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1 Overview of the Code

Given two LIF neurons,V and W governed by the following Langevin
equations :

V=fVIW)+1Iv(t); Iv(t) =py +V1—cv(t) + vVe&e(t)
W=g(W.V)+1Iw(t); Iw(t)=pw+ V19— clw(t)+ Vc&(t).

receiving both independent inputs &y (t),{w (f) and shared uncor-
related Gaussian inputs &.(t) , the Finite Volume Code computes
the joint probability density (whose evolution is determined by the
corresponding Fokker Planck Equation) as well as other quantities
derived from this density.

In Particular , the code allows for the computation of the flux across
the 2 boundaries as well the cross intensity function for both con-
stant as well as time dependent parameters.



2 Installing the Code

On machines running LINUX jto install the Finite Volume Code
[follow these steps :

1. Download the file neuro2d.tar.gz .

2. From the shell ,change the current directory to the one in which
the file neuro2d.tar.gz was placed by using the c¢d command .

3. Decompress the file by using :
$ tar -zzof neuro2d.tar.gz

4. This will create a folder called neuro2d . cd to this folder from
the shell.

5. Then type :
$ make cclean
6. And finally,to compile the code, type:
$ . /arrow

The software is now installed .

3 Folders

In the primary folder neuro2d, the folder ktest contains a number
of folders titled test 1 ,test 2 . Each of these folders ,(apart from
other files) contains 2 files :

1. PARAM.DAT
2. DOM.DAT

The file PARAM.DAT contains the parameters used in the sim-
ulation as is explained in detail below . And, the file DOM.DAT

contains the Mesh .



4 Running the Code

In order to run the code, follow these steps :

1. From the neuro2d directory,change the working directory to
one of the test folders i.e. test 1, test 2 etc . For example, to
work from test folder 1 , type :

$ cd ktest/test1
2. Then, to run the code, type
$ ./sabor < RUN.DAT

5 Modifying the Parameters for the simulation

PARAM.DAT (~/Desktopineuro2diktestltestl) - gedit CEES
Ele Edit View Search Tools Documents Help

o &a.8 8 M F

New Open Save = Print... Paste = Find Replace

[Z] PARAM.DAT 3¢

XMin, xmax, ymin, ymax = -99.0 1.0 -99.0 1.0

Vr,Wr = 0.0 0.0
t_0, t_max = 0.0 16.0
xplot_min, xplot_max, yplot_min,yplot_max = -1.0 1.0 -1.0 1.0

nbr_stock =1
0.0

info =100

movie = 0 0.0 5.0 100
steady_state = 1 0.000001
go_around = 0
scheme_transport = 2

cfl = 0.95
method_syslin_diff = 2
diff_precond = 2
test_cv_diff = 1.0d-10
type_vit = 3 * velocity field : Constant (1), Circular (2)
vitl,vit2z = 0.5 1.5
*per_cire = 1.0

diff_type = 1

diff_coeff = 0.1 0.1 0.09

tau =0.20.5

Ln 38, Col 26 INS

The file PARAM.DAT contains the parameters. A line by line
description of this file follows :



1. Domain of solution

’ xmin, xmax, ymin, ymax = abcd

[a, b] X [¢, d] is the domain over which the Fokker Planck Equa-
tion is solved.As an example , to solve the equation over the
region [—1, 1] x [—1, 1], this line would be modified to :

Xmin, Xxmax, ymin, ymax = -1.0 1.0 -1.0 1.0

This line also incorporates the threshold as xmax and ymax are
the thresholds for Neuron 1 and Neuron 2 respectively .

2. Reset Potentials

VI',WI‘ - ereset Wreset

Reset Potentials for the two neurons ( V and W) . For example,
to change the reset potential of Neuron 1 to 0.1 and that of
Neuron 2 to -0.1 , the line above would be changed to :

Vr,Wr = 0.1 -0.1

3. Time over which the solution is computed

t_0, t_max = t;ntial L final

tinitiar 15 initial time and % ;54 is the maximum time till which
the Fokker Planck equation is solved. It is not always the case
that the equation is solved till ¢4 . If a steady state solution
is sought (to be explained) and the density converges before
tfinal sthen t i, is ignored.

4. Region over which the solution is plotted

’ xplot_min,xplot_max,yplot_min,yplot max = abcd

la,b] X [c,d] is the domain over which the solution is to be
plotted.



