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Gutnisky DA, Josić K. Generation of spatiotemporally correlated
spike trains and local field potentials using a multivariate autoregres-
sive process. J Neurophysiol 103: 2912–2930, 2010. First published
December 23, 2009; doi:10.1152/jn.00518.2009. Experimental ad-
vances allowing for the simultaneous recording of activity at
multiple sites have significantly increased our understanding of the
spatiotemporal patterns in neural activity. The impact of such
patterns on neural coding is a fundamental question in neuro-
science. The simulation of spike trains with predetermined activity
patterns is therefore an important ingredient in the study of
potential neural codes. Such artificially generated spike trains
could also be used to manipulate cortical neurons in vitro and in
vivo. Here, we propose a method to generate spike trains with
given mean firing rates and cross-correlations. To capture this
statistical structure we generate a point process by thresholding a
stochastic process that is continuous in space and discrete in time.
This stochastic process is obtained by filtering Gaussian noise
through a multivariate autoregressive (AR) model. The parameters
of the AR model are obtained by a nonlinear transformation of the
point-process correlations to the continuous-process correlations.
The proposed method is very efficient and allows for the simula-
tion of large neural populations. It can be optimized to the structure
of spatiotemporal correlations and generalized to nonstationary
processes and spatiotemporal patterns of local field potentials and
spike trains.

I N T R O D U C T I O N

The generation of artificial spike trains with predeter-
mined spatiotemporal characteristics is of considerable in-
terest in both theoretical and experimental neuroscience. In
recent years there have been significant advances in simul-
taneous recording of neural activity at multiple sites. The
resulting data provide strong evidence of spatial and tem-
poral correlations in neural tissue (Bair et al. 2001; Gray
et al. 1989; Heck et al. 2002; Kohn and Smith 2005; Zohary
et al. 1994). Complex spatiotemporal patterns, such as
synchronous and phase-locked oscillatory activity, have
been observed experimentally and shown to play an impor-
tant role in information processing (Engel et al. 2001; Fries
et al. 2001; Gray et al. 1989; Kohn and Smith 2005;
MacLeod and Laurent 1996; Riehle et al. 1997; Steinmetz
et al. 2000; Vaadia et al. 1995; Wehr and Laurent 1996;
Womelsdorf et al. 2006). However, the functional role of
correlated activity is not fully understood. Theoretical tools

can guide our efforts to understand the impact of spatiotem-
poral activity structure on neural coding (Averbeck and Lee
2006; de la Rocha et al. 2007; Gutnisky and Dragoi 2008;
Markowitz et al. 2008; Moreno et al. 2002; Poort and
Roelfsema 2009; Romo et al. 2003; Salinas and Sejnowski
2000, 2001; Shea-Brown et al. 2008).

Artificially generated spike trains with predetermined
statistical properties could be used to study and manipulate
cortical neurons in silico, in vitro, and in vivo (Netoff et al.
2005). For instance, optical recording and controlled stim-
ulation of single neurons at many different locations along
their dendritic tree is now a possibility (Callaway and Katz
1993; Duemani Reddy et al. 2008; Gasparini and Magee
2006; Huber et al. 2008). These techniques are dramatically
increasing our understanding of the computational capabil-
ities of single neurons. Advances in two-photon stimulation
(Nikolenko et al. 2007, 2008) allow neurotransmitter uncag-
ing at different synaptic locations in a precisely determined
spatiotemporal pattern. Optical stimulation of neuroengi-
neered microbial opsins can be used to activate and inacti-
vate specific neural populations (Boyden et al. 2005; Han
and Boyden 2007; Zhang et al. 2006, 2007a,b). These
approaches will offer unprecedented insights into the input–
output properties of single cells and neuronal networks.
However, because the number of potential activation pat-
terns is practically infinite, it will be possible to characterize
them only statistically. The generation of neural activity
patterns with a given statistical structure is therefore essen-
tial in the design of such experiments.

We propose a method to generate spike trains with pre-
determined mean firing rates and cross-correlations. These
measures are typically used to characterize data from mul-
tiple electrode recording experiments. The cross-correlo-
gram is widely used to describe the degree of interdepen-
dence between the activity of two neurons (Perkel et al.
1967) and study aspects of cortical processing. For instance,
the presence and strength of monosynaptic connections can
be usually inferred from the cross-correlogram (Alonso and
Martinez 1998; Alonso et al. 2001; Fetz and Gustafsson
1983; Usrey et al. 1999; Veredas et al. 2005), whereas
periodically recurring peaks in the cross-correlogram indi-
cate the presence of oscillatory neural activity (Muresan
et al. 2008). Furthermore, cross-correlograms have been
used to study how functional connectivity among neurons
depends on stimulus selectivity (Bair et al. 2001; Gray et al.
1989; Gutnisky and Dragoi 2008; Kohn and Smith 2005;
Smith and Kohn 2008), task demands (Cohen and Newsome
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2008; Poort and Roelfsema 2009; Riehle et al. 1997; Stein-
metz et al. 2000; Vaadia et al. 1995), previous stimulation
(Gutnisky and Dragoi 2008), and cognitive processing (En-
gel et al. 2001; Fries et al. 2001; Womelsdorf et al. 2006).
Despite some efforts (Bohte et al. 2000; Kuhn et al. 2003;
Niebur 2007) there are no general methods to efficiently
generate a large number of spike trains with predetermined
firing rates and arbitrary spatiotemporal correlations [but see
the DISCUSSION section and similar methods proposed inde-
pendently in Brette (2009), Krumin and Shoham (2009), and
Macke et al. (2009)].

The proposed algorithm generalizes the following simple
idea—a Poisson spike train can be approximated by discretiz-
ing time into bins of length �t and assuming a spike in each bin
occurs with probability r�t independently of all other events.
More generally, for a collection of spike trains with complex
spatial and temporal structure, this probability becomes depen-
dent on past and current spikes in all the spike trains. To
capture this structure we generate a continuous stochastic
process1 by filtering Gaussian noise through a multivariate
autoregressive model (AR). We threshold this process to
generate the desired collection of spike trains. The param-
eters of the AR are obtained by transforming the spike train
correlations to continuous-process correlations. This ap-
proach allows us to optimize our algorithm to efficiently
simulate spatiotemporal activity patterns in large groups of
neurons. The ideas are easily extended to nonstationary
statistics and simulations of neural populations with prede-
termined spike-triggered averages (STAs) of the local field
potential (Fries et al. 2001). The algorithms described are
implemented in Matlab (freely available at: http://www.
math.uh.edu/�josic/code).

We first illustrate these ideas in the case of a single spike
train. We next extend the approach to generate correlated
spike train pairs. Several examples are provided that illus-
trate the method: single spike trains with almost absolute
refractory period, populations with oscillatory cross-corre-
lations, and experimentally constrained spike trains. We
demonstrate how the algorithm can be extended to generate
spike trains with time-varying statistics and spike-field co-
herence. Finally, we show how the level of synchrony in a
presynaptic neural population can affect the firing rate of a
conductance-based neural model.

M E T H O D S

Setup

The dependencies of a collection of spike trains are frequently
characterized by covariance density functions (cross-correlation
function). If Ni(a, b) denotes the number of spikes fired by neuron
i in the time interval (a, b), then the covariance density is defined
by (Cox and Isham 1980)

cov �Ni�t, t � �t�, Nj�t � �, t � � � �t�� � ci,j����t2 � o��t2� (1)

where o(�t2) represents terms that decay faster than �t2.
In trying to statistically describe a collection of spike trains, one is

faced with the problem of estimating ci,j(t) (Bair et al. 2001; Brody
1999a,b; Perkel et al. 1967). Our goal is the opposite—we prescribe
ci,j(t) and aim to simulate a collection of spike trains with these
statistics.

We start by discussing the second-order characterization of a
collection of spike trains. Next we review the theory of autoregressive
(AR) processes and discuss how to transform an AR process to a spike
train using thresholding. Finally, we describe how to find an AR
process that produces a collection of spike trains with the desired
statistics after thresholding.

Covariance matrix of univariate and multivariate
point process

A spike train xi(t) is a sequence of 1s and 0s and the occurrence of
a spike between the times t0 and t0 � �t is denoted by xi(t0) � 1. The
magnitude of �t determines the resolution at which the simulation is
performed.

We assume that each spike train xi(t) is stationary, with fixed rate
ri (generalizations are discussed in a following subsection).
The probability of firing during a time interval �t is therefore
Pr [xi(t) � 1] � ri�t and 	xi(t)
 � ri�t, with the expectation 	 � 
,
taken over all time bins. The covariance between the number of
spikes in time bins that are separated by � units of time is given by

ci,j��� � 	xi�t�xj�t � ��
 � 	xi�t�
	xj�t�


� 	xi�t�xj�t � ��
 � rirj�t2 (2)

Note that ci,i(0) � 	xi(t)
2
 � 	xi(t)


2 � ri�t � O(�t2) is the variance
of xi(t).

