A Finite Volume Method for Stochastic Integrate
and Fire Models

DOCUMENTATION

® N o e W N

CONTENTS

Overview of the Code

Installing the software

Calculating the Joint Probability Density
Visualizing the Results

Computing the Flux across the boundaries
Time dependent parameters

Calculating the Cross Intensity Function

Examples

1 Overview of the Code

Given two LIF neurons,V and W governed by the following Langevin
equations :

V=fVIW)+1Iv(t); Iv(t) =py +V1—cv(t) + vVe&e(t)
W=g(W.V)+1Iw(t); Iw(t)=pw+ V19— clw(t)+ Vc&(t).

receiving both independent inputs &y (t),{w (f) and shared uncor-
related Gaussian inputs &.(t) , the Finite Volume Code computes
the joint probability density (whose evolution is determined by the
corresponding Fokker Planck Equation) as well as other quantities
derived from this density.

In Particular , the code allows for the computation of the flux across
the 2 boundaries as well the cross intensity function for both con-
stant as well as time dependent parameters.

2 Installing the Code

On machines running LINUX jto install the Finite Volume Code
[follow these steps :

1. Download the file neuro2d.tar.gz .

2. From the shell ,change the current directory to the one in which
the file neuro2d.tar.gz was placed by using the c¢d command .

3. Decompress the file by using :
$ tar -zzof neuro2d.tar.gz

4. This will create a folder called neuro2d . cd to this folder from
the shell.

5. Then type :
$ make cclean
6. And finally,to compile the code, type:
$. /arrow

The software is now installed .

3 Folders

In the primary folder neuro2d, the folder ktest contains a number
of folders titled test 1 ,test 2 . Each of these folders ,(apart from
other files) contains 2 files :

1. PARAM.DAT
2. DOM.DAT

The file PARAM.DAT contains the parameters used in the sim-
ulation as is explained in detail below . And, the file DOM.DAT

contains the Mesh .

4 Running the Code

In order to run the code, follow these steps :

1. From the neuro2d directory,change the working directory to
one of the test folders i.e. test 1, test 2 etc . For example, to
work from test folder 1 , type :

$ cd ktest/test1
2. Then, to run the code, type
$./sabor < RUN.DAT

5 Modifying the Parameters for the simulation

PARAM.DAT (~/Desktopineuro2diktestltestl) - gedit CEES
Ele Edit View Search Tools Documents Help

o &a.8 8 M F

New Open Save = Print... Paste = Find Replace

[Z] PARAM.DAT 3¢

XMin, xmax, ymin, ymax = -99.0 1.0 -99.0 1.0

Vr,Wr = 0.0 0.0
t_0, t_max = 0.0 16.0
xplot_min, xplot_max, yplot_min,yplot_max = -1.0 1.0 -1.0 1.0

nbr_stock =1
0.0

info =100

movie = 0 0.0 5.0 100
steady_state = 1 0.000001
go_around = 0
scheme_transport = 2

cfl = 0.95
method_syslin_diff = 2
diff_precond = 2
test_cv_diff = 1.0d-10
type_vit = 3 * velocity field : Constant (1), Circular (2)
vitl,vit2z = 0.5 1.5
*per_cire = 1.0

diff_type = 1

diff_coeff = 0.1 0.1 0.09

tau =0.20.5

Ln 38, Col 26 INS

The file PARAM.DAT contains the parameters. A line by line
description of this file follows :

1. Domain of solution

’ xmin, xmax, ymin, ymax = abcd

[a, b] X [¢, d] is the domain over which the Fokker Planck Equa-
tion is solved.As an example , to solve the equation over the
region [—1, 1] x [—1, 1], this line would be modified to :

Xmin, Xxmax, ymin, ymax = -1.0 1.0 -1.0 1.0

This line also incorporates the threshold as xmax and ymax are
the thresholds for Neuron 1 and Neuron 2 respectively .

2. Reset Potentials

VI',WI‘ - ereset Wreset

Reset Potentials for the two neurons (V and W) . For example,
to change the reset potential of Neuron 1 to 0.1 and that of
Neuron 2 to -0.1 , the line above would be changed to :

Vr,Wr = 0.1 -0.1

3. Time over which the solution is computed

t_0, t_max = t;ntial L final

tinitiar 15 initial time and % ;54 is the maximum time till which
the Fokker Planck equation is solved. It is not always the case
that the equation is solved till ¢4 . If a steady state solution
is sought (to be explained) and the density converges before
tfinal sthen t i, is ignored.

