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Abstract

We consider a fast-slow excitable system subject to a stochastic excitatory input
train, and show that under general conditions its long term behavior is captured by an
irreducible Markov chain. In particular, the firing probability to each input, expected
number of response failures between firings, and distribution of slow variable values
between firings can be obtained analytically from the distribution of interexcitation
intervals. The approach we present immediately generalizes to any pair of input trains,
excitatory or inhibitory and synaptic or not, with distinct switching frequencies. We
also discuss how the method can be extended to other models, such as integrate-and-
fire, that feature a single variable that builds up to a threshold where an instantaneous
spike and reset occur. The Markov chain analysis guarantees the existence of a limiting
distribution and allows for the identification of different bifurcation events, and thus
has clear advantages over direct Monte Carlo simulations. We illustrate this analysis on
a model thalamocortical (TC) cell subject to two example distributions of excitatory
synaptic inputs, in the cases of constant and rhythmic inhibition. The analysis shows
that there is a drastic drop in the likelihood of firing just after inhibitory onset in the
case of rhythmic inhibition, relative even to the case of elevated but constant inhibition.
This observation provides support for a possible mechanism for the induction of motor
symptoms in Parkinson’s disease, analyzed in [Rubin and Terman, 2004].
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1 Introduction

There has been substantial discussion of the roles of excitatory and inhibitory synaptic
inputs in driving or modulating neuronal firing. Computational analysis of this issue gen-
erally considers a neuron awash in a sea of synaptic bombardment [Somers et al., 1998,
van Vreeswijk and Sompolinsky, 1998, De Schutter, 1999, Tiesinga et al., 2000, Tiesinga, 2005,
Chance et al., 2002, Tiesinga and Sejnowski, 2004, Huertas et al., 2005]. In this work, we
also investigate the impact of synaptic inputs on the firing of a neuron, but with a focus on
the effects of single inputs within stochastic trains. This investigation is motivated by consid-
eration of thalamocortical relay (TC) cells, under the hypothesis that such cells are configured
to reliably relay individual excitatory inputs, arising either from strong, isolated synaptic
signals or from tightly synchronized sets of synaptic signals, during states of attentive wake-
fulness, yet are also modulated by inhibitory input streams [Smith and Sherman, 2002]. This
viewpoint leads to the question of how the relationship between the activity of a neuron and
a stochastic excitatory input train varies under different patterns of inhibitory modulation.

The main goal of this paper is to introduce and illustrate a mathematical approach to
the analysis of this relationship. Our approach applies to general excitable systems with
separation of time scales, including a single slow variable, and fast onset and offset of inputs.
These ideas directly generalize to other neuronal models, such as integrate-and-fire, featuring
a slow build-up of potential interrupted by instantaneous spikes and resets. We harness these
features to reduce system dynamics to a one-dimensional map on the slow variable. Each
iteration of the map corresponds to the time interval from the arrival of one excitatory input
to the arrival of the next excitatory input [Othmer and Watanabe, 1994, Xie et al., 1996,
Ichinose et al., 1998, Othmer and Xie, 1999, Coombes and Osbaldestin, 2000]. From this
map, under the assumption of a bounded excitatory input rate, we derive an irreducible
Markov chain, whose bins are indexed by slow variable values and numbers of inputs re-
ceived since the last firing.

We prove the key result that under rather general conditions, this Markov chain is ape-
riodic, and hence has a limiting distribution. This limiting distribution can be computed
from the distribution of input arrival times. Once obtained, it can be used to deduce much
about the firing statistics of the driven cell including the probability that the cell will fire in
response to a given excitatory input, the expected number of response failures that the cell
will experience between firings, and the distribution of slow variable values attained after
any fixed number of unsuccessful inputs arriving between firings. We emphasize that the
guaranteed existence of a limiting distribution constitutes a key advantage of the Markov
chain framework over direct Monte Carlo simulations for attaining these types of statistics,
since there is no guarantee of convergence for the Monte Carlo approach. Moreover, as we
illustrate, the limiting distribution for the Markov chain can be computed analytically, elim-
inating the need for simulations altogether. Finally, the Markov chain analysis allows for
the identification of bifurcation events in which variation of model parameters can lead to
abrupt changes that affect long-term statistics, although we do not pursue this in detail in
this work (see [Doi et al., 1998, Tateno and Jimbo, 2000], which we also comment upon in
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the Discussion in Section 9).
We discuss the Markov chain approach in the particular cases of constant inhibition,

which may be zero or nonzero, and inhibition that undergoes abrupt switches between two
different levels. These choices are motivated by the analysis of TC cell relay reliability in
the face of variations in inhibitory basal ganglia outputs that arise in Parkinson’s disease
(PD) and under deep brain stimulation (DBS), applied to combat the motor symptoms of
PD. An important point emerging from experimental results is that parkinsonian changes in
the basal ganglia induce rhythmicity in inhibitory basal ganglia outputs [Nini et al., 1995,
Magnin et al., 2000, Raz et al., 2000, Brown et al., 2001], while DBS regularizes these out-
puts, albeit at higher than normal levels [Anderson et al., 2003, Hashimoto et al., 2003]. In
recent work, Rubin and Terman provided computational and analytical support for the hy-
pothesis that, given a TC cell that can respond reliably to excitatory inputs under normal
conditions, parkinsonian modulations to basal ganglia activity will disrupt reliable relay. On
the other hand, regularized basal ganglia activity, even if it leads to unusually high levels
of inhibition, can restore reliable TC responses [Rubin and Terman, 2004]. While the com-
putational results presented in [Rubin and Terman, 2004] focused on finite time simulations
of two TC models with particular choices of excitatory and inhibitory input strengths, fre-
quencies, and durations, the general framework presented here can be used to analyze how
a model TC cell responds to any train of fast excitatory inputs, in the presence of inhibition
that stochastically makes abrupt jumps between two levels.

The paper is organized as follows. In Section 2 we review the way in which the dynamics
of a fast-slow excitable system under pulsatile drive can be reduced to a map. In Section 3
we use these ideas to construct a Markov chain that captures the relevant aspects of the
dynamics of the system. We consider the existence of limiting densities for the constructed
Markov chain and their interpretation in Section 4. Further, we discuss the application of
these ideas to responses of a population of cells, as well as their extension to populations
with heterogeneities and to integrate-and-fire type models, in Section 5. The specific problem
of determining the reliability of a reduced model TC cell under various types of inputs is
addressed, as an application of the theory, in Section 6 and 7, while an explicit connection
to PD and DBS is made in Section 8. The details of the calculations underlying the results
of these sections are contained in the Appendices.

In the two examples that we present, one with a uniform and one with a normal dis-
tribution of excitatory inputs, a significant decrease in the responsiveness of the model TC
cell and a significant increase in its likelihood of being found far from firing threshold re-
sult after the onset of the inhibitory phase of a time-varying inhibitory input, relative to
the cases of high or low but constant inhibition. These findings are in agreement with
[Rubin and Terman, 2004] and, based on the generality of our approach, appear to represent
general characteristics of the TC model with a single slow variable.
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2 Reduction of the dynamics to maps of the interval

In this section we introduce a general relaxation oscillator subject to synaptic input. Under
certain assumptions on the form of the input, the dynamics of the oscillator is accurately
captured by a map of an interval.

A general relaxation oscillator

Relaxation oscillators present a class of models of excitable systems. Such models are in
general described by equations of the form

v′ = f(v, w) + I(v, t)

w′ = εg(v, w),
(2.1)

where 0 < ε � 1. In the neuronal context, the fast variable v models the voltage, while
the slow variable w typically models different conductances [Rubin and Terman, 2002]. The
input to the oscillator is modeled by the term I(v, t). We will assume that if I(v, t) = C for a
constant C in a range of interest, then the v-nullcline, given implicitly by f(v, w) = −C, has
a three-branched, or N -like shape (see Fig. 1). We will refer to the different branches of this
nullcline as the left, right and middle branch, respectively. Under assumptions on the form
of f and g that typically hold in practice [Rubin and Terman, 2002], it is well known that
if the w-nullcline, given implicitly by g(v, w) = 0, intersects the v-nullcline at the middle
branch, then (2.1) has oscillatory solutions. On the other hand, if the w-nullcline meets the
v-nullcline at the left branch, there are no oscillatory solutions, but the system is excitable.
In this case, a kick in the positive v direction can trigger an extended excursion (a spike). In
the following we will consider the case when the two nullclines intersect on the left branch
of the v-nullcline.

wFP

wRK
0

w

w

N0

N

excitation on

excitation offw

V

0

RK
E

E
LK E

w−nullcline

Figure 1: The nullclines of system (2.1) under the assumptions discussed in the text. The
upper and lower v-nullclines correspond to sexc = 0 and sexc = 1 respectively.

In the present work system (2.1) will be used as a model of a neuronal cell, and I(v, t)
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will model synaptic input, so that

I(v, t) = −gexcsexc(t)(v − vexc) − ginhsinh(t)(v − vinh) (2.2)

where v−vexc < 0 and v−vinh > 0 over the relevant range of v-values. The two terms in the
sum represent effects of excitatory and inhibitory conductances respectively. We will assume
that the synaptic variables sexc(t) and sinh(t) switch between values of 0 (off) and 1 (on) in-
stantaneously and independently [Somers and Kopell, 1993, Othmer and Watanabe, 1994].
This is a reasonable approximation in a situation where the input cells fire action potentials
of stereotypical duration, sufficiently widely separated in time to allow for synaptic decay to
an extremely small level between inputs, and where the synaptic onset and offset rates are
rapid. We need not consider other aspects of the dynamics of the neurons supplying inputs
to the model cell, as only the input timing will be relevant.

If the magnitude of I is not too large, then each of the four possible choices for (sexc, sinh)
yields a different v-nullcline of system (2.1), each of which has an N -like shape. For simplicity
we will first consider the case sinh = 0, so that the cell receives only excitatory input. We
label the resulting nullclines as N i, with i ∈ {E, 0} corresponding to the values of sexc = 1
and sexc = 0 respectively.