To simplify notation, in the following we measure time in discrete
increments of �t, so that t � n refers to the time bin of width �t,
starting at time n�t. Since ci,j(�) is the covariance of xi(t) and xi(t �
�), we see that the Toeplitz matrix

Ci � �
1 ci,i �1� ci,i �2� · · · ci,i �L � 3� ci,i �L � 2� ci,i �L � 1�

ci,i �1� 1 ci,i �1� · · · ci,i �L � 4� ci,i �L � 3� ci,i �L � 2�
ci,i �2� ci,i �1� 1 · · · ci,i �L � 5� ci,i �L � 4� ci,i �L � 3�

···
···

···
· · ·

···
···

···
ci,i �L � 3� ci,i �L � 4� ci,i �L � 5� · · · 1 ci,i �1� ci,i �2�
ci,i �L � 2� ci,i �L � 3� ci,i �L � 4� · · · ci,i �1� 1 ci,i �1�
ci,i �L � 1� ci,i �L � 2� ci,i �L � 3� · · · ci,i �2� ci,i �1� 1

�
(3)

is the covariance matrix of the collection of random variables xi(t),
xi(t � 1), . . . , xi(t � L � 1). Since Ci must be positive definite, the
covariances ci,i cannot be arbitrary.

We denote the binary vector of events at time t by x�(t) � [x1(t),
x2(t), . . . , xN(t)], where N is the number of spike trains. The
matrices C(�) are the covariance matrix of the random variables
x�(t) and x�(t � �),

1 All the processes that we use in simulations are discrete in time,
although some are continuous and some discrete in space. Rather than using
the phrases “continuous in space,” “discrete in time,” or “discrete in space
and time,” we will refer to them as continuous and discrete processes,
respectively.
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C��� � �
c1,1 ��� c1,2 ��� · · · c1,N � 1 ��� c1,N ���
c2,1 ��� c2,2 ��� · · · c2,N � 1 ��� c2,N ���

···
···

· · ·
···

···
cN � 1,1 ��� cN � 1,2 ��� · · · cN � 1,N � 1 ��� cN � 1,N ���

cN,1 ��� cN,2 ��� · · · cN,N � 1 ��� cN,N ���
�
(4)

The covariance matrices obtained from the collection of random
variables x�(t), x�(t � 1), . . . , x�(t � L � 1) are C(0), C(1), . . . , C(L �
1) (as defined by Eq. 4). We can define C as the (NL) � (NL)
block–Toeplitz matrix

C � �
C �0� C �1� · · · C �L � 2� C �L � 1�
C �1� C �0� · · · C �L � 3� C �L � 2�

···
···

· · ·
···

···
C �L � 2� C �L � 3� · · · C �0� C �1�
C �L � 1� C �L � 2� · · · C �1� C �0�

�
(5)

The spatiotemporal correlations of N spike trains are described by C
and r� � (r1, r2, . . . , rN). Such matrices completely describe the

second-order statistics of spike counts over windows of arbitrary size
(Cox and Isham 1980).

If the cross-covariances are equal for every neuron pair, that is
ccross(�) � ci,j(�) for all (i, j), where i  j, and autocovariances are
equal for every neuron, cauto(�) � ci,i(�) for all i, we can write C(�)
as the Kronecker tensor product (R)

C � Coff � 1N � Cdiag � IN

where IN is the identity matrix of size N, 1N is a matrix of 1s, and
Coff and Cdiag are L � L Toeplitz matrices, defined as

Coff �

�
ccross �0� ccross �1� · · · ccross �L � 2� ccross �L � 1�
ccross �1� ccross �0� · · · ccross �L � 3� ccross �L � 2�

···
···

· · ·
···

···
ccross �L � 2� ccross �L � 3� · · · ccross �0� ccross �1�
ccross �L � 1� ccross �L � 2� · · · ccross �1� ccross �0�

�
and

Cdiag �

�
cauto �0� � ccross �0� cauto �1� � ccross �1� · · · cauto �L � 2� � ccross �L � 2� cauto �L � 1� � ccross �L � 1�
cauto �1� � ccross �1� cauto �0� � ccross �0� · · · cauto �L � 3� � ccross �L � 3� cauto �L � 2� � ccross �L � 2�

···
···

· · ·
···

···
cauto �L � 2� � ccross �L � 2� cauto �L � 3� � ccross �L � 3� · · · cauto �0� � ccross �0� cauto �1� � ccross �1�
cauto �L � 1� � ccross �L � 1� cauto �L � 2� � ccross �L � 2� · · · cauto �1� � ccross �1� cauto �0� � ccross �0�

�
We next review the theory of autoregressive processes.

Univariate autoregressive processes

A univariate autoregressive (AR) process of order L is defined as

y�t� � �
k � 1

L

ak � y�t � k� � n�t� (6)

where the sequence y(t) is a collection of continuous random vari-
ables, each with 0 mean and variance R(0), n(t) are independent
univariate Gaussian random variables with 0 mean and variance �2,
and the constants ak characterize the AR process. Using arbitrary
initial values y(0) to y(L), and iterating Eq. 6 starting at time t � L, we
see that for subsequent times each y(t) is a sum of Gaussian random
variables and thus is itself Gaussian. Multiplying by y(t � �) and
taking the expected value of both sides in Eq. 6, we obtain

	y�t� � y�t � ��
 � �
i � 1

L

ai � 	y�t � i� � y�t � ��
 � 	n�t� � y�t � ��


Defining R(�) � 	y(t) �y(t � �)
 we obtain

R��� � �
i � 1

L

ai � R��� � i�� for � � 1

and

R�0� � �
i � 1

L

ai � R�i� � �2 for � � 0 (7)

The variance is given by

�2 � R�0� � �
i � 1

L

ai � R�i� (8)

Equations 7 and 8 are known as the Yule–Walker equations
(Shanmugan and Breipohl 1988) and can be expressed in a matrix
form as

�
R �1�
R �2�

···R �L � 1�
R �L�

�
Ç
R

�

�
R �0� R �1� · · · R �L � 2� R �L � 1�
R �1� R �0� · · · R �L � 3� R �L � 2�

···
···

· · ·
···

···R �L � 2� R �L � 3� · · · R �0� R �1�
R �L � 1� R �L � 2� · · · R �1� R �0�

�
T

�
a1
a2···aL � 1
aL

�
Ç
A

(9)

The parameters needed to obtain an AR process with a given
autocovariance R(�) can therefore be obtained by

A � T � 1 � R (10)

To define a Gaussian process in discrete time with prescribed
autocovariance we simply follow the steps described earlier in re-
verse. Given an autocovariance function R(�) defined for � � {0,
1, . . . , L}, we find coefficients ak from Eq. 10 and the variance of the
Gaussian noise n(t) from Eq. 8. The AR process obtained by iterating
Eq. 6 has the desired statistics.

Innovative Methodology

2914 D. A. GUTNISKY AND K. JOSIĆ

J Neurophysiol • VOL 103 • MAY 2010 • www.jn.org

 on M
ay 12, 2010 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


Thresholding the AR process to obtain a univariate
spike train

The simplest way of mapping continuous to binary variables is by
assigning the value “1” whenever a threshold is exceeded and “0”
otherwise. This operation can be used to convert the AR process
described in the previous section to a binary sequence, i.e., a spike
train. In particular, if y(t) is defined using an AR process (Eq. 6), we
define the spike train x(t) as

x�t� � � 0 if y�t� � �
1 if y�t� � �

(11)

so that x(t) � H�[y(t)], where H� is the Heaviside function. For each
t, the random variable y(t) is Gaussian with zero mean and variance
R(0). Therefore the probability that x(t) � 1—i.e., the firing rate of the
spike train obtained by thresholding—is

r �
1

�2	R�0�
	

�

�

e
�
 y2

2R�0��dy (12)

The threshold � divides the y(t)–y(t � �) plane into four regions
(Fig. 1) corresponding to a spike at time t and time t � � (red), no
spikes (black), or a spike either at t or t � � (blue). The probability that
both y(t) and y(t � �) jointly exceed the threshold is given by the
integral of their joint density over the upper right quadrant (red
region) in Fig. 1. The dependencies between y(t) and y(t � �) [i.e.,
R(�)] imply dependencies between x(t) and x(t � �). We define p(�) as
the mass of the bivariate Gaussian distribution above the threshold �.
Defining2 a � y(t) and b � y(t � �)

p��� � 	
�

�

	
�

�

1

2	�1 � R���2
exp��

a2 � b2 � 2R���ab

2�1 � R���2�
�dadb

(13)

For the spike train x(t), the covariance is determined by the
probability of having two spikes � time units apart, since c(�) �
	x(t)x(t � �)
 � r2. Thresholding therefore results in a spike train with
autocovariance function related to p(�) by

p��� � 	x�t�x�t � ��
 � c��� � r2 (14)

Generating a univariate spike train

We now return to the problem of generating a univariate spike train
with a prescribed covariance function. This can be achieved by
inverting the steps in the previous section—we start with the firing
rate r of a neuron. Since we assumed that R(0)—the variance of
y(t)—is unity, we can invert Eq. 12 to obtain � in terms of r. Similarly,
the autocovariance function c(�) is related to p(�) via Eq. 14. We can
therefore use Eq. 13 to determine R(�) from the threshold � and c(�).