4. Region over which the solution is plotted

’ xplot_min,xplot_max,yplot_min,yplot max = abcd

la,b] X [c,d] is the domain over which the solution is to be
plotted.

5. Saving Results at specified points of time

num_stock=n
time;
timey

n is the number of times the solution is saved, and the values
below nbr_stock indicate the times at which the solution is to
be saved. Suppose we wanted to save the solution at 5 points

of times starting from 0.1 and ending at 0.5 , this line would
be modified as :

nbr_stock=>5
0.1
0.2
0.3
0.4
0.5

6. Creating a Movie

movie = option tim’tial tfmal N

option is a binary variable either 1 or 0, where 1 indicates that
a movie is to be created and 0 indicates that a movie is not to
be created. tinitiqr is the starting time for the movie and finq
is the ending time. /N is the number of frames . So , if we
wanted to create a movie starting at time ¢, = 0.5 ,ending
at tfina = 10.0 and consisting of 200 frames , the appropriate
statement would be :

movie = 1 0.5 10.0 200

7. Searching for a Steady State

steady_state = option convergence_criterion

where option is a binary variable - either 1 or 0 , with 1 in-
dicating that the code will search for a steady state solution
and 0 indicating that the code will not look for a steady state
solution . convergence_criterion is the ..

10.

11.

12.

13.

14.

. Go Around

Transport Scheme

scheme_transport=n ‘

n=1 is for 1st order Murman (Godunov) scheme . And , n=2
is for a high-resolution Murman (Godunov) scheme with flux
limiters(recommended because a lot more accurate)

Setting the Courant-Friedrich-Levy ratio

cl = x

Select x to be a number between 0 and 1 .

Setting the iterative method for solving linear systems

’ method syslin_diff=n ‘

Use n=1 for Conjugate Gradient
Use n=2 for Bi-Conjugate Gradient with LU Preconditioner
Use n=3 for GMRES (minimal residual) method

Diffusion Preconditioner

’ diff precond=n ‘

Convergence Criterion for solving the Linear System

| test_cv_diff=¢ |

Specifying the type of drift

type_vit=n

Choose n=3 for constant drift
Choose n=4 for time dependent drift

15.

16.

17.

18.

Specifying the Drift

’ vitl,vit2=yy, ug‘

p1 is the input current to the 1st Neuron(V) and ps is the input
current to the 2nd Neuron(W). As an example , if we wanted
i1 to be 1.5 and py to be 0.5, we would set :

vitl,vit2=1.5 0.5

Diff

‘ diff type=n ‘

Specifying the Diffusion Coefficient

| diff_coeff =D D Dc |

The first 2 entries are the diffusion coefficients for the 2 neurons
and the last entry is the product of the diffusion coefficient
and the correlation between the 2 neurons . As an example ,
suppose we want the diffusion coefficient to be 0.1 for both the
neurons and the correlation between the 2 neurons to be 0.5 |
then this line would be modified to :

diff_coeff=0.1 0.1 0.05

Specifying the refractory periods

tau =71 T2

71 is the refractory period for the first neuron and 7 is the
refractory period for the 2nd Neuron. So if we wanted the
refractory period for the 1st neuron to be 0.2 and that of the
2nd neuron to be 0.5 , we would set :

tau=0.2 0.5

6 Visualizing the Results

The results of the computations are stored in the test folder from
which the code was run . If the movie option was set to 1 , then
the specified number of movie frames would have been created .
The names of these files are listed in result.visit Each of these
movie frames is a text file named result time.vtk , for example :
result_1.20.vtk is the joint density at time 1.20 . If the steady state
option was selected , then another file , named Steady state.vtk
will be created. This will contain the joint density when the steady
state is attained. The results can be plotted by using the freeware

VISIT

7 Computing Fluxes Across the boundaries

If the movie option is set to 1 , then the flux across the boundaries
are computed at each specified point of time . The fluxes are stored
as crossl _time for the flux across the boundary of Neuron 1 and
cross2 time for the flux across the boundary of neuron 2 .The
times at which the fluxes were computed are stored in the files :
list1 cross and list2 cross both of which are in the same folder
that the tests were run from . The first entry in these files is a
number which denotes the number of times the fluxes across the
boundary was computed. For example cross1_1.10 is the flux across
the boundary of Neuron V at time 1.10 and cross2_2.50 is the flux
across the boundary of Neuron W at time 2.50.