5. Saving Results at specified points of time

num_stock=n
time;
timey

n is the number of times the solution is saved, and the values
below nbr_stock indicate the times at which the solution is to
be saved. Suppose we wanted to save the solution at 5 points

of times starting from 0.1 and ending at 0.5 , this line would
be modified as :

nbr_stock=>5
0.1
0.2
0.3
0.4
0.5

6. Creating a Movie

movie = option tim’tial tfmal N

option is a binary variable either 1 or 0, where 1 indicates that
a movie is to be created and 0 indicates that a movie is not to
be created. tinitiqr is the starting time for the movie and finq
is the ending time. /N is the number of frames . So , if we
wanted to create a movie starting at time ¢, = 0.5 ,ending
at tfina = 10.0 and consisting of 200 frames , the appropriate
statement would be :

movie = 1 0.5 10.0 200

7. Searching for a Steady State

steady_state = option convergence_criterion

where option is a binary variable - either 1 or 0 , with 1 in-
dicating that the code will search for a steady state solution
and 0 indicating that the code will not look for a steady state
solution . convergence_criterion is the ..



10.

11.

12.

13.

14.

. Go Around

Transport Scheme

scheme_transport=n ‘

n=1 is for 1st order Murman ( Godunov ) scheme . And , n=2
is for a high-resolution Murman (Godunov) scheme with flux
limiters( recommended because a lot more accurate)

Setting the Courant-Friedrich-Levy ratio

cl = x

Select x to be a number between 0 and 1 .

Setting the iterative method for solving linear systems

’ method syslin_diff=n ‘

Use n=1 for Conjugate Gradient
Use n=2 for Bi-Conjugate Gradient with LU Preconditioner
Use n=3 for GMRES (minimal residual) method

Diffusion Preconditioner

’ diff precond=n ‘

Convergence Criterion for solving the Linear System

| test_cv_diff=¢ |

Specifying the type of drift

type_vit=n

Choose n=3 for constant drift
Choose n=4 for time dependent drift



15.

16.

17.

18.

Specifying the Drift

’ vitl,vit2=yy, ug‘

p1 is the input current to the 1st Neuron(V) and ps is the input
current to the 2nd Neuron(W). As an example , if we wanted
i1 to be 1.5 and py to be 0.5, we would set :

vitl,vit2=1.5 0.5

Diff

‘ diff type=n ‘

Specifying the Diffusion Coefficient

| diff_coeff =D D Dc |

The first 2 entries are the diffusion coefficients for the 2 neurons
and the last entry is the product of the diffusion coefficient
and the correlation between the 2 neurons . As an example ,
suppose we want the diffusion coefficient to be 0.1 for both the
neurons and the correlation between the 2 neurons to be 0.5 |
then this line would be modified to :

diff_coeff=0.1 0.1 0.05

Specifying the refractory periods

tau =71 T2

71 is the refractory period for the first neuron and 7 is the
refractory period for the 2nd Neuron. So if we wanted the
refractory period for the 1st neuron to be 0.2 and that of the
2nd neuron to be 0.5 , we would set :

tau=0.2 0.5



6 Visualizing the Results

The results of the computations are stored in the test folder from
which the code was run . If the movie option was set to 1 , then
the specified number of movie frames would have been created .
The names of these files are listed in result.visit Each of these
movie frames is a text file named result time.vtk , for example :
result_1.20.vtk is the joint density at time 1.20 . If the steady state
option was selected , then another file , named Steady state.vtk
will be created. This will contain the joint density when the steady
state is attained. The results can be plotted by using the freeware

VISIT

7 Computing Fluxes Across the boundaries

If the movie option is set to 1 , then the flux across the boundaries
are computed at each specified point of time . The fluxes are stored
as crossl _time for the flux across the boundary of Neuron 1 and
cross2 time for the flux across the boundary of neuron 2 .The
times at which the fluxes were computed are stored in the files :
list1 cross and list2 cross both of which are in the same folder
that the tests were run from . The first entry in these files is a
number which denotes the number of times the fluxes across the
boundary was computed. For example cross1_1.10 is the flux across
the boundary of Neuron V at time 1.10 and cross2_2.50 is the flux
across the boundary of Neuron W at time 2.50.