In particular, fixing � and solving for R(�) in terms of p(�) using
numerical integration gives a monotonic function that can be used to
convert the autocovariance function of the spike train into the auto-
covariance of a continuous stochastic process (Fig. 2).

The resulting autocovariance R(�) determines the coefficients ak of
the AR process (Eqs. 9 and 10). The continuous variable y(t) obtained
by filtering the Gaussian noise n(t) using the filter defined by the
coefficients ak has autocorrelation R(�), which equals the autocovari-
ance when the variance of y(t) is unity. By construction, applying the
Heaviside function with threshold � to y(t) generates a spike train x(t)
with mean firing rate r and autocovariance c(�).

Extension to a multivariate process

In this section we give a brief overview of the extension to
populations of spike trains with firing rates r� � (r1, r2, . . . , rN) and
cross-correlation functions ci,j(�). The multivariate point process is
thus defined through the (N � L) � (N � L) block–Toeplitz matrix C
(Eq. 5). A vector of thresholds �� � {�1, �2, . . . , �N} is calculated
using Eq. 12 based on the vector of firing rates r�. The covariance
matrix of the continuous stochastic process is obtained by applying
Eq. 13 to each pair (i, j) for all time lags �� � (�1, �2, . . . , �L�1) to get
the covariances Ri,j(�). We obtain the following (N � L) � (N � L)
block–Toeplitz covariance matrix

T � �
R �0� R �1� · · · R �L � 2� R �L � 1�
R �1� R �0� · · · R �L � 3� R �L � 2�

···
···

· · ·
···

···
R �L � 2� R �L � 3� · · · R �0� R �1�
R �L � 1� R �L � 2� · · · R �1� R �0�

�
where each R(�) is an N � N matrix [note that Ri,j(�) � Rj,i(��)]

R���

� �
1 R1,2 ��� · · · R1,N � 1 ��� R1,N ���

R2,1 ��� 1 · · · R2,N � 1 ��� R2,N ���
···

···
· · ·

···
···

RN � 1,1 ��� RN � 1,2 ��� · · · 1 RN � 1,N ���
RN,1 ��� RN,2 ��� · · · RN,N � 1 ��� 1

�

2 For simplicity we fix the variance of y to be 1 because it is just a scaling
factor.

FIG. 1. Transformation of a bivariate random Gaussian variable to a biva-
riate point process. Thresholding the random variables y(t) and y(t � �) at �
divides the plane into 4 regions. Red dots represent a spike at time t followed
by a spike at time t � �. Blue dots represent a spike either at time t (top left)
or at time t � � (bottom right). Black dots represent the absence of spikes at
either time. The correlation between y(t) and y(t � �) determines the proba-
bility of a spike at time t and at time t � �, i.e., the probability of choosing a
point in the red portion of the plane (Eq. 13).

0   0.25 0.750.5 1   

-0.5

0

0.5

1

-0.25

0.75

0.25

Spike-train correlations (coinc./spike)

C
on

tin
uo

us
 c

or
re

la
tio

ns

FIG. 2. Correspondence between the spike-train correlations and the Gauss-
ian process. The transformation from point-process correlations to continuous
correlations is nonlinear and depends on the threshold �. This example is for
a neuron firing at 50 Hz.
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A multivariate autoregressive process of order L is defined as

y��t� � �
i � 1

L

Ak � y��t � i� � n� �t� (15)

where each Ak is a symmetric N � N matrix. We again have to solve

A � T � 1 � R (16)

with A and R given by

A � �
A1

A2···
AL � 1

AL

� R � �
R�1�
R�2�

···
R�L � 1�

R�L�
� (17)

The covariance matrix of the multivariate Gaussian random vari-
able n�(t) is

� � R�0� � �
i � 1

L

Ai � R�i� (18)

Finally, to obtain the spike trains x�(t) the vector variable y�(t) is
thresholded using the vector of thresholds ��.

Summary of the algorithm to generate a multivariate process

We summarize the steps used to generate spike trains with given
spatiotemporal structure. The inputs to the algorithm are the desired
cross-correlations ci,j(�) for every pair of neurons (i, j) for a finite
number of time lags � � {0, 1, . . . , L} and the firing rates of each
neuron ri. An outline schematic of the algorithm is shown in Fig. 3.

In the simulations, the spike-train covariances were normalized by
the geometric mean of the firing rates

cij��� �
	xi�t�xj�t � ��
 � 	xi�t�
	xj�t�


�	xi�t�
	xj�t�


For the continuous process we used R(0) � 1 (i.e., the continuous
variables will be Gaussian with unit variance). Thus the covariances
equal the correlations and are measured in units of coincidences/spike.
Using this normalization, the probability of having coincident spikes
in two bins � time units apart for two neurons i, j is pi,j(�) �
ci,j(�)�ri �rj � rirj (for simplicity we set �t � 1 in all simulations).
We chose this normalization because it is one of the most commonly
used in experimental work (e.g., Bair et al. 2001; Kohn and Smith
2005). Using Eqs. 12 and 13 we calculate the thresholds �i. The
continuous-process correlations Ri,j(�) are obtained by finding
bivariate Gaussian distributions with mass above � equal to p(�)
(Eq. 13).

To obtain the parameters of the multivariate autoregressive
process, Ai,j(k) and �, we solve the linear system in Eqs. 16 and 18.

define ri

calculate θi

define cij( )

calculate Rij( )

solve the MAR

Aij(k) Σ

generate noisefilter

threshold θi

yi(t)

xi(t)

τ

τ

FIG. 3. Description of the multivariate spike-train generation algorithm.
The inputs to the algorithm are the neural firing rates ri and the pairwise
cross-correlations cij(�). The thresholds �i depend on ri and the time discreti-
zation (�t). The next step is the calculation of the continuous cross-correlations
Rij(�) and the solving of the multivariate autoregressive (AR) model equations.
Gaussian noise is generated with covariance � and filtered using the AR matrix
parameters Aij(k). Finally, the output spike trains xi(t) are obtained after
thresholding the continuous variables yi(t) at �i.
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FIG. 4. Example of filtering and thresholding a neural pair. Two Gaussian random vectors are filtered using an AR model. The resulting random variables
(blue and red curves) are temporally and spatially correlated. The green dots represent the simultaneous firing of the 2 neurons.
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To obtain the continuous variables yi(t), we filter the time-
independent Gaussian random noise ni(t) with covariance matrix �,
through the AR with parameters Ai,j(k) using Eq. 15 (Fig. 4).
Finally, the population spike trains xi(t) are obtained by threshold-
ing yi(t) with �i for each neuron i.

Notes on the implementation: complexity
and memory requirements

We next discuss the computational costs and optimization strategies
available in certain special cases. After converting the block–Toeplitz
covariance matrix C into the continuous-process covariance matrix T,
we have to solve a linear system A � T�1 �R. The matrix T is NL �
NL, whereas A and R are NL � L (N is the number of neurons and L
is the order of the AR). The Cholesky factorization of T is O(N3L3),
but the subsequent operations needed to solve the linear system are
only O(N2L2). More efficient implementations are available by taking
advantage of the block–Toeplitz structure of T (it has only N2L
different entries) and many algorithms are applicable to positive-
definite block–Toeplitz matrices (Akaike 1973; Ammar 1996; Ammar
and Gragg 1988; Kamm and Nagy 2000) and the special case of
Toeplitz–block–Toeplitz linear systems (Wax and Kailath 1983).

After obtaining the parameter matrix A we have to generate Gauss-
ian noise with covariance � and apply the autoregressive equations
(Eq. 15). Defining M as the number of time steps that will be
computed, the number of computations needed to obtain y�(t) is
O(N2LM). Therefore the computational time is linear in the spike-train
length but quadratic in the number of neurons. Alternatively, the AR
process can be written as an infinite-impulse response (IIR) filter
(Shanmugan and Breipohl 1988). In this case, the computation of y�(t)
is O(N2M log M) for L �� M. The last equation indicates that the
computational time is independent of the maximum correlation length
L when using the frequency-domain approach. With programs such as
Matlab the use of loops may be less efficient than implementing the
filter approach, especially when L �� log (M). It is also possible to
obtain y�(t) using a moving-average process (FIR filter) instead of an
AR process (Krumin and Shoham 2009).