We refer to the left (right) branch of each v-nullcline N i as the silent (active) phase. Each
left branch terminates where it coalesces with the middle branch in a saddle node of equilibria
for the v-equation. We denote these bifurcation points, or left knees, by (vi

LK , wi
LK), and

denote the analogous right knees as (vi
RK , wi

RK), with i ∈ {E, 0} as above. Since v−vexc < 0,
increasing sexc lowers the v-nullcline in the (v, w) phase plane. See Fig. 1 for the arrangement
of the nullclines and the different knees.

By assumption system (2.1) is excitable, with an asymptotically stable critical point
(vi

FP , wi
FP ) on the left branch of each N i. All solutions of (2.1) will therefore approach

(v0
FP , w0

FP ) in the absence of input. Thus any interesting dynamics is a consequence of
synaptic input.

The timing of the synaptic inputs

We denote the times at which the excitatory synaptic inputs occur by ti, and we assume
that each input has the same duration, which we call t∗. We will assume that ti+1 − ti > t∗,
so that the inputs do not “overlap,” and that the inputs are of equal strength, which yield

sexc(t) =

{

1 if ti < t < ti + t∗,
0 otherwise.

We will comment on trains of inputs with variable amplitudes and durations in Remark 3.2.
Of fundamental interest in the following analysis will be the timing between subsequent

excitatory inputs, which gives rise to the distribution of inter-excitatory intervals Ti = ti+1−
ti. We will assume that the Ti are independent, identically distributed random variables,
with corresponding density ρ(t). Excitation that is T -periodic in time is a special case
corresponding to the singular distribution ρ(t) = δ(T ).
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Reduction of the dynamics to a map

For the purposes of analysis, we consider that the active phase of the cell is very fast compared
to the silent phase. More specifically, we treat the neuron as a three-timescale system.
The first timescale governs the evolution of the fast variable (the voltage). The second,
intermediate timescale governs the evolution of the slow variable on the right hand branch,
while the third, slow timescale governs its evolution on the left hand branch. We measure
the duration of inputs on this third, slowest timescale.

Using ideas of singular perturbation theory, these simplifications allow us to reduce the
response of an excitable system to a one dimensional map on the slow variable w in the
singular limit. Similar maps have been introduced previously [Othmer and Watanabe, 1994],
in the setting of two rather than three timescales. Since we take the duration of excitation to
be O(1) relative to the slowest timescale, it is long compared to the intermediate timescale.
Therefore cells that spike are reinjected at wE

RK, and the only accessible points on the left
branch of N 0 lie in the interval I = [wE

RK , w0
FP ) (see Fig. 2.) We denote the w coordinates

of a point on the trajectory starting at w0 by w0 · t. We now define a map MT : I → I by
MT (w0) = w0 · T where it is assumed that an excitatory input is received at time t = 0, at
the start of the map cycle, and no other excitatory inputs are received between times 0 and
T . In the singular limit, the initial point (v0, w0) can be assumed to lie on the left branch of
the nullcline NO. Since the evolution on the right branch of N E occurs on the intermediate
timescale, and the time T exceeds the duration of excitation t∗, the trajectory starting at
(v0, w0) ends on the left branch of NO at time T . Therefore there is no ambiguity in the
definition of the map MT . We emphasize that when we repeatedly iterate a map MT , or we
compose a sequence of maps MTi

, we assume for consistency that an input arrives at the
start of each map cycle and that no other inputs arrive during each cycle.

Fig. 2 (left) shows a schematic depiction of part of a typical trajectory starting at w0

during an interval of length T following excitation. The trajectory jumps to the right nullcline
after excitation is received. The jumps between the branches occur on the fast timescale
(triple arrows), while the evolution on the right and left nullcline are intermediate and slow
respectively (double and single arrows). The resulting map MT is shown on the right. Note
that this map has two branches. Orbits with initial conditions in the interval j = (wE

LK, w0
FP )

will jump to the active phase after excitation is received. On the other hand, orbits with
initial conditions in n = [wE

RK , wE
LK] will be blocked from reaching the active phase by the

left branch of the NE nullcline. In the singular limit the region j is compressed to a single
point under MT , so that MT (j) = MT (wE

RK) = wE
RK · T . Note that on n, the map MT has

slope less than one, corresponding to the fact that w′ decreases as w approaches the fixed
point w0

FP along the left branch of N 0.

Periodic excitation

While the case of periodic excitation has been analyzed in much detail elsewhere, we review it
here since the analysis shares a common framework with the developments in the subsequent
sections.
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Figure 2: A schematic representation of a typical trajectory starting in region j of the left
branch of NO, and ending on the same branch after time T (left). MT (w0) is defined as
the w coordinate of the endpoint of the trajectory starting at the point (v0, w0), namely the
point on the left branch of NO with w = w0 (right).

As shown in Fig. 3, the fact that j = (wE
LK, w0

FP ) is contracted to a single point under
MT implies that all points w0 ∈ I get mapped to a periodic orbit of MT in a finite number
of iterations. A simple analysis shows that there exists a natural number N such that a
population of cells with initial conditions distributed on I will form N synchronous clusters
under N applications of the map MT . The periodic orbit is obtained from applying N
iterations of MT to MT (wE

RK) and it consists of the points {M i
T (wE

RK)}N
i=1, where MN

T (wE
RK) ∈

j (see Fig. 3). Every trajectory is absorbed into this orbit, possibly after an initial transient.
This clustering state persists away from the singular limit.

More precisely, consider the following intervals, or bins,

ji = (M−i
T (wE

LK), M
−(i−1)
T (wE

LK)] i = 1, 2, . . . (2.3)

Note that the i-th iterate of ji under MT is contained in j. Therefore, since M i
T (ji) ⊂ j, it

follows that M i+1
T (ji) = MT (wE

RK), or, more generally, M l
T (ji) = M l−i

T (wE
RK) for l > i.

We can interpret this as follows. A collection of identical oscillators subject to identical
input, under the assumption that all oscillators have initial conditions in ji, will get mapped
to the interval j just prior to the i-th input. This collection of cells will respond to the i-th
input by firing in unison, and will form a synchronous cluster after i + 1 excitatory inputs,
since the interval j collapses to a single point after the cells fire.

If the bin ji contains a fraction q of the initial conditions, then this fraction of cells will
fire at the i-th input, and subsequently on every N -th input. Therefore, without knowing
the distribution of initial conditions, it is not possible to know what fraction of the cell
population will respond to a given input. Consider the two extreme examples: If all cells
have initial conditions lying in one bin, the population of cells will respond only to every
N -th input. On the other hand if initially every bin ji contains some fraction of cells, then
the population will respond to every input.
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The definitions and clustering phenomenon described here carry over identically to the
case with inhibition held on at any constant level. We will show in the next section that
under general conditions the situation can be quite different when the interexcitation intervals
(IEIs) are random and the possibility of sufficiently long IEIs exists.

M (w)T

w
1MT RK

E(w    )

MT RK
E(w    )

MT RK
E(w    )

MT RK
E(w    )

3

4

2

Figure 3: After at finite number of applications of the map MT , all initial conditions will be
mapped to a periodic orbit of period N . In this figure N = 4.

Remark 2.1 The map MT resembles a time T map of the voltage obtained from an integrate-
and-fire system. In the present case the map is defined on the slow conductance w, however.
If an excitatory input fails to elicit a spike and g(v, w) depends weakly on v, then the input
may have little effect on the slow conductance. This is unlike the typical integrate-and-fire
model, in which excitatory inputs move the cell closer to threshold.

3 The construction of a Markov chain

We next analyze the long term statistical behavior of a cell that receives excitatory input
that is not periodic in time. Our goals are to determine the probability that the cell fires
in response to each subsequent input since it last fired and the number of inputs the cell is
expected to receive between firings, or, equivalently, the average number of failures before a
spike occurs. Our results can be interpreted in the context of a population of cells as well,
and this is discussed in Section 5.

A key point in our approach is that, as noted in Section 2, all firing events lead to reinjec-
tion at wE

RK . Thus, when a cell fires, its dynamic history before the firing event is rendered
irrelevant. This allows us to describe the cell’s path through the interval [wE

RK , w0
FP ) as a

Markov process with a finite number of states. The steps in this process will be demarcated
by the arrival times of excitatory inputs. We assume that the IEI time T is a random vari-
able with density ρ. Fundamental in our analysis is the assumption that the support of ρ is
contained in [S,∞), where S > 0. As long as the frequency of the cells providing excitatory
inputs is bounded, this assumption is not unreasonable. If ρ satisfies this assumption, then
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the long term behavior of a population of cells is accurately captured by the asymptotics of
a corresponding Markov chain with finitely many states. We show that under certain con-
ditions this Markov chain is aperiodic and irreducible and thus has a limiting distribution.
This distribution can be used to describe the firing statistics of the cell.

The states of the Markov chain

We start by again assuming that the cell receives only excitatory input. To simplify the
exposition, we first assume that the input is instantaneous, so that I(v, t) =

∑

∞

i=−∞
gexcδ(t−

ti)(v − vexc). This assumption will be relaxed subsequently.
In the case of periodic excitation, we considered bins defined by backward iterations of

wE
LK, as in equation (2.3). It is now more convenient for notational reasons to consider

forward iterations of wE
RK to define the states in the Markov chain. Let N be the smallest

number such that wE
RK · NS > wE

LK, where S > 0 is the lower bound of the support of
ρ mentioned above. Therefore, N is the maximal number of excitatory inputs that a cell
starting at w0 can receive before firing. Set

Ik = [wE
RK · kS, wE

RK · (k + 1)S) if k + 1 < N, (3.4)

and define two additional states

IN−1 = [wE
RK · (N − 1)S, wE

LK)
IN = [wE

LK, w0
FP ] = j.

(3.5)

The action of the map MT , for the random variable T , is to transfer cells between bins.
The states in the Markov chain generated by MT are defined as (Ik, l). A cell is in state
(Ik, l) if w ∈ Ik just prior to receiving its next excitatory input (i.e., after an iteration of
MT ), and the cell has received l−1 excitatory inputs since it last fired (i.e., the input that is
about to arrive, at the start of the next iteration of MT , will be the lth input received since
firing).