8 Time Dependent Parameters

Time dependent parameters can be encoded by modifying 2 files
both in the primary neuro2d folder . To encode a time dependent ¢
or D :

10



EXI4pBEPES oRDEABREE O E4]= Re
gadp ai» d solver.f90
=]
a t Dzuro2df m;J 124 END IF
o 135
@ [P ktest 126 prize
I |& neurold 127 lecs=0
I objets 128 iterziter+l
(4 129 deltat=deltat_cst
|0 aaa 5o
a 7 adim.f90 131
@ |@ alloc.f90 132
T |# alloue.f90 138
134
% |0 amow S
@ calc_deltatfo|| |1z6 Joo
@ calc_diff.f90 137 CALL calc_deltat
i 138
@ calc_d!ﬁ_sa\.r. 139 {IF(MOD(iter,info)==0) deltat=deltat/2.0
2 calc_vitesse.|| |10 pi=3.1415026536
@ c_modiftarg)| [141 Tplus=T+deltat

& cross_correle|| |142
[ cross_correla| (1,
& C_SUBSTRA| |1a5
& desallocation| |146
@ diffusion.fo0 jtd
& domaine.fo0 || |10
& DOM.DAT 150
7 files_mod.fo0|| 151

152 | .
ggj“x'm 153 d_time_dependent=dlocl
nctions_ma|| 454 c_time_dependent=dloc3/dlocl

& init_refracton)| |1s5
(& inter_mod.fa(|| |156 | |

157 CXdiffusion(:,:,1)=d_time_dependent
@ lec_csubf00 | |, 22 CXdiffusion(:, :,2)=d_time_dependent
@ lec_files.f90 159 Cxdiffusion )=d_time_dependent*c_time_dependent
& lec_param.f9| |166
@ main.io0 101
& Makefile S
[« 1= ]| 108
165 weight(1)=max(0.0,deltat-Cktau(1))/deltat
= I'E 166 weight(2)=max (0.0, deltat-Cktau(2))/deltat
167 ! Evolve the neurons which are in one refractory state

s1eddius 8poD 4| uon=wswnoog @

] — 3|

1. Open the file solver.f90

2. To change D so that it is now a function of time ,remove the
I' preceeding line number 150 and then modify it using Tplus
as the time variable. Likewise , to change ¢ , remove the !
preceeding line number 151 and then modify it using Tplus as
the time variable.

3. Comment line numbers 153 and 154 using ! mark .

4. Recompile the code by going back to the neuro2d folder and
typing

$make cclean
$./arrow

5. cd back to the test folder and run the code by typing :
$./sabor < RUN.DAT

For example , suppose we wanted D(t) = 0.5 + 0.1 % |sin(¢)| and
c(t) = 0.1 4 0.1 % |cos(t)| then line number 150 should be changed
to :

d_time_dependent = 0.5 + 0.1 * abs(sin(T'plus))

11



and line number 151 should be changed to :

c_time_dependent = 0.1 + 0.1 * abs(cos(T'plus))

4P EEEA s 9RBEABEE S O B K= el
g ad > @» @ solver.fo0 A8
o - p—
@ ||D2uro2d/ \H’] 124 END IF + 8
o 125 ]
’g O kest 126 pri=
T |© neurold 127 lec:
© objets 128 itersiter+l
a D aaa 129 deltat=deltat_cst
= € 130
2 @ adim.f90 131 =
o |@ alloc.fo0 132 @
T |@ alloue.00 igi CALL calc_vitesse g
B |0 amow 135 | caloulation of the time step @®
[ calc_deltatfo|| |1z6 [
(@ calc_difffo0 || |137 CALL calc_deltat
i 138
o4 calc_diff_sav)| |59 |IF(MOD(iter, info)==0) deltat=deltat/2.0
@ cale_vitesse.|| 1340 pi=3.1415026536
@ c_modiftarg]| |141
(@ cross_correlg| |142 - - - -
5 cross_conela i:: ! t::A'z your time dependent parameters; use Tplus for time instead of T
@ C_SUBSTRA| |1as Id_time_dependent=dloci
@ desallocatior|| |146 le_time_dependent=dloc3/dlocl
@ diffusion.f90 i:; | te go back to constant p
& bowpar | |1
. 150 d_time_dependent=0.5+0.1*abs(sin(Tplus))
[ files_mod.foC|| |151 c_time_dependent=0.1+0.1*abs(cos(Tplus))
152 | .
ggjux.ﬁ'm 153 Id_time_dependent=dloci
& "m'“f’r‘S_m“ 154 Ic_time_dependent=dloc3/dlocl
init_refractory| |155
(@ inter_mod fa(| |56 ||
157 C%diffusion(: =d_time_dependent
g lec_csub.f90)| 1 cp CXdiffusion, _time_dependent
& lec_files.f90 159 Cdiffusion _time_dependent*c_time_dependent
lec_param.f9|| |160
@ main 190 161 | Assemble diffusion matrix
162 ! --
& Makefile 163 CALL calc diff (mat_diff,sm_diff)
164
R [es]) |65 weight(1)=max(0.0, deltat-Cktau(1))/deltat L]
= |®]| |ze8 weight(2)=max(0.0, deltat-Cktau(2))/deltat [+
167 |_Evolve the neurons which are in one refractory state L