Optimizations

In many practical cases the spatiotemporal covariances have additional
structure. An important case is when the covariance is the product of a
function of the neuron number and a function of the time lag

Ri, j��� � f�i, j�g��� with f�i, j� � f�j, i� i 
 j

Ri,i��� � d���

Note that R will be symmetric since Rij(�) � Rji(��) implies g(�) �
g(��). The last equation allows us to have a different time depen-
dence for the cross-correlations and the autocorrelations. Using the
Kronecker tensor product we can write T compactly

T � G � F � �D � G� � IN

where G and D are L � L Toeplitz matrices with row entries g(�) and
d(�), respectively (� � 0, 1, . . . , L � 1), and F is an N � N symmetric
matrix with values [F]ij � f(i, j). We also define the matrices Roff and
Rdiag as the L � L Toeplitz matrices, with row entries g(�) and d(�),
respectively, with � � 1, 2, . . . , L.

We can factorize F � P�Pt with the columns of P having the
eigenvectors of F and � the eigenvalues (�i) on its diagonal. We
define the N � N matrices �i to have a single nonzero entry [�i]ii �
�i. The linear system TA � R takes the form


 �
i � 1

N

�G � P�iP
t� � �D � G� � IK�
 �

i � 1

N

�Aoff �i� � P�iP
t�

� Adiag � IK� � 
 �
i � 1

N

�Roff � P�iP
t� � Rdiag � IK�

where Aoff(i) and Adiag(i) are the parameter matrices to be determined.
Using the fact that PPt � PtP � IN and �i�j � 0 for i  j

Adiag � �D � G� � 1Rdiag (19)

Aoff�i� � ��iG � D � G� � 1�Roff � GAdiag� (20)

Instead of having to solve one NL � NL linear system we have
to solve N � 1 Toeplitz-structured systems of size L � L. For such
systems the calculations are linear in the number of neurons and
the memory requirement for the AR parameters drop to (N � 1)L.

We also consider the special case of a population consisting of Nsub

subpopulations, where subpopulation i contains ni neurons. The cross-
correlations for neurons within a subpopulation are identical, whereas
neurons in different subpopulations are uncorrelated. The matrix F
can then be written as

F � �
1n1

1n2
· · ·

· · ·
· · · 1nNsub � 1

1nNsub

� .

In this case all the eigenvalues of F are 0 except for the Nsub eigenvalues (�1,
�2, . . . , �Nsub

) � (n1, n2, . . . , nNsub
). In this way, Eq. 20 reduces to

Aoff�i� � �G�ni � 1� � D� � 1�Roff � GAdiag� for i

� 1, 2, · · · , Nsub (21)

There are Nsub � 1 equations to solve and thus the number of linear
systems depends on the number of subpopulations but does not
depend on the number of cells within each subpopulation.

Generalization to nonstationary spike trains

In the previous sections we assumed that the firing rate and the
correlations do not change in time. A spike train with time-dependent
firing rate r(t) can be obtained by using a time-dependent threshold
and solving Eq. 12 at each time step. The continuous-process auto-
covariance R(t1, t2) � cov [y(t1), y(t2)] � 	y(t1) �y(t2)
 is obtained by
solving a time-dependent version of Eq. 13

p�t1, t2� � 	
��t1�

�

	
��t2�

�

1

2	�1 � R�t1, t2�
2

e
�� a2 � b2 � 2R�t1,t2�ab

2�1 � R�t1,t2�2� �dadb

p�t1, t2� � 	x�t1�x�t2�
 � c�t1, t2� � r�t1�r�t2�

The stationary autocovariance is a special case: R(t1, t2) � R(t2 �
t1) � R(�). Note that R(t1, t2) may be time dependent, even if the
point-process autocovariance ci,i(�) is not because R(t1, t2) depends on
the threshold �(t).

The next step is to generate a continuous process with zero mean
and covariance R(t1, t2). We generate the nonstationary continuous
process by means of a time-varying autoregressive process

y�t� �
1

a0�t�
� �
k � 0

L

ak�t� � y�t � i� � n�t�� (22)

where the parameters ak(t) are time dependent. For a given, nonstationary
cross-covariance R(t1, t2), these parameters can be obtained by solving
the nonstationary Yule–Walker equations (Hallin and Ingenbleek 1983)

Innovative Methodology

2917GENERATION OF CORRELATED SPIKE TRAINS

J Neurophysiol • VOL 103 • MAY 2010 • www.jn.org

 on M
ay 12, 2010 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


A�t� � T�t� � 1 � V�t� (23)

A�t� � a0�t��
a1�t�
a2�t�

···
aL�t�

� with a0�t� � �1 � A�t�tV�t� (24)

First we solve Eq. 23 to obtain A(t) and then calculate a0(t) in Eq. 24
to get the parameters a1(t), a2(t), . . . , aL(t). The matrices T(t) and V(t)
are defined as

�T�t��ij � R�t, t � i�R�t, t � j� � R�t � i, t � j�

for i, j � 1, 2, · · · , L (25)

�V�t��i � R�t, t � i� for i � 1, 2, · · · , L (26)

Note that in the stationary case we used a0 � 1 and found the SD
using Eq. 8. For consistency with Hallin and Ingenbleek (1983), here
we let a0(t) be a normalizing factor and let the SD of n(t) equal 1.

Generalization to STAs of the LFP

The generation of continuous random variables y�(t) with given
spatiotemporal correlations is an intermediate step in our algorithm to
create spike trains. However, the vector of continuous variables can
also be used to directly simulate a collection of local field potentials
(LFPs) with specific spectral components. In this section we show
how we can extend our algorithm to simulate given spike-triggered
averages (STAs) of the LFP.

Let yLFP(t) be the LFP signal and x(t) be the spike train associated
with the continuous variable yspike(t). As before, x(t) is obtained by
thresholding yspike(t) at � (Eq. 11). The STA is defined as

STA��� �

�
tk

yLFP�tk � ��

Nspikes

for k � 1, 2, · · · Nspikes

where tk is the time of each spike in x(t). We can find the correlation
R(�) between the bivariate Gaussian distribution [yLFP(t), yspike(t)] to
obtain a desired value of STA(�). We have to find the distribution of
yLFP(t � �) given that a spike occurred at time t, i.e., yspike(t) � � (Cox
and Wermuth 1999). The corresponding density is given by

fSTA�x� �

	
�

�

fyspike
��fyLFP�yspike � ��x�d

	
�

�

fyspike
�x�dx

(27)

where fSTA, fyspike
, and fyLFP�yspike�� are Gaussian probability density

functions (pdfs) of the corresponding random variables. The condi-
tional pdf fyLFP�yspike�� has mean �yLFP�yspike�� and variance �yLFP�yspike��

2

�yLFP�yspike � � � �yLFP
� R����yLFP

�� � �yspike
� (28)

�yLFP�Yspike � �
2 � �yLFP

2 �1 � R���2� (29)

We use �yspike
� 1. Calculating the integral in Eq. 27 we obtain

�STA��� � R����yLFP
K��� K��� �

e �
�2

2

	
�

�

e �
x2

2 dx

(30)

In this way, we can generate the STA of the LFP (Eq. 30) by
choosing an appropriate �yLFP

and finding the correlation function
R(�).

Conductance-based model

We implemented a standard conductance-based integrate-and-fire
model to study the impact of correlated input on the firing properties
of downstream neurons. The membrane voltage V(t) is described as
follows

C
d

dt
V�t� � �V�t� � Vr�Gl � �V�t� � Ve�Ge�t�

� �V�t� � Vi�Gi�t� � 0 (31)

where C is the membrane capacitance; Gl is the leakage conductance;
Vr is the resting potential; and Ve and Vi are the excitatory and
inhibitory reversal potentials, respectively. The excitatory and inhib-
itory conductances Ge(t) and Gi(t) are sums of unitary synaptic events,
ge(t) and gi(t)

Ge�t� � �
j

ge�t � tj� Gi�t� � �
k

gi�t � tk�

for spikes arriving at tj and tk.
The unitary synaptic events were modeled by alpha-functions with

peak conductance Be and Bi and time constants �e and �i

ge,i�t� � Be,ie
t

�e,i

e
t

�e,i H�t� (32)

where H(t) is the Heaviside step function. The parameters and the
model are the same as those in Kuhn et al. (2004): C � 250 pF; Gl �
1/60 ms; Vr � �70 mV; Ve � 0 mV; Vi � �75 mV; Be � 7.1 ns;
Bi � 3.7 ns; �e � 0.2 ms; �i � 2 ms. An action potential is elicited
whenever the membrane voltage V(t) crosses the threshold Vth � �50
mV. An absolute refractory period is obtained by holding V(t) at
qjVreset � �60 mV for �refr � 2 ms after a spike. We used a time step
of 0.1 ms for the numerical simulations.

