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Playing Catch-Up with Iterated Exponentials
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1. INTRODUCTION. Suppose that we have two animals that make the same num-
ber of strides per minute, but that one of them takes larger strides than the other. If the
strides of the smaller animal (the prey) have length a and those of the larger animal
(the predator) have length b, it is easy to see that a persistent predator will always be
able to catch up with its prey. Let us assume that the prey starts one step ahead of the
predator. After n steps the distance between the two is

nb − (n + 1)a = n(b − a) − a

and consequently, if n > a/(b − a), the predator will have overtaken its prey.
Let us now imagine a planet on which creatures move by jumps of increasing length.

A creature on such a planet is at a distance a from where it started after one jump,
a distance a2 after two jumps, and a distance an after n jumps. Let us also assume
that a > 1 so that creatures move away from their starting points. We can again ask
whether a small creature that starts one step ahead of a predator can escape from it. We
assume that the initial step of the predator is of size b > a > 1, so that if bn > an+1,
the smaller creature is in the maw (or the extraterrestrial equivalent) of its predator. A
simple calculation shows that this happens if the predator is sufficiently persistent to
make n jumps, where

n > (log a)

(
log

b

a

)−1

.

Of course, we can imagine an even stranger planet on which a creature makes an
initial jump of size a, followed by a jump that moves it at distance aa from its starting
place, and another that brings it to a distance aaa

, and so on. Thus the distance that
such creatures travel is determined by towers of a.

704 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111



Definition. Given any positive real number a, define the zero tower T (a, 0) of a by
T (a, 0) = a. Recursively, for n ≥ 1 define the nth tower T (a, n) of a by

T (a, n) = aT (a,n−1).

Ackermann has introduced a natural way of ordering operations on real num-
bers [1], so that addition is an operation of type 1, multiplication is of type 2, expo-
nentiation is of type 3, the operation T (a, n) is of type 4, and so on. We therefore live
on a type 2 planet, since our movement in space is determined by operations of type 2.
The two imaginary planets we have described are of types 3 and 4, respectively.

Therefore, creatures on planets of types 2 and 3 cannot escape their predators, even
if they have a head start. Is the same true for creatures on a planet of type 4? Surpris-
ingly, if their step grows to a sufficient size, they will be able to escape faster predators,
no matter how persistent. More precisely, we will prove:

Theorem 1.1. If a ≤ e1/e and b > a, then there exists an index n0(a) such that

T (b, n) > T (a, n + 1)

whenever n > n0(a). If a > e1/e, then there exists a number b0(a) with b0(a) > 0 such
that

T (b, n) < T (a, n + 1)

for all n and all b in (a, b0(a)].

Thus creatures with step size greater than e1/e can escape predators whose initial
step is smaller than b0(a), while smaller creatures always get caught.

2. PROOF OF THE THEOREM. Note that if we define Fa(x) = ax and denote the
n-fold composition of Fa with itself by Fn

a (x), then Fn
a (a) = T (a, n + 1). The graph

of Fa(x) for a < e1/e intersects the line y = x in two points l(a) and r(a), both of
which are to the right of a. Under the iteration of Fa(x), l(a) is attracting, hence the
sequence Fn

a (a) = T (a, n + 1) approaches it from the left. In other words, a creature
whose initial step size a satisfies a < e1/e tires quickly, takes progressively smaller
steps, and never makes it past l(a). It is easy to see that if b > a then either the graph
of Fb(x) does not intersect the line y = x or l(b) is to the right of l(a). In the first case
the larger creature never tires, whereas in the second it moves toward the point l(b).
In either case it will overtake the smaller creature eventually (see Figure 1). The case
a = e1/e can be treated similarly.

On the other hand, when a > e1/e, the graph of Fa(x) does not cross the diagonal,
so Fa has no fixed points. In this case we show that the prey may escape to infinity and
thereby elude its predator.

Note that if the initial steps are slightly larger than e1/e the creature will initially
slow down until it makes it past the point x = e, after which it will catch a second
wind, and make progressively larger leaps. Still, it is not clear whether the prey will be
able to escape its predator.

To handle the case a > e1/e we convert the problem of comparing towers of powers
of different bases to a problem of comparing iterates of an exponential map. We need
the following lemma:
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Figure 1. The towers of a and b converge to l(a) and l(b), respectively.

Lemma 2.1. Fix λ and µ satisfying λ > µ > 0, and let η > 0. If x > 0 and y − x >

log ((η + 1)λ/µ), then

µey − λex > ηλ > 0.

Proof. We have

ey−x > (η + 1)
λ

µ
,

so

µey−x − λ > ηλ,

and therefore

µey − λex > exηλ > ηλ.

Let Eλ(x) = λex and Eµ(y) = µey with λ > µ > 1/e, and let x and y be as in
Lemma 2.1. Choose η such that

log

(
η + 1

ηµ

)
< 1. (1)

Analogous to the case of Fa , E j
λ signifies the j-fold iteration of the exponential

map Eλ.

Corollary 2.2. Under the assumptions of Lemma 2.1, E j
µ(y) > E j

λ(x) holds for all
j ≥ 1.
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Proof. Using the fact that x ≥ 1 + log x for x > 0, we can conclude on the basis of
Lemma 2.1 and inequality (1) that

µey − λex > ηλ > log ηλ + log
η + 1

ηµ
= log

(η + 1)λ

µ
,

so Eλ(x) and Eµ(y) satisfy the hypothesis of Lemma 2.1. The proof now follows by
induction.

We now return to the proof of the theorem. Fix a with a > e1/e. Let ey =
T (a, n0 + 1) and µ = log a. Also, let ex = T (b0, n0) and λ = log b0, where b0 satis-
fying a < b0 < aa and n0 are to be determined later. For the given a, fix η such that
(1) holds. Note that λ = log b0 > log a = µ > 1/e. We have

Eµ(y) = µey = T (a, n0 + 1) log a

and

Eλ(x) = λex = T (b0, n0) log b0.