To encode step changes in either of these 2 parameters the fortran
function sign should be used.
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To encode a time dependent py or ps
1. Open the file calc_vitesse.f90

2. To change p; modify line 80 by writing the time dependent
w1 (t) after the + sign with the time variable as T .

3. To change ps modify line 87 by writing the time dependent
uo(t) after the 4 sign with the time variable as T

4. Recompile the code by going back to the neuro2d folder and
typing

$make cclean
$./arrow

5. cd back to the test folder and run the code by typing :
$./sabor < RUN.DAT

For example suppose we wanted pq(t) = 0.1 + |sin(t)| and uo(t) =
0.1 + |cos(t)],line 80 would be modified to :

Vx(i,j)=-xmesh(i)+0.14+abs(sin(T)
and line 87 would be modified to :
Vx(i,j)=-ymesh(j)+0.1+abs(cos(T)

@ file:/lhomeladitya/Desktop/N5ineuro2dicalc_vitesse.f90 [modified] - KDevelop (S

HIq4rEHdEEe 9BORABEQE O 3 a8

g ad4p 3’17» @ calc_vitesse.fo0 % ®
& | Dauro2d/ | 3 54 =
3= kKl 55 ! vy (top) O
& |5 ktest 56 DO j=0,my
T |© neurold 57 Do i=0,mx
a D objets 23 E"nv;zl,]):-ymesm])wz‘- 25 ymesh(j)+v2!
B lg o o | oo
B |7 adim 61
3 |@ alloc.90 62 XV ( 1, my) )
T |@ alloue.f20 o YVxEVy(mx, 1) E
® |J amow od g
65 @
(@ calc_deltat.ig) 66
(@ calc_diff.f90 67
(@ calc_diff_sav| gg
@ 70
O calc_vitesse. 71
@ c_modif.tar.g 72
| 73 =4
@ cross_corele| | 73
(3 cross_correlg| | 75
@ C_SUBSTR/ 76
@ desallocation ;; l;n £ )
(@ diffusion.f90 - o i
@ domaine.190 80 Vi(1,7)=-Xmesh(1)+(0. 1+abs(sin(T)))
@ DOM.DAT 81 END DO
(@ files_mod.faC| Sg END DO
@ flux.190 e
(@ functions_mc|| | 85
[Z init_refracton| 86 L mx
@ inter_mod.f90 | &7 Enn\lz:]l,]):-ymas.m])+(B.1+ahs1nns1T)))|
g:eL;Isubg)O 89 END DO
ec_files. %
(@ lec_param.fo| 91 XV ¢, my)
[ main.f90 o YV (i 1)
94
PR T« | o5 | ease (5) !
BT N SR :
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9 Computing Cross Intensity Functions

The files list1_cross and list2_cross contain the times at which the
fluxes across the boundaries were recorded.There are 2 options to
compute the cross intensity functions :

1. The cross intensity functions can be computed at each of these
times .

2. The cross intensity funcions can be computed at a subset of
these times. For example , the fluxes across the boundary were
computed every 0.1 unit of time over a time interval of 10 units
leading to 101 entries in the files list1 cross and list2 cross.
If it is desired to compute the cross intensity at just 2 times
say 1.00 and 2.00 , then the follwing steps need to be taken :

Open list1 cross and list2_cross and change the first en-
try in the file to 2.

Delete all the other entries in the file list1 cross ,ezcept for
cross1_1.00 and cross1_2.00 . Similarly , delete all the other
entries in list2 cross except for cross2 1.00 and cross2 2.00

Once this is done , the cross intensity functions can be computed
by typing the following in the shell:

$ . /cross

Then type 1 to compute Hy(t) .

Similarly , to compute Hyo(t) , type : ./cross and then enter 2.
The Cross Intensities at the different times for Hy,(t) are stored in
the files cross_correlation_1 and cross_correlation_2 . In these files ,
rows represent time and columns represent space.
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