R E S U L T S

To test our algorithm we generated a variety of spike trains
with different spatiotemporal structures. We first present single
spike trains with prescribed autocorrelations. These are fol-
lowed by examples of multivariate spike trains that illustrate
the impact of pairwise correlation on the behavior of the neural
population.

Single-cell examples

We briefly summarize the steps used to generate a single
spike train with a given cross-correlation (for details see
METHODS). In the simplest case, a Poisson spike train with mean
firing rate r can be obtained by discretizing time into bins of
length �t. A spike is generated with probability r�t in each bin
independently of all other events. We can implement a Poisson
spike train by thresholding a continuous-in-space, discrete-in-
time Gaussian stochastic process y(t). A spike is elicited
whenever the Gaussian random variable is higher than a
threshold � (Eq. 11). Using Eq. 12 we can obtain the appro-
priate � for a spike train with mean firing rate r.

More generally, for spike trains with complex temporal
structure, the probability of having a spike in a given time
bin r�t becomes dependent on past spikes. To capture this

Innovative Methodology

2918 D. A. GUTNISKY AND K. JOSIĆ
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structure we have to generate a stochastic process y(t) with
specific autocovariance function. After finding the threshold
(�) we have to map the desired spike-train autocovariance,
c(�), into a continuous process covariance function R(�).
This transformation is computed for every time lag in such
a way that the application of the threshold � to a pair of
continuous variables [y(t), y(t � �)] with a bivariate Gauss-
ian distribution gives the desired point-process autocovari-
ance c(�) (Figs. 1 and 2; Eq. 13).

The second step consists of generating a continuous random
variable y(t) with prescribed correlation R(�). This random
variable follows a Gaussian distribution with mean 0 and is
thus fully described by R(�). We have to design a filter to
transform independent random Gaussian noise n(t) to y(t). This
is accomplished by generating an AR process (Eq. 6). The
parameters of the AR process are calculated using Eqs. 8 and
10. Finally, y(t) is obtained by applying the AR process
equations (Eq. 6).

The last step involves the only nonlinear operation in the
algorithm: we assume a spike occurs at time t, so that x(t) � 1,
whenever y(t) � �. In this way, we obtain a spike train x(t) with
the specified firing rate r and correlation c(�). The explicit
representation using a continuous function y(t) and a threshold
� is similar to the ubiquitous integrate-and-fire model: y(t)
plays the role of the scaled membrane potential, which elicits
a spike when it crosses the threshold �.

To demonstrate the algorithm we provide several illustrative
examples. First, we generated a spike train with vanishing
autocorrelation, except at time T � 10 ms (for all simulations
�t � 1 ms; see Fig. 5A). In Fig. 5B we present a collection of
simulated spike trains aligned to the spike occurring at the
origin. Trials were sorted by the time of the second spike (red

dots) and an increase in spiking probability at T � 10 ms is
clearly visible. This is precisely what we expect, in that the
autocorrelation is directly related to the conditional probability
of a spike at time T � 10 ms, given a spike at time 0.

In the second example we examined how the cross-correla-
tion estimated from the simulated spike trains converges to the
predetermined cross-correlation with an increase in the length
of the simulation and the amount of data generated. We
simulated a spike train with exponentially decaying autocorre-
lation and set the probability of coincident spikes at t � 1 ms
to 10% of chance (see following text for an example of
absolute refractory period). In Fig. 5C, the red and black curves
correspond to the autocorrelation function obtained from sim-
ulations (6.4 � 106 bins) and theory, respectively. To assess
the precision of the algorithm we calculated the mean squared
error (RMS) for spike trains of different lengths (Fig. 5D). The
error decayed as 1/�N, as expected for an unbiased estimator
of the correlation due to the central limit theorem (Brody
1999a). This indicates that only the finiteness of the data
accounts for the observed RMS error.

In the third example, we approximated a spike train with
absolute refractory period of 1 ms. Our algorithm does not
include any mechanism to remember when a spike was elicited
to prevent the firing of another action potential during the
absolute refractory period. However, under certain conditions,
such as short refractory periods or low firing rates, we can
obtain a good approximation to absolute refractory periods. To
ensure the absence of pairs of spikes in adjacent time bins, it is
necessary that R(�1) � �1 for the corresponding AR process.
However, unless R(�1) � �0.5 the covariance matrix of y(t),
y(t � 1), . . . , y(t � L � 1) may not be positive definite and
thus the AR process cannot be generated. However, it is
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FIG. 5. Examples of individual spike
trains with specified autocorrelations. A and
B: the autocorrelation is 0 everywhere ex-
cept at a time T � 10 ms. B: peristimulus
time histogram and raster sorted by the oc-
currence of the first spike in each trial. The
red dots correspond to spikes occurring 10
ms after the first spike. The probability of
spikes occurring at time t and t � � is at
chance, except for T � 10 ms. C: the con-
vergence of the simulated to the desired
autocorrelation was examined by generating
a spike train with exponentially decaying
autocorrelation function (�decay � 10 ms),
peak correlation of 0.02 coincidence/spike, a
firing rate of 50 Hz, and a decreased chance
of firing at �1 ms. The black curve corre-
sponds to the desired autocorrelation func-
tion; the red curve was obtained by simula-
tion. D: the root-mean-squared (RMS) error
as a function of data length. The RMS de-
cays as 1/�N (red line), which is equal to
the expected RMS in the presence of finite
data due to the central limit theorem. This
indicates that there are no systematic errors
in the algorithm.
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possible to generate processes with large relative refractory
periods. The degree of refractoriness that can be achieved
depends on the firing rate of the neuron and the discretization
�t. For a Poisson spike train with a firing rate of 25 Hz the
probability of having two consecutive spikes is (0.025)2 �
6.25 � 10�4 (Fig. 6A). We generated spike trains where this
probability is reduced to about 4 � 10�6, a decrease of nearly
two orders of magnitude compared with chance. We show that
the distribution of the ISI of an inhomogeneous Poisson spike
train with absolute refractory period of 1 ms fits the empirical
histogram well (Fig. 6B; the inset is a zoom of the histogram in
the main figure).

We explored how well the algorithm could generate
longer refractory periods. We derived the minimum corre-
lation coefficient of the continuous process that could be
achieved as a function of the length of the refractory period
(Fig. 6C; see the APPENDIX). The minimum correlation coef-
ficient Rmin is inversely related to the length of the refractory
period m, as Rmin � �0.5/m. The probability of having a
spike during the refractory period depends not only on Rmin,
but also on the firing rate of the neuron. We defined the
refractoriness index as the ratio of the probability of having
a spike during the refractory period to the probability of the

same event for a homogeneous Poisson process. In Fig. 6D
we plot the refractoriness index for different firing rates and
refractory period lengths. The algorithm is better at gener-
ating refractory periods for low firing rates and short refrac-
tory periods.

Cortical responses are typically nonstationary. In sensory
cortices, neurons respond to external stimulation with a fast
increase in the firing rate followed by a slower adaptation
response (e.g., Muller et al. 1999). To demonstrate that our
algorithm can generate such responses we simulated a neuron
with a nonstationary firing rate (Fig. 7A), but stationary cross-
correlation function. The simulation was started at a baseline
firing rate rbaseline � 5 Hz. After 50 ms, the firing rate was first
set to increase exponentially with rate �rise � 10 ms and then
set to exponentially decay back to baseline with rate �decay �
30 ms. In between, the peak firing rate was set at rpeak � 30 Hz.
The firing rate was therefore described as

r�t� �

� rbaseline 0 � t � 50 ms

rbaseline � �rpeak � rbaseline�z
1 � e �
�t � 50�

�rise
��e


�t � 50�

�decay
� 50 � t � 300 ms
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z �
�decay

�decay � �rise
 �rise

�decay � �rise
�

�rise

�decay

where z is a normalization constant. This behavior emulates a
typical neural response evoked by a stimulus at 50 ms: a fast
phasic increase in firing rate followed by a slower adapted
response.

