupling among phase oscillators.

Example 7.5 Consider a network with SN symmetry, in which all oscillators are coupled
to all others (except for themselves) via identical intermediate cells:

θ′i = f(θi, s1, s2, ..., si−1, si+1, ..., sN)
s′i = g(θi)
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Each cell receives identical inputs (indirectly) from auxiliary cells corresponding to all of its
neighbors, but not from itself. For this network, no colorings ⊲⊳i,j are balanced, as may be
checked using Proposition 5.7. Thus, for general coupled cell systems of this form, no cells
coevolve. However, if the cells were directly connected (without intermediate cells), then all
cells would coevolve as shown previously in Corollary 4.1.

The situation changes dramatically when one adds self-coupling to obtain

θ̇i = f̂(θi, s1, s2, ..., sN )
ṡi = g(θi).

Each cell now receives identical inputs (indirectly) from all other cells in the network, in-
cluding itself. Then all two-phase colorings in which θi and θj are assigned the same color
are balanced. Thus, for every coupled cell system of this form, all cells coevolve. 3

We close this section by remarking that formalism above can be applied in a straight-
forward manner to the case in which buffer cells each receive inputs from multiple phase
oscillators, as in the case of pre- and postsynaptic influence on synaptic variables; the same
test for balanced colorings then gives conditions for coevolution.

8 Discussion and applications

In [3], codimension one invariant tori {θ ∈ TN : θi = θj} are used to define the boundaries
of ‘canonical invariant regions’ within which solutions are constrained for SN symmetric
networks. Here, we extend this general idea to networks with less or no symmetry, focusing
on constraints that network structure imposes on arbitrary solutions. The constraints on
winding and spike numbers that we identify here, summarized in Corollary 2.8, also have
interesting consequences for spatiotemporally symmetric periodic solutions in networks of
phase oscillators. These are explored in [11].

Applications of the present results may be made wherever phase descriptions of coupled
oscillators arise, but the networks encountered in mathematical biology and neuroscience in
particular (where spiking systems arise) seem especially suitable. We see two ways in which
our results might be used.

First, the present results provide a design guarantee. No matter how the details of internal
or coupling dynamics of a network may change, as long as they respect a specified network
architecture, then certain measures of oscillation frequency amongst cells must be preserved.
In this context, our results may apply to central pattern generators studied in the context of
small networks responsible for functions ranging from locomotion [13] to digestion [26], or to
interacting neural assemblies (rather than individual neurons) involved in higher functions
[32]. A related possibility is that the (b − 1)! distinct spike orderings that are invariant for
ordered collections of oscillators could play a role in short-term encoding of different signals
by spiking neural networks (cf. [30, 24, 1]). These suggestions beg the general question of how
structured networks (e.g., with connection strengths drawn from a relatively small number of
choices) might arise in neuroscience. Studies of spike-time dependent plasticity suggest one
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possibility: Song et al [27] show that such plasticity can lead to highly structured (in fact,
bimodal) distributions of synaptic strengths among the inputs to a single neuron. Further
work [18] demonstrates that similar distributions of synaptic strengths arise naturally in
large spiking networks; nevertheless, the resultant role of coevolution, if present, remains to
be characterized.

The second broad way in which our results may be used is in ruling out certain network
architectures as candidate models for physical processes from data. If a pair of cells are
observed not to coevolve, then the possible network architectures are restricted.

In all of these cases, a one-dimensional phase description of individual cells is a pre-
requisite, the conclusions can be applied to the full systems from which the reduction was
obtained. Moreover, even in the presence of small noise in the network of phase oscillators,
the “ghosts” of the invariant polydiagonals can be expected to persist, and force approximate
relations between frequencies averaged over a finite times. On the other hand, the absence of
strongly attracting limit cycles (or presence of relatively strong coupling) can enable higher-
dimensional oscillator networks that invalidate the assumptions discussed here.
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A The origin of phase oscillator models

Networks of phase oscillators described by (1.1) arise in two ways when modelling physical
systems. When one considers networks of Josephson junctions (with negligible capacitance
terms), for instance, the actual physical quantity that is modelled is a priori assumed to
be one dimensional and periodic in space. In other cases, mathematical models are simply
posited in forms equivalent to phase equations, such as the excitatory LIF equations to be
discussed in greater detail below. In such examples, the systems variables are phases, the
architecture of the network of phase oscillators is part of the formulation of the problem.

In other examples, phase oscillator models are obtained by a reduction of more compli-
cated equations involving networks of systems, each of which originally evolves in a space
larger than S1. That is, the reduction to phase equations starts with a network of cells
x = (x1, x2, . . . , xN) where each xi ∈ RM , and

x′
i = gi(x) (or equivalently x′ = G(x)). (A.1)

If the individual cells comprising the network oscillate periodically when taken out of the
network, each oscillator traces out a topological circle in its phase space. The direct product
of these circles defines an invariant torus for the network of uncoupled oscillators. Similar
arguments may be made for ‘excitable’ systems that do not independently oscillate, but
possess attracting invariant curves [17]. In either case, under appropriate conditions, the
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torus persists for the coupled network. Approximate equations governing the evolution
on the perturbed torus take the form of phase equations. In this section we review the
derivation of certain phase oscillator models that are obtained in this way, and that were
used as examples in the previous sections.

An important question is whether the reduced equations thus obtained retain the struc-
ture of the original equations (A.1). For instance, will the reduced equations exhibit the
symmetries of the original equations? If oscillator i and j are coupled in the original equa-
tions, will they be coupled in the reduced equations? Will input isomorphisms persist? We
show that in most examples found in practice, the answer to both questions is yes.