To generalize these definitions, we make a slight adjustment to Ik, k = 2, . . . , N − 1, in
the case that the excitatory input has nonzero duration. In such a case, let S∗ = S + t∗

where t∗ is the minimum possible duration of excitation t∗, and replace S by S∗ in defining
the bins as in (3.4) and (3.5).

Remark 3.1 Note that for ε 6= 0, the actual jump-up threshold lies below wE
LK and is given

by the minimal level of w for which an input current of duration t∗ pushes (v, w) into the
active phase. This value replaces wE

LK in the definitions of IN−1 and IN in (3.5), but we will
abuse notation and continue to refer to the threshold as wE

LK in the subsequent analysis.
Note further that by this definition, inputs of different amplitudes or durations would give
rise to different thresholds. We will return to this point in Remark 3.2 below.
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Transition probabilities

To complete the definition of the Markov chain we need to compute the transition probabili-
ties between the different states. The transitions occur at the times at which the cell receives
an excitatory input. One way to think about this probability is to imagine a large pool of
non-interacting cells, each of which receives a different realization of the input. Assume that
cells start out in region IN just prior to receiving excitatory inputs. After receiving these
inputs, the cells spike and get reinjected at wE

RK. The assumption that all cells are reset to
the same point is essential in the definition of the Markov chain.

After a time T1, just before the arrival of its next input (i.e., its first input since firing), a
particular cell will be at wE

RK ·T1. The population of cells will be distributed in some interval
starting at wE

RK · S∗, as shown in Fig. 4. The probability of transitioning from the state
(IN , k) to the state (Ij, 1) equals the fraction of the population of cells in the bin Ij when
their next inputs arrive, which is independent of k since the reset after firing is independent
of k.

E
LKw    E

LKw    

1MS RK
E(w    )

MS RK
E(w    )2

M RK
E(w    )3 MS RK

E(w    )3

MS RK
E(w    )2

1MS RK
E(w    )

E
LKw    

1MS RK
E(w    )

MS RK
E(w    )2

MS RK
E(w    )3

E
LKw    

MS RK
E(w    )3

MS RK
E(w    )2

1MS RK
E(w    )

S

Figure 4: An example of the state of the population of cells that start in IN and immediately
receive inputs and fire. Just before the first input after firing, the cells are at wE

RK ·T , where
T is distributed according to ρ. Therefore all cells lie in an interval bounded below by
M1

S(wE
RK) = wE

RK · S as shown in the leftmost part of the figure. Just before their second
inputs the cells are at wE

RK · (T1 + T2) where both T1 and T2 are distributed according to ρ.
After sufficiently many additional inputs arrive, some cells will lie above wE

LK, such that they
fire to their next inputs, while others do not, leading the rightmost distribution shown. Note
that we have assumed t∗ = 0; otherwise, each M i

S(wE
RK) should be replaced by M i

S∗(wE
RK).

If a cell’s second input since firing arrives after an additional time T2, also chosen from the
distribution ρ, then just before this input occurs, the example cell will be at wE

RK · (T1 +T2).
The fraction of the population starting in bin Ij just prior to their first inputs since firing
and ending in bin Ik just prior to their second inputs since firing is the transition probability
between the states (Ij, 1) and (Ik, 2). This process can be continued to compute all the
transition probabilities. In the example shown in Fig. 4 there are five accessible states,
(I1, 1), (I2, 2), (I3, 3), (I4, 3), and (I4, 4), so N = 4 and the matrix of transition probabilities
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has the form

A =













0 1 0 0 0
0 0 ∗ ∗ 0
0 0 0 0 1
1 0 0 0 0
1 0 0 0 0













, (3.6)

where each row gives the transition probabilities for cells starting in the same state.
If initial conditions are selected randomly, then some cells may initially lie in transient

states that cannot be reached subsequent to reset from wE
RK . We neglect such states in the

Markov chain, since including them does not affect the statistics we consider.
The transition probabilities between non-transient states are easiest to compute in the

time domain. We first compute the transition probabilities between the states (Ij, l) and
(Ik, l+1) for l ≤ j < k ≤ N . Consider independent, identically distributed random variables
Ti each with probability density ρ. Let σl =

∑l

i=1 Ti denote the sum of these random
variables. The transition probability between the states (Ij, l) and (Ik, l + 1) is given by

p(j,l)→(k,l+1) = P [(Ik, l + 1)|(Ij, l)] = P
[

σl+1 ∈ [kS∗, (k + 1)S∗)
∣

∣ σl ∈ [jS∗, (j + 1)S∗)
]

. (3.7)

Since the probability density ρ(l) of the sum σl can be computed recursively by the convolution
formula

ρ(l)(t) =

∫

ρ(l−1)(u)ρ(t − u)du

the conditional probabilities in the expression above can be evaluated. In particular, since

P
[

σl+1 ∈ [z, z + ∆z] & σl ∈ [w, w + ∆w]
]

≈ ρ(l)(w)ρ(z − w)∆w∆z

it follows that

p(j,l)→(k,l+1) =

∫ (k+1)S∗

kS∗

∫ (j+1)S∗

jS∗
ρ(l)(w)ρ(z − w)dwdz

∫ (j+1)S∗

jS∗
ρ(l)(z)dz

. (3.8)

Finally, we define the transition probabilities from the states (IN , l). By our assumption,
a cell in one of these states fires when it receives an excitatory input. Therefore the next
state must be of the form (Ij, 1). As discussed above, once a cell fires, it has no memory
of the number of excitatory inputs it received prior to this event. Therefore, the transition
probability from (IN , l) to (Ij, 1) is the same for all l. This transition probability can be
obtained as

p(N,l)→(j,1) = P [(Ij, 1)|(IN , l)] =

∫ (j+1)S∗

jS∗

ρ(t)dt.

Since no other transitions than the ones described above are possible, this completes the
definition of the Markov chain.

Remark 3.2 As mentioned in Remark 3.1, the threshold wE
LK in (3.5) depends on input

amplitude and duration. If input amplitudes are not constant, then there will no longer be
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a single value N such that a cell fires to its next input if and only if it is in a bin of the form
(IN , j), no matter how IN is defined. In such a case, we can, for example, use the threshold
defined for the maximal relevant input amplitude to define IN . Then, the probability distri-
bution of input amplitudes can be used to compute probabilities p(N,l)→(N,l+1) and p(N,l)→(j,1).
For some range of l values, p(N,l)→(N,l+1) will be nonzero, and there will be a maximal value
l such that no cell requires more than l inputs to fire, and hence (IN , l) is the last bin in the
chain. The case of variable input durations can be handled similarly.

4 Limiting distributions of the Markov chain and their

interpretation

We next consider the long term behavior of the Markov chains defined above, and interpret
this behavior in terms of the original fast-slow system. For simplicity we assume that the
support of ρ is a closed interval. Similar ideas can be used to extend these results to more
general cases.

We remind the reader that for a finite state Markov chain with M states and transi-
tion matrix A, the probability distribution π = (π1, . . . πM ) is a stationary distribution if
∑

i πiAi,j = πj for all j. The stationary distribution π is a limiting distribution if

lim
n→∞

{An}i,j = πj.

A Markov chain is irreducible if for any two states i and j, there exists a finite n such that
{An}i,j > 0. In other words, there is a nonzero probability of transition between any two
states in a finite number of steps. An irreducible finite state Markov chain has a unique
stationary distribution [Hoel et al., 1972]. The period di of the state i in a Markov chain is
the greatest common divisor of the set {n|{An}i,i > 0}. For an irreducible chain, all states
have the same period d. Such a chain is called aperiodic if d = 1, and periodic if d > 1. The
following theorem relates these concepts

Theorem 4.1 ( [Hoel et al., 1972], p. 73) For an aperiodic, irreducible Markov chain
the stationary distribution is a limiting distribution. If the chain is periodic with period d,
then for each pair of states i, j there is an integer r, 0 ≤ r < d, such that {An}i,j = 0 unless
n = md + r for some nonnegative integer m, and

lim
m→∞

{Amd+r}i,j = dπj.

Conditions for the existence of a limiting distribution

We next show that under very general conditions, the Markov chain constructed in the
previous section is irreducible and aperiodic and therefore has a limiting distribution. First
notice that by construction there is a nonzero probability of transition from the state (1, 1) to
any other state in the chain in a finite number of steps. Similarly, since after a finite number
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of steps a cell will spike, the probability of transition from any state to the state (1, 1) in a
finite number of steps is nonzero as well. Therefore, the Markov chain under consideration
is always irreducible.

We next consider conditions under which the Markov chain is aperiodic. It is sufficient
to start with a continuum ensemble of cells at wE

RK. If these cells are subject to different
realizations of the input, and after a finite number inputs, a nonzero fraction of cells occupies
every bin, then the transition matrix is aperiodic.

To start, note that if ρ is supported on a single point T , so that the input is periodic, then
the Markov chain will be periodic. Each point M j

T (wE
RK) is contained in bin Ij. Therefore

the states of the Markov chain are {(i, i)}N
i=1. In the case depicted in Fig. 3, for example,

the transition matrix has the form

A =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









. (4.9)

Consider next what happens as the support of ρ is enlarged to [T, T + δ] in this example.
For small δ, there is no change in the structure of the transition matrix. For some δ0

sufficiently large however, we have M3(T+δ0)(w
E
RK) = wE

LK, and when δ > δ0, as shown in
Fig. 4, a fraction of the cells will be in bin (3,3) after 3 inputs, while another fraction will
be in bin (4,3). After one more excitatory input the cells in bin (4,3) will fire and transition
to (1,1), while the cells in (3,3) will require two more inputs to fire. Therefore, in addition
to the states (1,1), (2,2), (3,3), (4,4) that were relevant in the periodic case, the new state
(4,3) becomes part of the Markov chain. The transition matrix between these five states for
δ > δ0 has the form

A =













0 1 0 0 0
0 0 1 − ε(δ) ε(δ) 0
0 0 0 0 1
1 0 0 0 0
1 0 0 0 0













. (4.10)

where ε(δ0) = 0, ε increases with δ, and the states are ordered as (1, 1), (2, 2), (3, 3), (4, 3)
and (4, 4). It can be checked directly that this transition matrix is aperiodic. This is also a
consequence of the following general theorem.