The autocorrelation function was chosen to be time inde-
pendent, with a peak of 0.02 coincidence/spike and an expo-

nential decay rate of 30 ms (Fig. 7B). To generate nonstation-
ary spike trains we used a time-dependent threshold �(t) so that
the underlying continuous Gaussian process, R(t1, t2), was also
time dependent. The main difference with the stationary pro-
cess algorithm is the determination of time-dependent param-
eters of the autoregressive process. In Fig. 7, C and D we show
that we can generate a nonstationary continuous Gaussian
process using Eqs. 22–26 (see METHODS). As in the case of the
stationary process, we obtained spike trains by thresholding the
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FIG. 7. Example of a neuron with time-varying firing rate and specified autocorrelation. A: simulated and theoretical firing rate as a function of time. B: simulated
and theoretical autocorrelation. The autocorrelation was time independent: C(t1, t2) � C(� t2 � t1 �) � C(�). C and D: autocorrelation function R(t1, t2) for the continuous
nonstationary process (C: theoretical, D: simulation). Since the continuous process depends on the nonstationary firing rate, the autocorrelation function R(t1, t2) is
nonstationary. E and F: autocorrelation function C(t1, t2) for the point-process stochastic process (E: theoretical; F: simulation).
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continuous process at �(t). Because we chose the autocorrela-
tion to be stationary, after thresholding we obtained the pre-
scribed spike-train autocorrelations C(t1, t2) (defined as C(t1,
t2) � cov [x(t1), x(t2)]; Fig. 7, E and F).

Multiple-cell examples

We next provide examples of both homogeneous and non-
homogeneous population activity. In the first two examples we
focus on the temporal aspects of the correlation structure. In
the last example, we illustrate the impact of spatial correlations
in the activity of a presynaptic population on the firing of an
afferent neuron. In all simulations we used an optimized
version of the algorithm applicable when the spatial and
temporal correlations are “decoupled” (see METHODS).

We first illustrate how correlations between cells can affect
population activity in ways that are difficult to detect at the
level of small groups of neurons, but may be significantly
amplified in larger populations. To this effect, we simulated the
activity of homogeneous neural populations of 200 neurons
with exponentially decaying autocorrelations (Fig. 8A). In
contrast, we chose the cross-correlations to be oscillatory, with
frequency varying between 20 and 150 Hz (Fig. 8, B–D). As a
consequence, no periodic patterns were observable in the
activity of individual cells, whereas the pooled activity of
many neurons clearly exhibited rhythmic activity at the prede-
termined frequency. As expected, the activity of individual
cells displayed approximately constant power at all frequen-
cies. However, the population activity (i.e., the summed re-
sponse of all neurons) displayed a distinguishable peak at the
chosen frequencies (Fig. 9A). We computed STAs of the
pooled activity to determine whether single neurons were
synchronized to the population activity. We illustrate for an
example of an oscillatory frequency of 50 Hz that the STA
exhibits oscillations at the frequency of the cross-correlation

functions. To further characterize this behavior we computed
the power spectrum of the STA to find peaks at the specified
frequencies (Fig. 9C).

We note that LFPs are believed to represent the pooled
activity of large populations. LFPs show strong oscillations in
different frequency bands depending on brain area, behavioral
state, and stimulus (e.g., Engel et al. 2001; Fries et al. 2007;
Schroeder and Lakatos 2009). On the other hand, there are
many electrophysiological reports (e.g., Bair et al. 2001; Kohn
and Smith 2005) of single units that failed to find oscillatory
cross-correlations. As this example illustrates, it is possible that
oscillations in spike-train cross-correlograms are simply diffi-
cult to detect with limited data. However, even weak, oscilla-
tory features that are swamped by noise and undetectable at the
single-cell or small population level could be amplified at the
level of larger populations and are thus detectable in the LFP.

We also studied the impact of temporal correlation in the
activity of a presynaptic population on the firing rate of a
postsynaptic neuron. In this simulation the autocorrelations and
cross-correlations of spike trains in the simulated presynaptic
population exhibited exponential decay in time (auto- and
cross-correlations had the same parameters). We kept the area
of the auto- and cross-correlogram fixed at 0.2 while varying
the exponential decay constant between 1 and 100 ms (we used
�t � 0.1 ms). The area under the cross-correlogram is propor-
tional to the Pearson spike-count correlation between two
neurons (Bair et al. 2001; Cox and Isham 1980). Therefore the
Pearson correlation coefficient was held constant, whereas the pre-
cision of synchrony between the cells was varied. The
postsynaptic neuron also received inhibitory Poisson input
at 1,000 Hz. Figure 10A shows some of the cross-correlation
profiles of single cells in the presynaptic population. The
pooled population activity (n � 100) displayed autocorre-
lation similar to that of individual cells (Fig. 10B), but

-200 -100 0 100 200
0

5

10

15

20x 10-3

-200 -100 0 100 200
0

5

10

15

20x 10-3

-200 -100 0 100 200
0

0.01

0.02

0.03

0.04

0.05

0.06

-200 -100 0 100 200
0

5

10

15

20x 10-3

)sm(galemiT)sm(galemiT

C
oi

nc
id

en
ce

s 
/ s

pi
ke

C
oi

nc
id

en
ce

s 
/ s

pi
ke

A

C

B

D

theoretical
simulations

FIG. 8. Example of populations of artificial spike
trains with exponentially decaying oscillatory cross-
correlations, but only exponentially decaying autocor-
relations. We generated spike trains for 200 neurons
with exponentially decaying autocorrelations (�decay �
50 ms) and cross-correlations with different oscillatory
frequencies ranging from 20 to 150 Hz, with a firing
rate of 50 Hz. A: exponentially decaying autocorrela-
tion function. B–D: cross-correlation functions for dif-
ferent oscillatory frequencies (B: 20 Hz; C: 50 Hz; D:
100 Hz). Theoretical curves are in black and simulated
in red.
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increased magnitude. This increase was not due to an in-
creased signal strength (i.e., increase in firing rates), but an
amplification caused by effective averaging over correlated
variables. The amplification of the autocorrelation function
is explained by the fact that a random variable that is the
sum of small correlated variables exhibits an autocorrelation
approximately Nc, with N the number of variables and c the
correlation magnitude.

Although the mean population firing rates were equal for all
decay constants, the instantaneous population firing rate vari-
ability was greatly increased when the decay rate was smaller
(i.e., the population was more synchronized; Fig. 10C). As
expected, this caused an increase in the firing rate of the
postsynaptic neuron (Fig. 10D; Salinas and Sejnowski 2000).
Moreover, changes in the decay rate of input correlations
influenced the variability of the output of the afferent neuron.
As shown in Fig. 10E slower decay rates led to outputs that are
more bursty. Indeed, an increased correlation timescale in the
input led to broader synchronous events in the input and an
increased probability that a threshold crossing will be closely
followed by others in the afferent cell. We quantified the
variability in the ISIs by computing their coefficient of varia-
tion (CV). We found that the output CV was close to 1 for
tightly synchronous inputs. Longer decay rates in input corre-
lations led to increased output burstiness and thus a higher CV.
Although the impact of changes in decay rate on input CV (i.e.,
single-cell input) was negligible, the effect on output CV was
considerable (Fig. 10F).

In the next example we generated different examples of
heterogeneous populations to demonstrate the impact of vari-
ations in spatial correlation profile on the output of a postsyn-
aptic neuron. We simulated several populations of 128 neu-
rons, comprised of a different number of homogeneous sub-
populations. The neurons within a subpopulation shared the
same auto- and cross-correlations but were uncorrelated with
cells in other subpopulations. The number of subpopulations
ranged between 1 (a single subpopulation with statistically
identical neurons and neuron pairs) and 128 (all neurons
uncorrelated). The mean firing rate of each neuron was 20 Hz,
whereas the auto- and cross-correlations were exponentially
decaying functions with �decay � 10 ms, with the area of the
cross-correlogram equal to 0.4. The structure of these popula-
tions allowed for the use of very efficient versions of the
algorithm (see METHODS).

As shown previously (Fig. 10), neurons are sensitive to
highly synchronized inputs (Kuhn et al. 2003; Salinas and
Sejnowski 2000). However, if the input contains a high number
of synchronous spikes, adding further synchronous spikes does
not cause an increase in the firing rate of the output neuron
(Kuhn et al. 2003). The distance of the resting membrane
voltage to the threshold determines the optimal synchroniza-
tion level at which the number of spikes in a synchronous
volley is exactly sufficient to cross threshold and no spikes are
“wasted.” Another factor that affects the firing rate is the
frequency of highly synchronous events. In homogeneous
populations, the level of synchronization depends on the level
of correlation between neurons. To show the interplay between
synchronized neural populations and the frequency of synchro-
nized events we generated eight different populations by mod-
ifying the number of subpopulations (from 1 to 128 in steps
determined by powers of 2) and used their output to drive a
conductance-based neural model. Increasing the number of
subpopulations caused a higher rate of synchronized events
because the synchronous events in each subpopulation were
independent. On the other hand, there were also fewer neurons
in each subpopulation causing a reduction in the impact of the
individual synchronous events.