We show that there exist n0 and b0 such that x and y satisfy the conditions of
Lemma 2.1. Assume that we have done this. From Corollary 2.2 it follows that
E j

µ(y) > E j
λ(x) for all j . In terms of towers, we have

T (a, n0 + j) log a > T (b0, n0 + j − 1) log b0

for all j . Using the fact that log b0 > log a and appealing to the monotonicity of the
towers, we conclude that

T (a, n) > T (b, n − 1) (2)

for all b in (a, b0) and for all n. It thus suffices to find n0 and b0 such that x > 0 and
y − x > (η + 1)λ.

Because a > 1/e the condition x > 0 follows automatically for any b0 larger than
a and any n0. Since T (a, n) − T (a, n − 1) → ∞ as n → ∞, we can find n0 such that(

T (a, n0) − T (a, n0 − 1)
)

log a > (η + 3) log aa .

Therefore, (
T (a, n0) − T (a, n0 − 1)

)
log a > (η + 3) log b0,

for any value of b0 for which a < b0 < aa .
Let b1(> a) be defined by

T (b1, n0 − 1) − T (a, n0 − 1) = 1.

Similarly, we choose b2 close enough to a so that

T (a, n0 − 1)(log b2 − log a) < log b2.

Clearly, a < b1, b2 < aa . Let b0 = min{b1, b2}. From the definition of x and y it fol-
lows that

y − x = T (a, n0) log a − T (b0, n0 − 1) log b0
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or

y − x = (
T (a, n0) − T (a, n0 − 1)

)
log a − T (a, n0 − 1)(log b0 − log a)

− (
T (b0, n0 − 1) − T (a, n0 − 1)

)
log b0.

That is, we have

y − x > (η + 3) log b0 − 2 log b0

or

y − x > (η + 1) log b0 = (η + 1)λ.

Hence, given any a we can produce b0 and n0 so that (2) holds.

3. REMARKS. The smallest initial step a predator needs to take to catch a prey with
initial step of size a has a sharp lower bound γ (a) given by

γ (a) = sup
{
b : T (a, n + 1) > T (b, n) for all n

}
.

We call γ the catch-up function. The previous theorem implies that γ (a) = a if
a ≤ e1/e and γ (a) > a if a > e1/e. We can also define γ by letting bn(a) be the initial
step size necessary to catch up in n steps, so that

T
(
bn(a), n

) = T (a, n + 1).

Since n is the number of steps that a creature with initial step size bn(a) needs to take
to catch the creature with initial step size a, it follows that γ (a) = limn→∞ bn(a).

The catch-up function has some interesting properties. Using estimates like those
in the previous section, one can show that γ is an increasing function. Other properties
of the function γ (a) are more difficult to establish. We conjecture that the function is
smooth. It cannot be analytic at the point a = e1/e, and we conjecture that at the point
(e1/e, γ (e1/e) the graph of γ and the diagonal have a tangency of infinite order.

The catch-up problem has its origins in complex dynamics. The first and third au-
thors have defined a piecewise semilinear family of continuous maps hλ acting in the
plane that has dynamical and topological properties similar to those exhibited by the
complex exponential family λez (see [2] and [3]). This family acts exponentially in
the x-coordinate (the action is conjugate to λex ), but essentially linearly in the y-
coordinate. In [6], the third author has shown that for any pair of parameters λ and µ

the maps hλ and hµ are not topologically conjugate. The proof is based on the impos-
sibility of catch-up as described earlier, now in the setting of hλ.
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An Intuitive Derivation of Heron’s Formula
Daniel A. Klain

From elementary geometry we learn that two triangles are congruent if their edges
have the same lengths, so it should come as no surprise that the edge lengths of a
triangle determine the area of that triangle. On the other hand, the explicit formula
for the area of a triangle in terms of its edge lengths, named for Heron of Alexandria
(although attributed to Archimedes [4]), seems to be less commonly remembered (as
compared with, say, the formulas for the volume of a sphere or the area of a rectangle).

One reason why Heron’s formula is so easily forgotten may be that proofs are usu-
ally presented as unwieldy verifications of an already known formula, rather than as
expositions that derive a formula from scratch in a constructive and intuitive manner.
Perhaps the derivation that follows, while not truly elementary, will render Heron’s
formula more memorable for its symmetric and intuitive factorization.

The first step of this derivation is to recall that the square of the area of a triangle is a
polynomial in the edge lengths. More generally, suppose that T is a simplex in R

n with
vertices x0, x1, . . . , xn , where x0 = 0, the origin. Let A denote the n × n matrix whose
columns are given by the vectors x1, . . . , xn , and suppose that the xi are ordered so
that A has positive determinant. The volume of T is then given by det(A) = n! V (T ),
implying that

V (T )2 = 1

(n!)2
det(At A), (1)

where At is the transpose of the matrix A. The entries of the matrix At A are dot
products of the form xi · x j . From the identity

xi · x j = 1

2

(|xi |2 + |x j |2 − |xi − x j |2
)

(2)

it then follows that the value of V (T )2 is a polynomial in the squares of the edge
lengths of T . Said differently, if T has edge lengths ai j = |xi − x j |, then V (T )2 is
a polynomial in the variables bi j = a2

i j , as well as in the variables ai j themselves.
Since the determinant of an n × n matrix is a homogeneous polynomial of degree n
in the matrix entries, the polynomial f (ai j ) = V (T )2 is a homogeneous polynomial
of degree 2n. This polynomial is sometimes formulated in terms of linear algebraic
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