Theorem 4.2 Suppose that the support of ρ is the interval [S, U ], and let U ∗ = U + t∗ where
t∗ is the duration of excitation. The transition matrix defined in Section 3 is aperiodic, and
the corresponding Markov chain has a limiting distribution, if and only if MiU∗(wE

RK) > wE
LK

for an integer 0 < i < N , where N is defined by M(N−1)S∗(wE
RK) < wE

LK < MNS∗(wE
RK), as

in Section 3.

Remark 4.3 In the example discussed above, as the support of ρ widens, the periodic
transition matrix in (4.9) is replaced by the aperiodic matrix (4.10). Since the limiting

13



behavior of periodic and aperiodic Markov chains is very different, the system can be thought
of as undergoing a bifurcation as δ is increases past δ0.

Proof If MiU∗(wE
RK) ≤ wE

LK for all integers 0 < i < N , then it can be checked directly
that the only states that are achievable from an initial condition M ∗

S(wE
RK) have the form

(i, i) for 0 < i ≤ N . Therefore the transition matrix is of size N × N and has the form of
the matrix (4.9), with ones on the superdiagonal in all rows except that last, which has a
one in its first column. Thus, the Markov chain is periodic and has no limiting distribution.

Assume instead that MiU∗(wE
RK) > wE

LK for an integer 0 < i < N . Consider a continuum
of cells that have just spiked and been reset to wE

RK and are receiving independent realizations
of the input. First note that just before the ith input following the spike, there will be a
nonzero fraction of cells in all bins (k, i), k ≥ i that are part of the Markov chain.

The condition MiU∗(wE
RK) > wE

LK and the fact that the support of ρ is an interval imply
that some cells will fire on the ith, (i+1)st, . . . , and N th inputs after reset. Correspondingly,
there will be cells in all bins (k, 1), k ≥ 1 after the ith input, cells in all bins (k, 2), k ≥ 2
and (k, 1), k ≥ 1 after the (i + 1)st input, and so on, until all bins of the form (k, j) with
k ≥ j and j ∈ {1, . . . , N − i + 1} are non-empty after N inputs. Similarly, some cells will
fire again after input number 2i, with some other cells firing on each input from 2i+1 up to
2N , and after 2N inputs, all bins (k, j) with k ≥ j and j ∈ {1, . . . , 2N − 2i+1} will be non-
empty. Continuing this argument inductively shows that all states are necessarily occupied
just before the arrival of the (cN)th input, where c = dN−1

N−i
e, namely the least integer greater

than or equal to (N − 1)/(N − i), such that cN is bounded above by (N − 1)N , since
i ≤ N − 1. 2

Interpretation of the invariant density

Suppose that the Markov chain that we have derived has a limiting distribution Q. The
limiting distribution has two interpretations [Taylor and Karlin, 1998]. Assume that a cell
is subjected to excitatory input for a long time. If w is recorded just prior to the moments
when the cell receives an excitatory input, then Q[(Ij, l)] is the fraction of recordings that
are observed to fall inside (Ij, l). Consequently, the total mass of the distribution Q that lies

in the bins (IN , j), namely
∑N

j=1 Q[(IN , j)], is the probability that a cell will respond to the

next excitatory input by firing. Similarly, we can think of Q[(Ij, l)]/
∑N

k=l Q[(Ik, l)] as the
probability that a cell will be found to have w ∈ Ij just prior to receiving its l-th excitatory
input since it fired last.

Note that the firing probability
∑N

j=1 Q[(IN , j)] is not the reciprocal of the average number
of failures before a spike. However, the average number of failures, call it Ef , can be computed
once the Q[(Ij, l)] are known. Clearly,

Ef =
N−1
∑

j=1

jFj, (4.11)
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where each Fj denotes the probability that exactly j failures occur. Note that j failures
occur precisely when j + 1 conditions are met. That is, for each i = 1, . . . , j, just prior to
the ith input since the last firing, the trajectory falls into a bin of the form (Iki

, i), where
i ≤ ki < N . Further, the trajectory ends in bin (IN , j + 1) before the (j + 1)st input, to
which the cell responds by firing. The quantity

∑N−1
k=i Q(Ik, i)

∑N

k=i Q(Ik, i)

equals the probability that, just before the ith input arrives, a cell will lie in a bin (Ik, i) with
k < N . Thus, the failure probabilities are given by

Fj =

(

∑N−1
k=1 Q(Ik, 1)

∑N

k=1 Q(Ik, 1)

)(

∑N−1
k=2 Q(Ik, 2)

∑N

k=2 Q(Ik, 2)

)

· · ·

(

∑N−1
k=j Q(Ik, j)

∑N

k=j Q(Ik, j)

)(

Q(IN , j + 1)
∑N

k=j+1 Q(Ik, j + 1)

)

.

(4.12)
Of course, while some of the Q(Ik, j) may be zero, the exclusion of transient bins in our
Markov chain construction ensures that all of the sums in the denominators of (4.12) will be
positive for every population of cells.

5 Extensions of the Markov chain approach

The ideas introduced in the previous section are applicable in many other settings. Here
we outline extensions to heterogeneous populations of excitable cells subject to identical
periodic input and to general excitable systems.

Populations and heterogeneity

It is important to remember that the limiting distribution computed from a Markov chain
cannot be used directly to determine what fraction of a population of identical cells subject
to identical stochastic trains of excitatory inputs will respond to a given input. As noted
earlier, in this case it is necessary to specify the distribution of initial conditions to compute
this fraction. On the other hand, it is possible to draw conclusions about a population of
identical cells subject to different realizations of the stochastic train of excitatory inputs.
In this case, all of the quantities discussed in the previous subsection can be reinterpreted
with respect to the firing statistics of a population of cells. For example, the fraction of cells
responding with a spike to a given excitatory input equals the probability of a single cell
firing to a particular excitatory input, that is

∑N

j=1 Q[(IN , j)].
We can also apply similar ideas to the case of a heterogeneous population of excitable

cells all subject to the same periodic input, say of period T . Heterogeneity in intrinsic
dynamics may lead to different rates of evolution for different cells in the silent phase, but this
disparity can be eliminated by rescaling time separately for each cell, so that all cells evolve
at the same unit speed in the silent phase. As a result of this rescaling, the heterogeneity
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in the population will become a heterogeneity in firing thresholds. Denote the resulting
distribution of thresholds by φ, such that for any t > 0,

∫ t

0
φ(τ) dτ gives the fraction of cells

with thresholds below t. The distribution φ will have support on some interval [mT, nT ] for

nonnegative integers m < n. Thus, for i ≥ 1, δi =
∫ iT

(i−1)T
φ(τ) dτ gives the fraction of cells

that will fire in response to the ith input, which is nonzero for i = m + 1, . . . , n.
We can define Markov chain states Ij, for j = 1, . . . , n, by stating that a cell is in state

Ij if it has received j − 1 inputs since it last fired. The transition probability P (j, j + 1)
from state Ij to state Ij+1 is 1 if j ≤ m; if j = m + 1, then P (m + 1, m + 2) = 1 − δm+1

while the probability of transition from state Im to state I1 is P (m + 1, 1) = δm+1; and if
m + 1 < j ≤ n − 1, then

P (j, j + 1) = 1 − γj :=
1 − δj − . . . − δm+1

1 − δj−1 − . . . − δm+1
= 1 −

δj

1 − δj−1 − . . . − δm+1
,

while P (j, 1) = γj = δj/(1− δj−1 − . . .− δm+1). Finally, the transition probability from state
In to state I1 is 1, and all other transitions have zero probability. If we set γm+1 = δm+1,
then the transition matrix takes the form

A =





































0 1 0 0 . . . 0 0 . . . 0 0
0 0 1 0 . . . 0 0 . . . 0 0
· · · · . . . · · . . . · ·
· · · · . . . · · . . . · ·
· · · · . . . · · . . . · ·

γm+1 0 0 0 . . . 1 − γm+1 0 . . . 0 0
· · · · . . . · · . . . · ·
· · · · . . . · · . . . · ·
· · · · . . . · · . . . · ·

γn−1 0 0 0 . . . 0 0 . . . 0 1 − γn−1

1 0 0 0 . . . 0 0 . . . 0 0





































.

As long as m < n − 1, such that the distribution φ has support on an interval of length
greater than T , not all cells will fire together. Under this condition, there exists i < n such
that δi 6= 0 and correspondingly γi 6= 0. In this case, the proof of Theorem 4.2 immediately
generalizes to show that there exists a sufficiently large number of iterations N such that
{Ar}i,i > 0 for all r > N , which implies that A is aperiodic and the Markov chain has a
limiting distribution. That is, if the heterogeneity is quite weak, then all cells will always
respond to the same inputs in a train, giving an unreliable population response. With a
stronger degree of heterogeneity, population responses will disperse, such that in the limit
of an infinitely large population, every input will evoke a response from some nonempty
subset of the cells, and the statistics of the population response will be given by the limiting
distribution of the Markov chain.
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General excitable systems and integrate-and-fire type models

An excitable system can be characterized by the existence of a stable rest state and a
threshold. In such a system, when a perturbation pushes a trajectory from the rest state
across the threshold, the trajectory makes a significant excursion before returning to a small
neighborhood of the rest state. Suppose that an excitable system receives transient inputs
of a stereotyped form. If we select a time T , then we can define a map MT (u) having as its
domain a set of starting states for the system. To do this, we can simply select each state u
in the set as an initial condition, apply the input, and then allow the system to evolve for
time T after the onset of the input. The output of the map would be the new state u(T ) of
the system after this evolution. Like a phase response curve (PRC), the map MT captures
the effect of an input, but is much more general. In particular it is n-dimensional, where n
is the number of components in u, and thus in general it captures more detailed information
about a system than the PRC.