In this way, we kept the same mean population firing rate,
but altered the probability and the number of neurons involved
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FIG. 9. Pooled activity of a neuronal population with exponentially decay-
ing and oscillatory cross-correlations but without oscillatory autocorrelations.
A: power spectrum of the population (pooled) activity. The power spectra of
individual cells are flat (black line). However, the power spectrum analysis
shows that the pooled activity has peaks at the oscillatory frequency of the
cross-correlations. B: spike-triggered average (STA) of the pooled activity
(frequency � 50 Hz). Although individual neurons display no oscillatory
behavior in their cross-correlation, their spikes are synchronized to the pooled
activity. The gray dotted line represents the population average firing rate.
C: the power spectrum of the STA of the pooled activity shows peaks at each
of the oscillatory frequencies. This analysis indicates that individual neurons
fire in synchrony with the population at the cross-correlation oscillatory
frequency.
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in synchronous events. In addition, we manipulated the back-
ground excitation of the output neuron. We used positive rates
to indicate excitatory inputs and negative ones to indicate

inhibitory inputs. We found that the optimal number of sub-
populations depended on the level of inhibition to the cell (Fig. 11).
For a highly inhibited cell, a critical factor to make it fire was
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FIG. 10. The impact of temporal correlations on the firing rate of an afferent neuron. We generated a set of homogeneous presynaptic populations consisting
of cells firing at 20 Hz with the same auto- and cross-correlations. The different populations differed in the temporal decay rate of the auto- and cross-correlations
of the constituent cells. Whereas the temporal decay rate of the auto- and cross-correlations was varied between 1 and 100 ms, the area of the auto- and
cross-correlograms was held fixed at 0.2. Therefore the Pearson correlation coefficient between the spike counts of the cells in the presynaptic population was
held constant. A: auto- and cross-correlations for different temporal decay constants show that the cells in the presynaptic pool become less tightly synchronized
with an increase in the temporal decay rate. B: the autocorrelation of the pooled activity is amplified with respect to the autocorrelations of the single cells. C: the
probability density function of the population firing rate is affected by the synchronization level. We computed the probability of the population firing rate for
each temporal decay rate. Whereas the mean population firing rate was fixed at 2 kHz, the firing rate variability was strongly modulated by the temporal decay
rate. Highly synchronous populations (i.e., shorter temporal decay rates) are linked to a significant increase in the probability of high firing rate events. D: the
firing rate of the afferent neuron is strongly modulated by the decay rate in the auto- and cross-correlation. As cells in the presynaptic pool become less tightly
synchronized, synchronous events that drive the afferent cell to spike become more rare. E: the output of the postsynaptic neuron became more bursty for inputs
with longer correlation decay rates. The time for each raster plot was rescaled to display the same number of spikes under each condition. F: as a consequence,
the coefficient of variation of the ISIs of the output spike train is strongly modulated by the tightness of input synchrony.
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J Neurophysiol • VOL 103 • MAY 2010 • www.jn.org

 on M
ay 12, 2010 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


to have highly synchronized events. This is because to drive
the neuron to fire, a large number of cells have to be active at
the same time to cross the threshold. For less-inhibited cells,
less synchronization was needed (i.e., it is more efficient to
have more synchronous events of smaller amplitudes). Popu-
lations with fewer subpopulations were less efficient in driving
the neuron because the synchronous events involved a larger
number of neurons than necessary. Thus the optimal number of
subpopulations depended on the background inhibitory input to
the output neuron.

Finally, we tested whether our algorithm could generate
spatiotemporally correlated spike trains that follow experimen-
tally observed statistics. We used spike trains from a publicly
available database (http://crcns.org/data-sets/pvc/pvc-3/). The
data were recorded from cat area 17 (primary visual cortex)
using multielectrode silicon probes. Anesthetized cats were
stimulated with drifting gratings for 722.8 s. We computed the
mean firing rate and covariance functions of four selected
neurons that had a relatively large number of spikes. In this
example we did not normalize the covariance function to
display the raw number of spike coincidences. Next, we gen-
erated spike trains with the measured first- and second-order
statistics obtained from experimental data. Figure 12 shows an
excellent agreement between our simulations (red curves) and
experimental data (black curves). Our algorithm was able to
generate spike trains with irregular peaks in the auto- and
cross-covariance functions. Interestingly, the algorithm was
able to capture the strongly asymmetric covariance functions of
cell 1 and cell 2.

LFPs and STA of the LFP

In Fig. 13 we show how the present algorithm can be used
to simulate LFPs and spike trains synchronized to the LFP. We
simulated a particular case where the spike train had a constant
firing rate with no oscillatory autocorrelation, although it was
synchronized to one of the frequency components of the LFP.
The spike train had a constant firing rate of 20 Hz and an
exponentially decaying autocorrelation (Fig. 13A; �decay � 30
ms). The LFP had a longer time constant (�decay � 70 ms) and

spectral peaks at 30 and 80 Hz (Fig. 13B). The nonnormalized
spike-field coherence (Fig. 13C, inset) shows that the spike
train was synchronized only to the 80-Hz component of the
LFP.

Here we showed an example of a single neuron spike train
synchronized to an LFP. In the general case of multiple
neurons the LFPs are not required to be associated one to one
to each of the spike trains. For instance, we can define fewer
LFPs than neurons.

D I S C U S S I O N

We have presented a conceptually simple and computation-
ally efficient method that uses thresholding to translate a
multivariate AR process to a multivariate point process with
predetermined spatiotemporal statistics. The parameters of the
AR process are determined by the desired statistical properties
of the spike trains. The algorithm is particularly efficient when
simulating homogeneous populations or when the spatial and
temporal dependencies of the correlations can be decoupled.
Moreover, the Yule–Walker equations, used to determine the
parameters of the AR, can be naturally extended to nonstation-
ary first- and second-order statistics and to spike-field coher-
ence simulations.

We next compare our algorithm to previously proposed
methods and discuss the limitations, statistical properties of the
generated spike trains, and possible applications of the algo-
rithm.

Relation to alternative methods

In most previous efforts to devise algorithms to generate
spike trains with specified statistics the proposed methods did
not allow a full control of mean firing rates and spatiotemporal
correlations (Bohte et al. 2000; Kuhn et al. 2003; Mazurek and
Shadlen 2002; Niebur 2007; Oram et al. 1999; Song et al.
2000). However, approaches similar to the present method
were very recently developed in parallel (Brette 2009; Krumin
and Shoham 2009; Macke et al. 2009). We first describe some
generalities of the previously developed algorithms and then
relate these new algorithms to our own approach.
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Of particular interest is the “thinning and shifting” process
described in Bauerle and Grubel (2005). In a strong mathemat-
ical sense, this algorithm can be used to generate any stationary
multivariate point process in which the constituent point pro-
cesses are marginally Poisson. Since this algorithm contains a
number of others as special examples (method II of Brette
2009; Kuhn et al. 2003; Niebur 2007), we provide a brief
description and discussion.

To generate N spike trains start with defining a probability
distribution on the 2N � 1 nonempty subsets of the set of
numbers from 1 through N. Generate a “mother” Poisson spike
train and assign to each spike one of the 2N � 1 subsets with
the given probability. Now generate N daughter processes by
creating train i from spikes that have been marked by subsets
containing the number i. For instance, when N � 3, the set {1,
3} could have probability p1,3 � 0.1, so that spikes in the
mother spike train are marked with 1,3 with probability 0.1.
A spike at time t marked by {1, 3} is copied to spike trains
1 and 3.

The final step of the algorithm is to choose a vector v�i from
a distribution Q on �N for each spike ti in the mother spike
train. Now shift (or jitter) the spike at time ti in daughter train
j by the amount vj

i. Note that the spike ti appears only in some
daughter trains and only those will be affected.

Although this procedure results in Poisson spike trains with
correlations of all orders easily determined from Q, it also has
several shortcomings. First, only Poisson spike trains preserve
their characteristics under thinning and jittering. Thus the
procedure is difficult to generalize to cases when the individual
spike trains are not marginally Poisson. Second, the cross-
correlation functions are given in terms of double integrals of
the density of Q. Thus to obtain the density Q that produces a

desired cross-correlation one would have to solve a set of
nontrivial integral equations.

The most recent methods described in Brette (2009), Krumin
and Shoham (2009), and Macke et al. (2009) are more closely
related to our approach. The method proposed by Macke et al.
(2009) also uses the thresholding of Gaussian processes to
generate spatial correlations (see also Qaqish 2005). However,
in contrast to the present algorithm, this method samples a
multivariate Gaussian distribution conditioned on the last K
samples to generate temporal correlations. We instead used a
multivariate AR that we generalized to the nonstationary case
and provided extensive simulations of large neural populations
exploiting the structure of the covariance matrix.