8 Time Dependent Parameters

Time dependent parameters can be encoded by modifying 2 files
both in the primary neuro2d folder . To encode a time dependent ¢
or D :

10

EXI4pBEPES oRDEABREE O E4]= Re
gadp ai» d solver.f90
=]
a t Dzuro2df m;J 124 END IF
o 135
@ [P ktest 126 prize
I |& neurold 127 lecs=0
I objets 128 iterziter+l
(4 129 deltat=deltat_cst
|0 aaa 5o
a 7 adim.f90 131
@ |@ alloc.f90 132
T |# alloue.f90 138
134
% |0 amow S
@ calc_deltatfo|| |1z6 Joo
@ calc_diff.f90 137 CALL calc_deltat
i 138
@ calc_d!ﬁ_sa\.r. 139 {IF(MOD(iter,info)==0) deltat=deltat/2.0
2 calc_vitesse.|| |10 pi=3.1415026536
@ c_modiftarg)| [141 Tplus=T+deltat

& cross_correle|| |142
[cross_correla| (1,
& C_SUBSTRA| |1a5
& desallocation| |146
@ diffusion.fo0 jtd
& domaine.fo0 || |10
& DOM.DAT 150
7 files_mod.fo0|| 151

152 | .
ggj“x'm 153 d_time_dependent=dlocl
nctions_ma|| 454 c_time_dependent=dloc3/dlocl

& init_refracton)| |1s5
(& inter_mod.fa(|| |156 | |

157 CXdiffusion(:,:,1)=d_time_dependent
@ lec_csubf00 | |, 22 CXdiffusion(:, :,2)=d_time_dependent
@ lec_files.f90 159 Cxdiffusion)=d_time_dependent*c_time_dependent
& lec_param.f9| |166
@ main.io0 101
& Makefile S
[« 1=]| 108
165 weight(1)=max(0.0,deltat-Cktau(1))/deltat
= I'E 166 weight(2)=max (0.0, deltat-Cktau(2))/deltat
167 ! Evolve the neurons which are in one refractory state

s1eddius 8poD 4| uon=wswnoog @

] — 3|

1. Open the file solver.f90

2. To change D so that it is now a function of time ,remove the
I' preceeding line number 150 and then modify it using Tplus
as the time variable. Likewise , to change ¢ , remove the !
preceeding line number 151 and then modify it using Tplus as
the time variable.

3. Comment line numbers 153 and 154 using ! mark .

4. Recompile the code by going back to the neuro2d folder and
typing

$make cclean
$./arrow

5. cd back to the test folder and run the code by typing :
$./sabor < RUN.DAT

For example , suppose we wanted D(t) = 0.5 + 0.1 % |sin(¢)| and
c(t) = 0.1 4 0.1 % |cos(t)| then line number 150 should be changed
to :

d_time_dependent = 0.5 + 0.1 * abs(sin(T'plus))

11

and line number 151 should be changed to :

c_time_dependent = 0.1 + 0.1 * abs(cos(T'plus))

4P EEEA s 9RBEABEE S O B K= el
g ad > @» @ solver.fo0 A8
o - p—
@ ||D2uro2d/ \H’] 124 END IF + 8
o 125]
’g O kest 126 pri=
T |© neurold 127 lec:
© objets 128 itersiter+l
a D aaa 129 deltat=deltat_cst
= € 130
2 @ adim.f90 131 =
o |@ alloc.fo0 132 @
T |@ alloue.00 igi CALL calc_vitesse g
B |0 amow 135 | caloulation of the time step @®
[calc_deltatfo|| |1z6 [
(@ calc_difffo0 || |137 CALL calc_deltat
i 138
o4 calc_diff_sav)| |59 |IF(MOD(iter, info)==0) deltat=deltat/2.0
@ cale_vitesse.|| 1340 pi=3.1415026536
@ c_modiftarg]| |141
(@ cross_correlg| |142 - - - -
5 cross_conela i:: ! t::A'z your time dependent parameters; use Tplus for time instead of T
@ C_SUBSTRA| |1as Id_time_dependent=dloci
@ desallocatior|| |146 le_time_dependent=dloc3/dlocl
@ diffusion.f90 i:; | te go back to constant p
& bowpar | |1
. 150 d_time_dependent=0.5+0.1*abs(sin(Tplus))
[files_mod.foC|| |151 c_time_dependent=0.1+0.1*abs(cos(Tplus))
152 | .
ggjux.ﬁ'm 153 Id_time_dependent=dloci
& "m'“f’r‘S_m“ 154 Ic_time_dependent=dloc3/dlocl
init_refractory| |155
(@ inter_mod fa(| |56 ||
157 C%diffusion(: =d_time_dependent
g lec_csub.f90)| 1 cp CXdiffusion, _time_dependent
& lec_files.f90 159 Cdiffusion _time_dependent*c_time_dependent
lec_param.f9|| |160
@ main 190 161 | Assemble diffusion matrix
162 ! --
& Makefile 163 CALL calc diff (mat_diff,sm_diff)
164
R [es]) |65 weight(1)=max(0.0, deltat-Cktau(1))/deltat L]
= |®]| |ze8 weight(2)=max(0.0, deltat-Cktau(2))/deltat [+
167 |_Evolve the neurons which are in one refractory state L