In theory, bins in n-dimensional space could be defined to implement the Markov chain
approach for an n-dimensional map. Indexing these bins efficiently and computing transition
probabilities between them could become problematic when n is not small, however. On the
other hand, the Markov chain approach discussed in the previous section can be applied
directly to systems for which MT (u) = u(T ) lie (approximately) on an interval in the phase
space of the system, and which are reset to a fixed value ureset after crossing threshold. The
assorted versions of the integrate-and-fire (IF) model (leaky IF, quadratic IF, exponential IF,
and so on) in the subthreshold regime satisfy both of these conditions. There is an important
difference between the excitable systems considered in detail here and the IF model, however.
When the results derived for excitable systems are applied to neuronal models, the Markov
chain will be defined using a slowly changing ionic conductance, or an associated activation
or inactivation, while in the case of the IF model, it would be defined in terms of the voltage.
As a consequence, for the IF case, one would need to take into account the jumps in voltage
due to synaptic inputs when defining the states of the Markov chain and computing the
transition probabilities. Otherwise, the construction would be equivalent to the one outlined
in Sections 3-4.

6 An example: the TC model

A prototypical representative of the class of models to which the analysis outlined in the
preceding sections is applicable is a model for a thalamocortical relay (TC) cell relevant for
the study of Parkinson’s disease (PD) and deep brain stimulation (DBS). The TC model
that we consider takes a similar form to the reduced TC model in [Rubin and Terman, 2004],
namely

Cmv′ = −IL − IT − gexcsexc(v − vexc) − ginhsinh(v − vinh)

w′ = φ(w∞(v) − w)/τ(v).
(6.13)
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Here, the leak current IL = gL(v−vL) and the T-type or low-threshold calcium current IT =
gT m∞(v)w(v−vCa), with parameter values Cm = 1µF/cm2, gL = 1.5mS/cm2, vL = −68mV ,
gT = 5mS/cm2, vCa = 90mV , gexc = 0.08mS/cm2, vexc = 0mV , ginh = 0.12mS/cm2,
vinh = −85mV , φ = 3.5 and functions m∞(v) = (1 + exp(−(v + 35)/7.4))−1, w∞(v) =
(1 + exp((v + 61)/9))−1, and τ(v) = 10 + 400/(1 + exp((v + 50)/3). The levels of sexc and
sinh will be determined by stochastic processes discussed below. The assumptions that we
make regarding the presence of three timescales in the dynamics are not unreasonable in this
model, as shown in [Rubin and Terman, 2004, Stone, 2004].

In this section we show how to analytically compute the transition matrix for this model
and compute the stationary distribution for the corresponding Markov chain for two partic-
ular IEI distributions, one uniform and one normal, both with inhibition held off for all time
and with inhibition held on for all time. We compare these stationary distributions with
those found by numerical simulations and find good agreement.

Uniform IEI distribution

Consider system (6.13) with constant inhibition, which may be on or off. Suppose that we
fix the duration of each excitatory input at 10 msec. Each IEI interval T , corresponding
to the time interval from the offset of one input (10 msec after it began) to the onset of
the next input, is chosen from a uniform distribution on [20,60] msec. The bin intervals
Ik are defined as described in Section 3; note that S∗ = S + t∗ = 20 + 10 = 30 msec.
We assume that, if an excitatory input causes a cell to fire, then the input is turned off as
the firing cell is reset, rather than 10 msec after the reset. This is equivalent to replacing
the instantaneous reset with a 10 msec absolute refractory period and is a way to weaken
the biologically unrealistic instantaneous reset condition without unduly complicating the
analysis. Since wE

LK ∈ (wE
RK · (N − 1)S∗, wE

RK ·NS∗), we have I1 = [wE
RK · 20, wE

RK · 50), I2 =
[wE

RK · 50, wE
RK · 80), . . . , IN−1 = [wE

RK · 20 + (N − 2)S∗, wE
LK), IN = [wE

LK, w0
FP ).

For the default parameters of system (6.13) and the excitation characteristics described
here, with inhibition held at sinh = 0, we find N = 3, while with inhibition held at
sinh = 1, we find N = 5. With sinh = 0, the states of the Markov chain are the bins
(1, 1), (2, 1), (2, 2), (3, 2), (3, 3). The transition matrix for this case, call it P 0, is computed
analytically in Appendix A. The unit dominant eigenvector of (P 0)T gives the limiting dis-
tribution

v0 = [.3404 .1135 .0922 .3617 .0922]T .

As discussed in Section 4, the values of v0 represent the likelihood that a cell is found in a
given bin, if bin memberships are recorded just prior to the onset of an excitatory input. For
comparison, we simulated a single cell, modeled by (6.13) with the technical modification
mentioned in Remark 6.1 below, over 70 sec, after an initial transient of 10 sec. This
simulation yielded the vector

v0
num = [.3276 .1289 .0878 .3629 .0878]T

of proportions of inputs during which the cell belonged to each relevant bin, which agree
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nicely with the analytically computed expectations v0. Over the entire simulation, the cell
never failed to fire to three consecutive inputs. Grouping our analytical values indicates
that, just before onset of excitation, on 34.04% of the observations we expect w ∈ [wRK ·
20, wRK · 50), on 20.57% of the observations we expect w ∈ [wRK · 50, wRK · 75.5), and on
45.39% of the observations we expect w > wRK · 75.5. In particular, this implies that a
cell will fire to roughly 45% of its inputs, for these choices of parameters. Further, from
equations (4.11)-(4.12) with Q values given by entries of v0, it is expected that a successful
input will be followed by 1.20 inputs that fail to elicit a spike, before the next successful
input occurs; this is in good agreement with direct simulation results showing a mean of 1.19
unsuccessful inputs between successful ones. As discussed in Section 5, these results can also
be interpreted in terms of a population of identical cells, as long as the cells receive different
realizations of the input.

With sinh = 1, the states of the Markov chain are the bins (1,1), (2,1), (2,2), (3,2),
(3,3), (4,2), (4,3), (4,4), (5,2), (5,3), (5,4) and (5,5). The transition matrix, P I, is com-
puted analytically in Appendix B. (P I)T has the unit dominant eigenvector vI, which is
shown below together with the bin proportions listed in vector vI

num obtained from direct
numerical simulation for 80 sec, with a transient consisting of the first 10 sec removed from
consideration:

vI = [.2290 .0763 .0859 .1622 .0215 .0569 .0624 .0005 .0004 .2211 .0833 .0005]T

vI
num = [.2272 .0784 .0726 .1927 .0194 .0388 .0669 .0022 .0007 .2171 .0820 .0002]T .

Grouping the bins (I5, j) reveals that approximately a cell will fire in response to about 30%
of its inputs. This is a higher failure rate than in the case of sinh = 0, which is expected
because inhibition changes the locations of wE

LK and wE
RK, such that the time to evolve from

wE
RK to wE

LK is longer with inhibition on than with inhibition off. Similarly, based on vI ,
the case of sinh = 1 has a substantially higher expected number of failed inputs between
spike-inducing inputs, namely Ef = 1(.0013) + 2(.7240) + 3(.2731) + 4(.0016) = 2.28 from
equations (4.11)-(4.12), than the 1.20 expected in the case of sinh = 0; direct numerical
simulation gives a similar estimate of Ef = 2.35 in this case.

Remark 6.1 There is an additional complication that arises with a nonzero duration of
excitation. If an excitatory input arrives but fails to make a cell fire, the cell jumps from the
left branch of N 0 to the left branch of N E, and evolves on this branch of N E while the input
is on. The rates of flow on the left branches of N 0 and NE may differ, however. This can be
easily accounted for in selecting the boundaries for all bins Ik with k < N −1. However, this
complicates selection of the upper boundary for IN−1, which relates to a left knee location.
To get around this, we adjust the flow in our simulations of (6.13) in this example such that
the rate of change is the same on the left branches of N 0 and NE. In theory, the way that
we do this introduces the possibility that solutions may escape from the left branch of N 0

in the vicinity of w0
LK and fire without receiving input. However, in practice this does not

occur because w0
LK is sufficiently large, relative to the IEIs, that it is never reached.
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Normal, or other, IEI distributions

If IEIs are taken from a non-uniform distribution, we can still use equation (3.8) to obtain
the transition matrix elements analytically, albeit with numerical evaluation of the integrals
that arise, which are analogous to those given in Appendices A and B for the uniform case.
Once the transition matrix is obtained, the limiting distribution for the Markov chain is
computed as the unit dominant eigenvector of its transpose, as previously.

For example, consider IEIs of the form T = tref +X, where tref is a fixed constant and X
is selected from a truncated normal distribution. In particular, suppose that tref = 20 msec,
that X̃ is selected from a normal distribution with mean 20 msec and standard deviation 10
msec, and that

X =







0, X̃ < 0,

X̃/MX , 0 ≤ X̃ ≤ 40,

40, 40 < X̃,

where MX is a constant correction factor such that
∫

IR
X = 1. This is a reasonable choice

that keeps IEIs within the bounds present in the example in the previous subsection. For this
example, with other simulation parameters fixed as in the previous subsection and sinh = 0,
we obtained the transition matrix

P 0
n =













0 0 .1474 .8526 0
0 0 0 1 0
0 0 0 0 1

.8576 .1424 0 0 0

.8576 .1424 0 0 0













for bins (1, 1), (2, 1), (2, 2), (3, 2), (3, 3). The dominant eigenvector v0
n of (P 0

n)T matches
closely with a vector (v0

n)num obtained from direct counting of bin membership in the last
90 sec of a l00 sec numerical simulation:

v0
n = [.4073 .0670 .0594 .4108 .0594]T

(v0
n)num = [.3883 .0812 .0625 .4070 .0610]T .

Based on these results, we expect that a cell will respond to approximately 47% of the inputs,
with an average of 1.15 failures between successful spikes from equations (4.11)-(4.12); this
agrees nicely with the estimate 1.13 that we obtained from direct numerical simulations.