Krumin and Shoham (2009) proposed generating a doubly
stochastic Poisson process (i.e., a Cox process) with the pre-
scribed mean firing rates and cross-correlations by nonlinearly
transforming a Gaussian processes into a nonnegative rate
process. They start by choosing an appropriate nonlinear trans-
formation (exponential, square, or absolute value) that is ap-
plied to a correlated Gaussian process to yield a continuous
nonnegative process that represents the instantaneous firing
rate of each neuron. The final step is to use the Gaussian
process to determine the intensity of a doubly stochastic
Poisson process. The correlated Gaussian process is generated
by applying a finite-impulse response (FIR) filter to an uncor-
related Gaussian process (in contrast to the use of AR in our
case). The parameters of the FIR are derived from the nonlin-
ear transformation of the desired firing rates and the desired
correlation structure. One advantage of the algorithm is that the
transformation of the desired firing rates and correlations can
be directly calculated, whereas in our case this requires numer-
ical evaluation. Their implementation is slower because, first, a
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nonnegative process needs to be generated by filtering Gauss-
ian noise (similarly to our case), but in addition the resulting
rates need to be used to generate a point process.

Brette (2009) proposed two algorithms. One was an exten-
sion of the method of “thinning and shifting” point processes
discussed earlier, whereas another involved doubly stochastic
processes, with the analysis restricted to exponential correla-
tions. The stochastic rate is obtained by generating an Orn-

stein–Ulhenbeck process. The rate process has to be nonnega-
tive, although the Ornstein–Ulhenbeck process is not. To
generate a nonnegative rate the realization of the Ornstein–
Ulhenbeck process is rectified with a Heaviside step function.
Brette (2009) notes that this transformation implies that spike
trains with strong correlations will have vanishing rates most of
the time. Thus this method is not suitable for the generation of
strongly correlated spike trains on fine timescales.

Krumin and Shoham (2009) explained how to generate non-
stationary firing rates and cross-correlations explicitly, whereas
Brette (2009) described time-varying firing rates. In addition,
Brette’s method had stronger restrictions on the possible cross-
correlation functions. As far as we know, the present approach
is the first to exploit the covariance matrix structure for effi-
cient simulations of large neural populations with a natural
extension to generate LFPs and STA of the LFP.

Statistical properties of the generated spike trains

The statistical structure of a collection of spike trains is not
fully characterized by the first two moments. The structure of
higher-order spatiotemporal correlations may have a significant
impact on the neural code (Kuhn et al. 2003). It is therefore
desirable that the generated spike trains have the least possible
amount of structure beyond the first two moments that are
specified. In other words, the generated spike trains should
have the maximal entropy among all the spike trains with the
same first- and second-order statistics (Schneidman et al.
2006). As shown in Macke et al. (2009), point processes
generated by thresholding multivariate Gaussian distributions
appear to have close to maximal entropy in some parameter
regimes (Bethge and Berens 2008).

Limitations

One requirement of our method is that the continuous-
process covariance matrix has to be positive definite. In gen-
eral, a positive-definite point-process covariance matrix C does
not imply a correspondent positive-definite continuous-process
covariance matrix R. This implies that point processes with
covariance matrices with strong negative correlations will not
be able to be generated with our method. This could potentially
be circumvented by using an AR process with other nonlin-
earities or alternative spike-generation mechanisms (Krumin
and Shoham 2009). In the APPENDIX, we derive the conditions
under which we can obtain a spike train with a prescribed
refractory period.

Applications

Multielectrode recording technology, calcium imaging
(Greenberg et al. 2008), and voltage-sensitive dyes (Chen et al.
2006) offer unprecedented insights into the structure of corre-
lated activity in neuronal populations. Because the role of
correlations in the neural code is difficult to intuit, theoretical
tools that aid in the exploration of their impact will be of
significant importance. The techniques we have presented will
aid this study in at least two ways: 1) the algorithm offers a
way to generate a hypothesis about the role of spatiotemporal
structure in spiking activity; and, similarly, 2) it can be used to
test the validity of reduced models that have been proposed to
explain this role.
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FIG. 13. Example of a spike train synchronized to the local field potential
(LFP). A: the autocorrelation of the spike train is exponentially decaying with
a �decay � 30 ms and peak correlation of 0.02 coincidence/spike. B: the
autocorrelation of the LFP is exponentially decaying with �decay � 70 ms and
2 frequency components at 30 and 80 Hz. The peak correlation was 0.4. Inset:
power spectrum of the LFP. Two peaks are noticeable at 30 and 80 Hz. C: STA
of the LFP. The spike train was synchronized only to the 80-Hz component of
the LFP. Inset: the power spectrum of the STA. Black lines correspond to
theoretical curves and red lines represent simulated data.
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The algorithm also has direct experimental applications.
Since there are thousands of synapses per cell, the space of
input patterns can be best described using statistical measures.
Spatial and temporal correlations between synaptic inputs on
the dendritic tree are examples of such measures. New methods
developed for random access microscopy (Duemani Reddy
et al. 2008) can be used to experimentally simulate almost
arbitrary spatiotemporal patterns of synaptic input to a single
neuron. The present algorithm provides a natural way of
generating such patterns from their statistical description. With
the possibility of generating controlled and complex spatiotem-
poral input patterns we could in principle study more in depth
what makes a more realistic, multicompartment neuron model
to fire and to assess whether the same conclusions would hold
for simpler neuron models.

Simulated spike trains could also be useful in conjunction
with more traditional electrophysiological techniques. For in-
stance, the spatiotemporal structure of the inputs plays a
significant role in the response of ubiquitous cortical microcir-
cuits (Cruikshank et al. 2001; Pouille and Scanziani 2001).
Synthetic spike trains could be used to probe the impact of
spatiotemporal structure in such microcircuits and to experi-
mentally study the propagation of coherent behavior through
layered neural networks (Reyes 2003).

Local field potential oscillations in particular frequency
bands are implicated in a variety of sensory, motor, and
cognitive processes (Engel and Singer 2001; Engel et al. 2001;
Fries 2005; Fries et al. 1997, 2001; Gray et al. 1989; Rickert
et al. 2005; Roelfsema et al. 1997; Schoffelen et al. 2005;
Siegel et al. 2008; Womelsdorf and Fries 2007; Womelsdorf
et al. 2006, 2007). However, the sources of the LFP activity are
usually unknown. In this way, it is usually difficult to under-
stand the role of spike–LFP synchronization in information
processing. We believe that progress can be made by simulat-
ing the experimentally observed statistical relationship be-
tween spikes and LFP. For instance, we could test specific
conditions for efficient information transmission by paramet-
rically manipulating the synchronization of spikes and LFPs
and studying the impact in the firing patterns of neural net-
works. Specific hypotheses about the role of spike–LFP syn-
chronization in different frequency bands could be obtained by
comparing the simulations results with experimental data.

A P P E N D I X

Our method of generating spike trains requires that the continuous
process covariance matrix be positive definite. Spike trains with
absolute refractory periods cannot be generated with our algorithm
because the associated continuous-process covariance matrix is non-
positive definite. However, the algorithm can generate relative refrac-
tory periods, close to absolute ones, for short refractory periods (see
Fig. 6). Here, we derive the maximum possible refractoriness (i.e.,
how much the probability of firing a spike is reduced after a spike was
elicited in the past) as a function of the length of the refractory period.
The maximum possible refractoriness for a fixed refractory period
length is obtained when the continuous-process covariance matrix is
positive definite but it is as close as possible to be singular. This
means that we have to minimize the correlation of the continuous
variable y(t) and y(t � �), with � shorter than or equal to the refractory
period length.

Let m be the length of the refractory period and a the minimum
correlation value. The Toeplitz continuous-process covariance matrix
R of size N � N is a banded matrix, where

Rij � � 0 if j � i � m or j � i � m
1 if j � i
a otherwise

The definition of a positive definite matrix requires that x�Rx�t � 0
for every

x� � �1 � N, x� 
 0

x�Rx� t � �
i � 1

N

xi
2 � a �

i � 1

N

xi �
j � i � m

i � 1

xj � �
j � i � 1

i � m

xj� � 0

We want to find a condition that does not depend on xi. If we take
xi � x for @i

x�Rx� t � Nx2 � ax2�m�m � 1� � 2m�N � m�� � 0

a � �
N

m�m � 1� � 2m�N � m�

This last equation represents a necessary condition. When N3 �, the
condition for the matrix to be positive definite is a � �1/(2m). This
indicates that for longer refractory periods, the restriction of
possible covariance matrices becomes tighter. Next, we demon-
strate that a � �1/(2m) is also a sufficient condition when N 3 �.
We can rewrite x�Rx�t � 0 as

x�Rx� t � k � �
i � m � 1

N � m �
j � i � m

j 
 1

i � m

axixj �
xi

2

4m
�

xj
2

4m
� 0

The factor k incorporates the terms corresponding to the boundaries
of the Toeplitz matrix, becoming negligible when N 3 �. If every
term in the sum is �0, then x�Rx�t � 0

axixj �
xi

2

4m
�

xj
2

4m
� 0

xi
2 � xj

2 � 4 ma xi xj�0

and the condition a � �1/(2m) ensures that this inequality holds for
every xi, xj.
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