To encode step changes in either of these 2 parameters the fortran
function sign should be used.

12

To encode a time dependent py or ps
1. Open the file calc_vitesse.f90

2. To change p; modify line 80 by writing the time dependent
w1 (t) after the + sign with the time variable as T .

3. To change ps modify line 87 by writing the time dependent
uo(t) after the 4 sign with the time variable as T

4. Recompile the code by going back to the neuro2d folder and
typing

$make cclean
$./arrow

5. cd back to the test folder and run the code by typing :
$./sabor < RUN.DAT

For example suppose we wanted pq(t) = 0.1 + |sin(t)| and uo(t) =
0.1 + |cos(t)],line 80 would be modified to :

Vx(i,j)=-xmesh(i)+0.14+abs(sin(T)
and line 87 would be modified to :
Vx(i,j)=-ymesh(j)+0.1+abs(cos(T)

@ file:/lhomeladitya/Desktop/N5ineuro2dicalc_vitesse.f90 [modified] - KDevelop (S

HIq4rEHdEEe 9BORABEQE O 3 a8

g ad4p 3’17» @ calc_vitesse.fo0 % ®
& | Dauro2d/ | 3 54 =
3= kKl 55 ! vy (top) O
& |5 ktest 56 DO j=0,my
T |© neurold 57 Do i=0,mx
a D objets 23 E"nv;zl,]):-ymesm])wz‘- 25 ymesh(j)+v2!
B lg o o | oo
B |7 adim 61
3 |@ alloc.90 62 XV (1, my))
T |@ alloue.f20 o YVxEVy(mx, 1) E
® |J amow od g
65 @
(@ calc_deltat.ig) 66
(@ calc_diff.f90 67
(@ calc_diff_sav| gg
@ 70
O calc_vitesse. 71
@ c_modif.tar.g 72
| 73 =4
@ cross_corele| | 73
(3 cross_correlg| | 75
@ C_SUBSTR/ 76
@ desallocation ;; l;n £)
(@ diffusion.f90 - o i
@ domaine.190 80 Vi(1,7)=-Xmesh(1)+(0. 1+abs(sin(T)))
@ DOM.DAT 81 END DO
(@ files_mod.faC| Sg END DO
@ flux.190 e
(@ functions_mc|| | 85
[Z init_refracton| 86 L mx
@ inter_mod.f90 | &7 Enn\lz:]l,]):-ymas.m])+(B.1+ahs1nns1T)))|
g:eL;Isubg)O 89 END DO
ec_files. %
(@ lec_param.fo| 91 XV ¢, my)
[main.f90 o YV (i 1)
94
PR T« | o5 | ease (5) !
BT N SR :

13

9 Computing Cross Intensity Functions

The files list1_cross and list2_cross contain the times at which the
fluxes across the boundaries were recorded.There are 2 options to
compute the cross intensity functions :

1. The cross intensity functions can be computed at each of these
times .

2. The cross intensity funcions can be computed at a subset of
these times. For example , the fluxes across the boundary were
computed every 0.1 unit of time over a time interval of 10 units
leading to 101 entries in the files list1 cross and list2 cross.
If it is desired to compute the cross intensity at just 2 times
say 1.00 and 2.00 , then the follwing steps need to be taken :

Open list1 cross and list2_cross and change the first en-
try in the file to 2.

Delete all the other entries in the file list1 cross ,ezcept for
cross1_1.00 and cross1_2.00 . Similarly , delete all the other
entries in list2 cross except for cross2 1.00 and cross2 2.00

Once this is done , the cross intensity functions can be computed
by typing the following in the shell:

$. /cross

Then type 1 to compute Hy(t) .

Similarly , to compute Hyo(t) , type : ./cross and then enter 2.
The Cross Intensities at the different times for Hy,(t) are stored in
the files cross_correlation_1 and cross_correlation_2 . In these files ,
rows represent time and columns represent space.

14