For completeness, we conclude with the results of an analogous calculation done with
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sinh = 1. This yields

P I
n =

































0 0 .2548 .7249 0 .0203 0 0 0 0
0 0 0 .7352 0 .2642 .0006 0 0 0
0 0 0 0 .1074 0 0 .5612 .3314 0
0 0 0 0 0 0 0 .1448 .8552 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1

.8576 .1424 0 0 0 0 0 0 0 0

.8576 .1424 0 0 0 0 0 0 0 0

.8576 .1424 0 0 0 0 0 0 0 0

































for bins (1, 1), (2, 1), (2, 2), (3, 2), (3, 3), (4, 2), (4, 3), (5, 2), (5, 3), (5, 4). The corresponding
dominant eigenvector vI

n and an example vector (vI
n)num of state occupancy probabilities

from direct simulations are

vI
n = [.2638 .0438 .0672 .2234 .0072 .0169 .0701 .2133 .0942]T

(vI
n)num = [.2587 .0505 .0697 .2132 .0121 .0263 .0637 .2329 .0728]T ,

where we have omitted the (5,2) entry since the probability of occupancy there is less than
0.5× 10−5. These results imply that a cell with sinh = 1 will respond to approximately 31%
of excitatory inputs and is thus less reliable than a cell with with sinh = 0. The average
number of failures between spikes is 2.27, from equations (4.11)-(4.12), which is similar to
the 2.24 obtained from direct simulations and exceeds that found with sinh = 0.

7 Inhibitory and excitatory inputs

We next consider the more complex case in which the postsynaptic cell receives a stochastic
excitatory input train while subjected to modulation by an inhibitory input. The corre-
sponding analysis illustrates how switches between epochs with different bin transition char-
acteristics can be handled naturally within the Markov chain framework through products
of transformation matrices. Moreover, the example that we present will be used in the next
section to provide insights about a possible mechanism for the therapeutic effectiveness of
DBS.

Transition matrices

In this section we assume that for a system of the form (2.1) with input given by (2.2), the
function sinh(t) turns on and off abruptly, with a relatively long period between transitions.
Previously, we have discussed how to derive transition matrices for the case of constant
inhibition of any level. Thus, if we can also derive transition matrices encoding the prob-
abilities of passing between various bins during the onset and offset of inhibition, then we
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can form a transition matrix for the time from one inhibitory offset to the next, or for other
corresponding times, by matrix multiplication.

One complication in this derivation is that the bin boundaries differ between the cases of
zero and nonzero inhibition. Even with the assumption that the rate of evolution in the silent
phase is independent of input level, differences in bin boundaries remain due to differences
in right knee positions, leading to different starting points in the silent phase, and differences
in left knee positions, leading to different cut-offs for firing. A second difficulty is that, due
to the stochasticity of the input trains, a change in inhibition level may occur at any time
relative to the start of the particular IEI during which it happens, or even at a time when
excitation is on.

To handle these issues, we define the transition matrix P 0→I for the onset of inhibition
such that its (i, j) entry encodes the probability that a cell is in bin i of the inhibition-off
partition at the moment preceding the arrival of the last excitatory input before inhibition
turns on, call it time tlast, and is in bin j of the inhibition-on partition at the moment just
before the arrival of the first excitatory input after inhibition turns on. There are several
advantages to basing the cycle length only on excitatory input times, rather than the time
when inhibition turns on. Most importantly, in this formulation, it does not matter whether
inhibition turns on while the excitation is still on (that is, for t ∈ (tlast, tlast + d), where d is
the duration of excitation) or after it is off, if we continue to assume that the rate of silent

phase evolution is input-independent. Let w
(i,j)
RK (w

(i,j)
LK ) denote the right (left) knee of nullcline

N (i,j), where i ∈ {E, 0} indicates whether excitation is on or off and j ∈ {I, 0} indicates
whether inhibition is on or off. The decision as to whether the excitation that arrives at
time tlast causes the cell to fire or not is based on the knee positions without inhibition, and
if a firing occurs, instantaneous reset to w

(E,0)
RK follows; we neglect the probability zero case

of excitation and inhibition turning on at precisely the same moment, and therefore if a cell
fires, then inhibition will always turn on after the cell is reset.

One additional complication may arise due to the fact that w
(E,0)
RK < w

(E,I)
RK . That is, at

the onset of inhibition, w may lie below the lower boundary of the inhibition-on partition.
To account for this possibility requires the inclusion of additional bins in this partition, with
a corresponding adjustment of the matrix P I to allow for matrix multiplication.

Analogously to the case of P 0→I , the (i, j) entry of the transition matrix P I→0 for the
offset of inhibition encodes the probability that a cell is in bin i of the inhibition-on partition
at the moment preceding the arrival of the last excitatory input before inhibition turns off
and is in bin j of the inhibition-off partition at the moment just before the arrival of the
first excitatory input after inhibition turns off. The complication in this case is that post-
inhibitory rebound (PIR) may occur if, when the offset of inhibition occurs, either excitation

is off and w > w
(0,0)
LK or excitation is still on and w > w

(E,0)
LK . Rebound leads to reinjection

into the silent phase followed by evolution there. However, the duration of this evolution,
from the time of reinjection to the time that the next excitatory input arrives, depends on
when the inhibition turned off, relative to the time of the previous input, which complicates
calculations.

Given that P 0→I , P I→0 can be computed, the appropriate transition matrix for the case
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of excitatory and inhibitory input trains is obtained by multiplication of the transposes of the
separately computed transition matrices P 0, P I, P 0→I , and P I→0. Specifically, using [M ]T

to denote the transpose of matrix M and (M)n to denote M to the nth power, the matrix

[P I→0]T ([P I]T )m[P 0→I ]T ([P 0]T )n

is the transition matrix to consider after the offset of inhibition, just before the arrival of
the first subsequent excitatory input. The (i, j) entry of this matrix gives the probability
that a cell that starts in bin j of the inhibition-off partition at this moment ends up in bin
i of the inhibition-off partition at the analogous moment after the next offset of inhibition,
assuming that n excitatory inputs arrive before inhibition turns on and m excitatory inputs
arrive after inhibition turns on. Of course, when the IEIs and the durations of inhibitory
on and off periods are selected randomly from distributions, the probabilities that different
numbers of excitatory inputs arrive are also random; in Appendix C, these are calculated
for the example of uniform distributions.

In the general discussion given here, let us assume that m, n are bounded above by
M, N < ∞, respectively. Given this, we would like to claim that the expected proportion
of trials for which a cell will belong to each inhibition-off bin are given by the entries of the
unit dominant eigenvector of the matrix

M
∑

m=1

N
∑

n=1

cm,n[P I→0]T ([P I]T )m[P 0→I ]T ([P 0]T )n, (7.14)

where each coefficient cm,n denotes the probability of occurrence of the corresponding expo-
nent pair (m, n). Substantiating this claim necessitates justifying whether this eigenvector
exists and truly represents a limiting distribution, which will be true if the matrix in (7.14)
is irreducible and aperiodic, as discussed in Section 4. Recall that the proof of Theorem
4.2 gives an upper bound c for the number of inputs after which occupancy of all states is
guaranteed, under the assumptions of the theorem, for constant inhibition. Now, let cI , c0

denote the respective upper bounds for matrices P I, P 0, based on the IEI distribution. A
sufficient pair of conditions to guarantee the existence of a limiting distribution for (7.14)
are that if p(m) > 0, then m ≥ cI , while if p(n) > 0, then n ≥ c0. If these conditions are
violated, then of course the states of the system may still tend to some limiting distribution,
particularly if p(m), p(n) are substantial for some values above the respective bounds, but
this must be verified numerically.

Similarly, the unit dominant eigenvector of the matrix

M
∑

m=1

N
∑

n=1

cm,n[P 0→I ]T ([P 0]T )n[P I→0]T ([P I ]T )m, (7.15)

if it exists and represents a limiting distribution, gives the expected proportions of trials
for which a cell will belong to each inhibition-on bin at the moment of arrival of the first
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excitatory input after inhibition turns on. The dominant eigenvectors of the matrices

∑M

m=1

∑N

n=1 cm,n([P 0]T )n[P I→0]T ([P I ]T )m[P 0→I ]T
∑M

m=1

∑N

n=1 cm,n([P I]T )m[P 0→I ]T ([P 0]T )n[P I→0]T

have similar interpretations.

Remark 7.1 In fact, justifying the existence of the limiting distribution for the matrix in
(7.15) requires an additional technical adjustment, relative to that for matrix (7.14). The
added complication arises because the fixed point of N (0,I) is higher than that of N (0,0),
which may lead to a violation of irreducibility. This is simply a technical point and can be
handled by replacing ([P I]T )m by the product of a sequence of non-identical matrices that
incorporate successively larger numbers of bins, assuming m is not too small.

TC cell example revisited: Uniform distributions

Consider again the TC model (6.13). We first compute the transition matrices analytically
under the assumptions that IEIs are selected from a uniform distribution on [20,60] msec,
excitatory duration is fixed at 10 msec, and both durations of inhibitory inputs and time
intervals from inhibitory offset to onset are selected from a uniform distribution on [125,175]
msec. For simplicity, we assume that after rebound, a cell will only reach I1 before the next
excitation arrives; since the possibility of rebounding and reaching I2 before this excitation,
and of rebound in general, are relatively rare for our parameter values, this should not be a
major source of error. To maintain tractability, we also neglect the fact that w

(E,I)
RK > w

(E,0)
RK ,

based on the fact that the right knees are fairly close for ginh = 0.12; this will introduce
some error into our results.

We computed the matrices from (7.14) analytically, using (3.8) as in the constant inhibi-
tion case discussed in Appendices A and B. In this example, the coefficients cm,n = p(m)p(n)
in (7.14) can also be computed analytically, and we discuss some details of this calculation
in Appendix C. After the p(m) are computed, the desired eigenvector of matrix (7.14) can
be obtained. Since rebound can throw off the count of inputs having occurred since the last
firing event, we focus on the dominant eigenvector v0→I corresponding to inhibitory onset,
which we compare to its counterpart, v0→I

num, generated numerically from 301 inhibitory onsets
during the last 90 sec of a 100 sec simulation:

v0→I = [.3530 .0801 .1598 .2558 .0333 .0677 .0363 0 0 .0140 0 0]T

v0→I
num = [.3089 .1030 .0897 .2724 .0199 .0432 .0698 0 0 .0664 .0066 0]T .