A.1 Reduction to phase coordinates

In this section we discuss the typical situations in which equation (A.1) can be reduced to
an equation of type (1.1). We also discuss the structure that the reduced equation inherits
from the full equation.

Phase reduction is most commonly performed in networks of weakly coupled systems
[19, 17, 21, 8, 23], each of which is assumed to oscillate with a unique limit cycle when
uncoupled from the rest of the network. Such networks are commonly modeled by equations
of the form

x′
i = fi(xi) + εGi(x) i = 1, . . . N (A.2)

where x = (x1, x2, . . . , xN) and xi ∈ RM . The small parameter ε determines the strength
of coupling among the oscillators. Standard results from the theory of normally hyperbolic
invariant manifolds [19, 9], show that the torus T0 formed by the product of the limit cycles
of the individual oscillators when ε = 0, is perturbed to a unique, nearby torus Tε for small
ε. In this situation reduction to a system of phase equations is possible, and the equations
are computable to any order in ε. Importantly, the torus T0 also persists when the coupling
between the oscillators is weak compared to the contraction to the limit cycle in an individual
oscillator; thus, the reduction may continue to be valid for nonweak coupling in the phase
equations.

Suppose that some of the oscillators in the network are identical (i.e., that gi = gj for
certain combinations of i and j), so that the network of oscillators possesses a particular
permutation symmetry. By this we mean that there is a group Γ which acts on RMN , by
permuting the oscillators x = (x1, . . . , xN), and has the property that γG(x) = G(γx) for all
γ ∈ Γ. Under this assumption, if x(t) is a solution of (A.1), then so is γx(t), and the torus
T0 is invariant under Γ.

Moreover, if Tε is an invariant torus for (A.1), then so is γTε. Since Tε is the unique
invariant torus in a neighborhood of T0 for the perturbed system and since γT0 = T0 implies
that γTε is also in the neighborhood of T0, it follows that γTε = Tε for every γ ∈ Γ. Therefore
the restriction of (A.2) to Tε is Γ-equivariant.

In practice, the restriction of (A.2) to Tε is rarely computed directly. Instead, one finds
approximate equations in the coordinates on T0. It is therefore necessary to ask whether
these approximate equations are Γ-equivariant. Here we answer more general questions: Is
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it true that cell i provides an input to cell j in the reduced equations (1.1) (assumed written
in the coordinates on T0) if and only if the same is true in the original system (A.2)? Do
cell i and cell j provide the same input to cell k in (1.1) if and only if they provide the
same input to k in (A.2)? Theorem 4.7 and the subsequent discussion in [17] shows that
the answer is yes to both of these questions, subject to the caveat below. It follows that the
reduced equations of the network (1.1) will have the same groupoid structure as the original
equations (A.2).

We note a subtlety with our answers in the previous paragraph: they are only valid
to lowest order. In particular, the equations describing the phase θi of oscillator i on the
invariant torus Tε of A.2 may actually depend on the phase θj of oscillator j even if the
original equation A.2 for xi does not depend on xj [17]. However, this dependence will be of
order o(ε), and will therefore not appear in standard forms of the reduced equations, which
typically capture only terms up to O(ε).

The results we present can therefore be expected to be valid at least on timescales of
O(1/ε). If the invariant manifolds ∆k,j = {θ : θk = θj}, which force relations between
winding numbers, persist under the addition of o(ε) terms, then these results are valid for
all time for the phases in the unreduced model. The manifolds ∆k,j can be expected to be
only weakly normally hyperbolic when the flow of (A.2) is restricted to Tε. The persistence
of such manifolds is a delicate issue which we do not address here ([5], see also [2]). Finally,
we note that the order of additional coupling terms (involving cells outside of the original
input sets) scales with the distance of the torus Tε from T0. Therefore, for a fixed value of ε,
in cases in which there is relatively strong contraction to T0, these additional coupling terms
may be expected to be smaller, and hence the results we present valid on longer timescales.

A.2 Phase response curves

A useful approximate form of the phase reduced equations may be derived via a coordinate
change to asymptotic or ‘canonical’ phase coordinates [16, 31, 17, 21, 4]. The basic idea is
to parameterize the torus T0 so that the uncoupled (i.e. unperturbed) dynamics are θ̇j = ωj,
where ωj is the natural frequency of the jth oscillator. Expressed in these phase coordinates,
Equation (A.2) becomes (neglecting terms of order ε2)

θ̇i = ωi + εzi(θi) · Gi(θ) (A.3)

where zi(θi) is in general a vector of partial derivatives resulting from the coordinate change.
However, in many applications the perturbations Gi(θ) affect only a single variable in each
cell, so that the final term in (A.3) is simply the product of two scalar valued functions, as
we will assume below. In this context zi(θi) is referred to as the phase response curve (PRC),
as it describes the susceptibility of the ith cell to external influence as a function of its phase.

In particular, if coupling enters the original equations in the pairwise additive fashion

x′
i = fi(xi) +

∑

j

αijGj(xj) i = 1, . . . N , (A.4)

29



where the coupling coefficients αij implicitly replace ε as small parameters and the Gj(xj)
represent the influence of the jth cell, then, again to lowest order in the coupling strength,
Equation (A.4) becomes

θ̇i = ωi + z(θi)
∑

j

αijgj(θj) . (A.5)

This is the form of the phase equations used in the simulations above. It is especially useful
in applications, as the PRCs z(θi) may be chosen to represent, for example, neurons with
specific physical properties or near certain bifurcations (see [7, 19, 4] and references therein).
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