The bins here are exactly those listed in Section 6 for the uniform IEI distribution with
sinh = 1, namely (1,1), (2,1), (2,2), (3,2), (3,3), (4,2), (4,3), (4,4), (5,2), (5,3), (5,4), and
(5,5). Note that the zero entries here (signifying values less than 0.5×10−5) correspond to the
fact that these distributions are only relevant just after each onset of inhibition, and in the
absence of inhibition, cells rarely reach the levels of the upper bins attained with inhibition,
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which are included in this list. These bins become reoccupied as subsequent inputs arrive
during the inhibition-on phase.

The agreement between v0→I and v0→I
num is fairly good, although not as good as those

obtained with constant inhibition in Section 6, presumably due to rebound and wRK issues.
Note that a cell will be expected to fire well under 10% of the time to the first input that
arrives just after the onset of inhibition. This low number fits the prediction of phase plane
analysis, which implies that the onset of inhibition interferes with responsiveness to the
subsequent excitatory input [Rubin and Terman, 2004]. Moreover, with the cell lying in the
bottom bin over 30% of the time, which is a significant increase over the percentage there
in the sinh = 1 case, the compromise of responsiveness by rhythmic inhibition will endure
beyond the first excitation after inhibitory onset.

TC cell example revisited: Normal distributions

We also calculated the transition matrices and dominant eigenvector, for comparison to
direct numerical simulation, when IEIs were selected from the truncated normal distribution
described earlier and inhibition on and off durations were selected from a similar distribution.
Specifically, we assumed that these durations were of the form tI

ref + Y, tIref + Z, where Y

was obtained by choosing Ỹ from a normal distribution with mean 25 msec and standard
deviation 10 msec and setting

Y =







0, Ỹ < 0,

Ỹ /MY , 0 ≤ Ỹ ≤ 50,

50, 50 < Ỹ ,

with normalization constant MY . The random variable Z was defined similarly but inde-
pendently. To compute the relevant dominant eigenvector, as done above in the uniform
distribution case, we need coefficients cm,n, which we computed as cm,n = p(m)p(n) from
the numerically obtained probabilities p(1) = .0014, p(2) = .1625, p(3) = .6763, p(4) =
.1625, p(5) = .0014 with p(j) = 0 for j ≥ 6. In this case, we actually used transition proba-
bilities obtained from long-time simulations to compute the transition matrices P I→0

n , P 0→I
n ,

which we do not display here, although these could have been computed from (3.8) as well.
The dominant eigenvector v0→I

n , corresponding to bin occupancy at the arrival time of the
first excitatory input after inhibitory onset, and an example of the bin occupancy proportions
(v0→I

n )num obtained from the last 90 sec of a 100 sec simulation are

v0→I
n = [.3354 .0463 .1233 .3685 .0083 .0394 .0350 .0439 0]T ,

(v0→I
n )num = [.3984 .0549 .1071 .3132 .0082 .0302 .0384 .0467 .0027]T

for bins (1, 1), (2, 1), (2, 2), (3, 2), (3, 3), (4, 2), (4, 3), (5, 3), (5, 4). These results show that a
cell can be expected to fire reliably to the first excitatory input after onset of inhibition less
than 5% of the time and will lie in the bottom bin over 30% of the time, as also seen in the
uniform distribution example.
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8 Explicit connection to parkinsonian reliability failure

In PD, the inhibitory output from the basal ganglia may become rhythmic. DBS eliminates
this rhythmicity, leading to inhibition from the basal ganglia that is elevated but, when
summed over all inputs to a cell, is roughly constant, possibly with fast oscillations around
a high constant level. A possible mechanism for the induction of motor symptoms in PD
and for their amelioration by DBS, analyzed in [Rubin and Terman, 2004], is that rhythmic
basal ganglia inhibitory outputs periodically compromise TC response reliability, while the
regularization of these outputs by DBS restores responsiveness. The drastic drop in the
number of TC cells expected to fire and the accumulation of cells in bins far from firing
threshold found just after inhibitory onset in the case of rhythmic inhibition in our examples,
relative even to the case of elevated but constant inhibition, offers a strong demonstration of
the feasibility of this idea. The approach that we have taken to obtain these results is based
on limiting distributions, and hence eliminates the possibility of spurious outcomes due to
transient effects in simulations.

If we adjust parameters to an extreme case, so that TC cells fire in response to every
excitatory input when sinh = 0 and when sinh = 1, then we still find some failures when
inhibition is made to turn on and off rhythmically. In this case, we can read off from v0→I

the probabilities with which a cell will experience each possible number of failures due to
inhibitory onset, as seen in the examples discussed above. Even if no failures occur when
inhibition is held on, there may be multiple failures following inhibitory onset if the difference
w

(E,I)
RK − w

(E,0)
RK is large.

Inhibitory offset may lead to response failure as well, though PIR. Cells that rebound
when inhibition turns off are reset to w

(E,0)
RK . While the assumption of reliability in the

inhibition-off case implies that
w

(E,0)
RK · S∗ > w

(E,0)
LK , (8.16)

the time from the offset of inhibition until the arrival of the next excitatory input may be less
than S∗, since inhibition may turn off at any moment in the IEI. However, under assumption
(8.16), a cell will clearly experience at most one failure after rebound, since it lies above w

(E,0)
RK

after its first failure. Thus, while PIR may lead to bursts that do not reflect inputs to TC
cells as well as a small number of response failures, the onset of inhibition represents the more
significant obstacle to TC reliability under rhythmic inhibition, assuming perfect reliability
in the constant inhibition case.

9 Discussion

We have considered a fast-slow excitable system subject to a stochastic excitatory input
train, and we have shown how to derive an irreducible Markov chain that can be used
to analytically compute the system’s firing probability to each input, expected number of
response failures between firings, and distribution of slow variable values between firings, in
the infinite-time limit. We have illustrated this analysis on a model TC cell subject to a
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uniform or to a truncated normal distribution of excitatory synaptic inputs, in the cases of
constant inhibition and of inhibition that switches abruptly between two levels. The analysis
immediately generalizes to any pair of input trains, excitatory or inhibitory and synaptic or
not, with distinct switching frequencies, as well as to other models, such as integrate-and-
fire, that feature a single variable that builds up to a threshold where an instantaneous spike
and reset, possibly followed by a refractory period, occur.

In the TC cell case, our results generalize earlier findings suggesting how the modulation
of inhibition by outputs of the basal ganglia can compromise TC responsiveness to exci-
tatory inputs, with possible relevance to PD and DBS [Rubin and Terman, 2004]. In fact,
basal ganglia output areas in rat show abrupt firing rate fluctuations on the time scale of
seconds-to-minutes even in non-parkinsonian states [Ruskin et al., 1999], and the ideas that
we have introduced could be used to consider how different fluctuation characteristics affect
TC reliability. TC cells are also inhibited by thalamic reticular (RE) cells, which in turn are
targets of excitatory corticothalamic inputs. Cortical oscillations, particularly abrupt transi-
tions between cortical up and down states [Steriade et al., 1993a, Cowan and Wilson, 1994],
could naturally lead to jumps in the levels of inhibition from RE cells to TC cells, provid-
ing an alternative source for the type of inhibition that we consider. In this context, our
results provide a way to quantify the expected extent of the transient loss of thalamic relay
reliability during the transitions between up and down states of different depths, as well
as the likelihood that transitions from down to up will be signaled by PIR thalamic bursts
[Steriade et al., 1993b]. Huertas et al. have also considered the relay properties of TC cells,
specifically those in the dorsal lateral geniculate nucleus, in the presence of RE inhibition
[Huertas et al., 2005], using simulations of an integrate-and-fire-or-burst model with an os-
cillatory driving input based on retinal ganglion cell activity. In their simulations, as found
here and in previous work such as [Rubin and Terman, 2004], rhythmic inhibition to TC
cells led to TC bursts and a failure of TC cells to respond to excitatory signals, although
TC-RE interactions in their model gave rhythmic TC bursting phase-locked to the driving
stimulus, which would not be present for the types of synaptic drive we consider.

We have proved that under general conditions, the Markov chain that we have derived
is aperiodic and hence has a limiting distribution, which contrasts with Monte Carlo sim-
ulations, in which convergence properties cannot be forecast. Moreover, as we have also
demonstrated, this distribution can be computed analytically, using equation (3.8), which
eliminates any issues concerning transient effects seen in simulations. Our work is related
to two earlier studies in which a Markov operator was derived to track transitions between
oscillator phases, relative to sinusoidal forcing, at successive jump-up [Doi et al., 1998] or
threshold-crossing [Tateno and Jimbo, 2000] times, in the presence of noise. Neither of these
works, however, used a Markov chain to track transitions linked to successive input arrivals
but not to firing events. Moreover, neither arrived at analytically computable transition
probabilities or proved the existence of a limiting distribution, as we have done. A nice
feature of the previous papers was the numerical tracking of sub-dominant eigenvalues to
identify bifurcations, defined in a stochastic sense, relating to changes in mode-locking. The
approach that we have presented could also be used to study bifurcations. For example, as
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mentioned in Remark 4.3, a change in the range of IEIs can cause the transition probability
between a pair of bins to switch from 0 to nonzero, which may abruptly change the existence,
or the nature, of the corresponding limiting distribution.

As a related, alternative approach, one could try to analyze the long term behavior of
a cell by studying the random dynamical system wn+1 = MT (wn), where the interinput
interval T is a random variable with a known density [Lasota and Mackey, 1994]. If it could
be found, then the limiting density for the variable w could be used to compute the statistics
of interest for the cell. However, finding this limiting density is, in general, quite difficult.
The Markov chain approach that we have presented can in fact be viewed as a discretization
of this procedure. As a result, we recover a “coarse grained” version of the full limiting
density for w, which is sufficient to determine the statistics of interest.

In a series of papers [Othmer and Watanabe, 1994, Xie et al., 1996, Othmer and Xie, 1999],
Othmer and collaborators studied the application of step function forcing to a piecewise lin-
ear excitable system similar to those which we consider. In their work, which focused on the
existence of mode-locked (harmonic or subharmonic) solutions and on chaos, they used a map
and defined bins as we do, but their bins were based on positions of the knees of nullclines
and their projections to other nullclines rather than the flow along branches of nullclines, and
they did not consider a Markov chain for transitions between bins. Moreover, their analysis
was restricted to periodic forcing, whereas ours accommodates, and indeed is particularly
well suited for, stochasticity in input timing. LoFaro and Kopell [LoFaro and Kopell, 1999]
also used 1-d maps to study a forced excitable system, but in their work the excitable system
was a neuron mutually coupled via inhibitory synapses to an oscillatory cell and the map
was a singular Poincaré map with each iteration corresponding to the time between jumps
to the active phase. Similarly, Keener et al. [Keener et al., 1981] and subsequent authors
have used firing time maps to study mode-locking in integrate-and-fire and related models
with periodic stimuli. Alternatively, other works have used 1-d maps based on interinput
intervals to study mode-locked, quasiperiodic, and chaotic responses of excitable systems to
periodic, purely excitatory inputs [Coombes and Osbaldestin, 2000, Ichinose et al., 1998].

Clearly, the transformation of some combination of excitatory and inhibitory synaptic
inputs into postsynaptic neuronal responses is a fundamental operation present within any
nontrivial nervous system. As a result, various manifestations of this transformation have
been studied, computationally and experimentally, by many researchers. In our work, as in
[Smith and Sherman, 2002], we consider the excitatory input stream as a drive to the post-
synaptic cell and the inhibitory input as a modulation that alters the cell’s responsiveness to
its drive. We neglect such intriguing effects as long-term synaptic scaling [Desai et al., 2002],
changes in intrinsic excitability [Aizenman et al., 2003], and changes in the balance of exci-
tation and inhibition [Somers et al., 1998], which could become relevant in the asymptotic
limit, as well as the effect of attention [Tiesinga, 2005]. Moreover, we assume that success-
ful thalamic relay consists of single spike responses to an input train, neglecting the idea
that, by virtue of their stereotyped form and reliability, thalamic bursts may serve a relay
function [Person and Perkel, 2005, Babadi, 2005]. Other authors have considered how vari-
ations in intrinsic properties of postsynaptic cells determine the input characteristics that
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induce these cells to spike most reliably [Fellous et al., 2001, Schreiber et al., 2004] and how
neuronal processing varies under more general changes in input spike patterns than the ones
that we have considered here (e.g., [Hunter and Milton, 2003, Tiesinga and Toups, 2005]).
While these issues are beyond the scope of this work, our approach can accomodate input
trains that vary stochastically in a variety of ways (see Remark 3.2), and hence it may be
well suited for the future exploration of such issues.

10 Appendices

Appendix A: TC cell with sinh = 0

With sinh = 0, a cell that has just spiked is guaranteed to spike again after at most N = 3
subsequent inputs. Although the intervals Ik are defined in terms of intervals of the slow
variable w, clearly there is also a particular time interval associated with each Ik. In the
particular model (6.13), with sinh = 0, these time intervals are [20, 50), [50, 75.5), [75.5,∞),
where wE

RK · 75.5 ≈ wE
LK. In practice, we used a simulation protocol, rather than determina-

tion of the left knee of N E directly from (6.13), to compute the value 75.5. That is, we found
75.5 to be the minimum value of t such that, given an initial condition with w = wE

RK · t
and with v at the corresponding position on the left branch of N 0, the model cell would
fire in response to an excitatory input of duration 10 msec. This adjustment represents the
modification to wE

LK discussed in Remark 3.1 and is therefore consistent with the rest of the
analysis that we present.

Using these time intervals allows us to compute the transition probabilities between
bins (Ik, j) for j, k = 1, . . . , 3, with j ≤ k. Let p(k1,j1)→(k2,j2) = P [(Ik2

, j2)|(Ik1
, j1)]. To

compute these probabilities, we start with the fate of a cell just after firing, computing
p(3,j)→(k,1) for each relevant (j, k). First, note that since all cells fire from a bin of the form
(I3, j) for some j ≤ 3, and all firing cells are reset together to wE

RK regardless of where
they fired from, p(3,j)→(k,1) is independent of j. In this example, with ginh = 0.12, we have
p(3,j)→(1,1) = P [T1 ∈ [20, 50)], where T1 denotes the time from reset to the onset of the
next excitatory input. Further, P [T1 ∈ [20, 50)] = 3/4, since T1 is selected from a uniform
distribution on [20,60]. Similarly, p(3,j)→(2,1) = 1/4 and p(3,j)→(k,1) = 0 for all k > 2.

Next, we seek values for p(1,1)→(k,2) for each k > 1 and p(2,1)→(k,2) for each k > 2. We have

p(1,1)→(2,2) = P [T1 + T2 + 10 ∈ [50, 75.5)|T1 ∈ [20, 50)],

since the duration of excitation is 10 msec. This can be computed as the ratio of two areas,
either geometrically or by integration, leading to the result that p(1,1)→(2,2) = 2601/9600.
Since N = 3 for sinh = 0, it follows that p(1,1)→(3,2) = 6999/9600, and that p(2,1)→(3,2) =
p(2,2)→(3,3) = 1. This completes the calculation for sinh = 0. The corresponding transition
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matrix for sinh = 0 is thus

P 0 =













0 0 2601/9600 6999/9600 0
0 0 0 1 0
0 0 0 0 1

3/4 1/4 0 0 0
3/4 1/4 0 0 0













where the states of the Markov chain are the bins (1, 1), (2, 1), (2, 2), (3, 2), (3, 3).

Appendix B: TC cell with sinh = 1

The case sinh = 1 requires more analytical computations than the case sinh = 0, since N = 5
for sinh = 1. In this case, p(5,j)→(k,1) are identical to p(3,j)→(k,1), computed for sinh = 0 above,
and are nonzero only for k = 1, 2. The bins for sinh = 1 correspond to times [20,50), [50,80),
[80,110), [110,128), [128,∞). Similarly to the previous case,

p(1,1)→(2,2) = P [T1 + T2 + 10 ∈ [50, 80)|T1 ∈ [20, 50)] = 3/8,

with p(1,1)→(3,2) = 1/2 and p(1,1)→(4,2) = 1/8 by analogous calculations. Along the same lines,

p(2,1)→(3,2) = P [T1 + T2 + 10 ∈ [80, 110)|T1 ∈ [50, 60)] = 5/8,

while p(2,1)→(4,2) = 37/100 and p(2,1)→(5,2) = 1/200. As we proceed further, certain probability
calculations become more involved, because bin membership may be achieved by more than
one path. For example, we see already that a cell may reach bin (I3, 2) from (I1, 1) or from
(I2, 1). Thus,

p(3,2)→(4,3) = P [T1 + T2 + T3 + 20 ∈ [110, 128)|T1 ∈ [20, 50) andT1 + T2 + 10 ∈ [80, 110)]

+ P [T1 + T2 + T3 + 20 ∈ [110, 128)|T1 ∈ [50, 60) andT1 + T2 + 10 ∈ [80, 110)]

= 2123/14250.

30



The full set of calculations reveal that the transition matrix P I for sinh = 1 has the form


















































0 0 3
8

1
2

0 1
8

0 . . . 0

0 0 0 5
8

0 37
100

0 0 1
200

0 0 0

0 0 0 0 1
4

0 6011
13500

0 0 2057
6750

0 0

0 . . . 0 2123
14250

0 0 12127
14250

0 0

0 . . . 0 243
10000

0 0 9757
10000

0

0 . . . 0 1 0 0

0 . . . 0 1 0

0 . . . 0 1
3
4

1
4

0 . . . 0
3
4

1
4

0 . . . 0
3
4

1
4

0 . . . 0
3
4

1
4
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where the states of the Markov chain are the bins (1,1), (2,1), (2,2), (3,2), (3,3), (4,2), (4,3),
(4,4), (5,2), (5,3), (5,4) and (5,5).

Appendix C: Coefficients for matrix (7.14) in the case of time-dependent inhibi-
tion and excitation

To calculate the coefficients cm,n = p(m)p(n) analytically, we compute p(1), which is the
probability that exactly one excitatory input arrives during an epoch of constant inhibition,
and then we compute p(m) for each m = 2, . . . , 6 as the probability of at most m inputs
arriving minus the probability of at most m − 1 inputs arriving. We stop at m = 6 since at
most 6 excitatory inputs can arrive during 175 msec, given the IEIs and excitation duration
that we consider. Let t = 0 denote the time of inhibitory offset, which will last for time
TI ∈ [125, 175]. Define T−1 as the time from the last excitatory onset before t = 0 to the first
excitatory onset after t = 0. Let T1 denote the time of this first excitatory onset. Given that
each excitation endures for 10 msec, T−1 ∈ [30, 70], while T1 ∈ [0, T−1]; see Fig. 5. Finally,
let T2 denote the IEI following the end of the excitatory input that occurs at time T1. Since
T1 < TI must hold, the value of p(1) is the probability that T1 + T2 + 10 < TI . Thus,

p(1) =

∫ 175

125

∫ 70

30

∫ T−1

0

∫ 60

min(TI−T1−10,60)
dT2 dT1 dT−1 dTI

∫ 175

125

∫ 70

30

∫ T−1

0

∫ 60

20
dT2 dT1 dT−1 dTI

=
27

51200
.

For m > 1, each quantity p(m) is given as the ratio of two multiple integrals as well, with one
additional nested integral in each, relative to those used to calculate p(m − 1). Since these
integrals can be evaluated exactly, we obtain exact fractional representations for each, but to
save space, we simply give decimal approximations here: p(2) ≈ .1985, p(3) ≈ .6075, p(4) ≈
.1875, p(5) ≈ .0060, p(6) ≈ 4.731 × 10−6.
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T2

TI

1 T3

T-1

T

t=0

Figure 5: The notation for the calculation of the probabilities p(m). Note that the actual
number of excitatory inputs arriving during the interval of constant inhibition will be between
one and six.
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