
DOCUMENTATION

1

Contents

1. Exporting Data from Brain Vision

2. Loading the exported data

3. Reading in the data and creating a data matrix

4. Viewing the data matrix

5. Performing a Singular Value decomposition

6. Filtering the data

7. Plotting the mean activity

8. Spatial Correlation Maps

9. Temporal Correlation Maps

10. Phase Analysis

11. Circular Variance and other quantities

12. Help for the functions

2

1 Exporting Data from Brain Vision

Data from the Brain Vision software can be exported as ASCII files (created
as “.dna” files).

2 Loading the Exported Data and creating a
Data matrix

Once the data has been exported as a .dna file , it can be loaded into MATLAB
for processing . First of all , it is necessary to change the MATLAB directory to
the directory where the files are located. This is done by using the cd command :

On my computer, all the files (data and MATLAB programs) are stored in
the folder Functions on the Desktop. Writing ls lists all the files in the current
directory . Writing ls *.dna lists all the files with an extension .dna . MATLAB
programs have an extension of .m. So typing ls *.m will list all the MATLAB
programs in the current directory .
Now , to load the data exported from the Brain Vision Software into MATLAB
, I wrote a program called load data.m. The syntax for this program is :

3

C = load data(filename);

The output C is the data from the .dna file . As an example , the file ’11.07.dna’
can be loaded by the following command :

C = load data(′11.07.dna′);

Note that this might take some time since these files are quite large.

3 Reading in the data and creating a data ma-
trix

Once the data has been loaded , the variable C should appear in the list of
variables in the workspace In order to read data from a variable time window
the command is :

X original = read data(a1, a2, s, m, n, C);

where a1=x coordinate of the upper left corner of the space window , a2=y
coordinate of the upper left corner of the space window , s = size of the window,
m=initial time , n=final time , C= loaded data from the previous step . For
example , suppose we wanted to read in the entire image for 700 frames . We
would then write:

X original = read data(1, 1, 99, 1, 700, C);

X original is the data matrix and contains the original dF/F values.

4 Viewing the data matrix

The data matrix can be viewed by typing :

show image(X original)

The resultant output looks like :

There appears to be a minor ripple at around frame 280 and then a major one
at about frame 520 .

4

5 Performing a Singular Value Decomposition

A singular value decomposition and subsequently retaining the principal com-
ponents can be done by running the following command:

Xrecon = perform svd(X, M);

where X is a data matrix and M is the number of principal components to
retain.As an example, we can do :

Xrecon = perform svd(X original, 10);

The output can be viewed by calling show image(Xrecon) and looks like :

This is a denoising process .

6 Filtering the data

Low pass filtering can be performed by calling :

Xfilt = filter data(X, Fpass);

where Fpass is the cut-off frequency. Only frequencies below Fpass are allowed
to pass through.For example, we can low pass filter the data with a cut-off
frequency of 100Hz.This should allow slowly varying trends to become visible.In
order to prevent the wave from affecting how the filtered data looks , we consider
data only upto time 270.

X2 = read data(1, 1, 99, 1, 270, C);
Xfilt = filter data(X2, 100);

The result looks like :

5

7 Plotting the mean activity

The mean activity can be plotted as a function of time by using:

R = plot mean(X, a, b);

where X is the data matrix . a is the initial time and b is the final time . As an
example :if we plot the mean activity of Xfilt as computed in the previous step
we see the following :

This shows a steady increase in activity as the time of the ripple approaches. If
we plot the mean activity of the original data by using the following command
:

R = plot mean(X original, 1, 270);

we see :

which appears to be a noisy version of the previous graph.

8 Spatial correlation Maps

The spatial correlation map can be computed by using the command :

R = spatial correlation(X);

where X is the data matrix. To look at the spatial correlation between pixels
before the ripple (from frame 1 to frame 270) , we first select a subset of the
image. Note that , calculating the spatial correlation between all the pixels is
computationally very intensive and in general my computer runs out of memory
.

6

X subset = read data(50, 50, 20, 1, 270, C);
R1 = spatial correlation(X subset)

The spatial correlation map then looks like :

9 Temporal Correlation Maps

The temporal correlation map can be computed by using :

R = temporal correlation(X);

where X is the data matrix. To look at the temporal correlations and to see the
phenomena after the wave , we read in a subset of the image but look at the
data over a long period of time till frame 700 .

X subset = read data(50, 50, 20, 1, 700, C);
R2 = temporal correlation(X subset)

The result looks like :

After the first minor ripple , there donot appear to any distincitive patterns
whereas , after the 2nd major ripple ,some interesting patterns can be ob-
served.To look at only this section of the data , we read in the images from
time frame 500 to 700 and then look at the temporal correlations.

X subset = read data(50, 50, 20, 500, 700, C);
R2 = temporal correlation(X subset)

This looks like:

7

10 Phase Analysis

The phases of the pixels in the image can be evaluated by using the command :

[P,M] = phases(X);

where X is the data matrix. This will display a movie of the phase histogram
as well as save the movie as a structure in the variable M.

[P,M] = phases(X original);

Looking at the Phase histogram of the original data , produces 2 constant peaks
superimposed on the histogram which makes it difficult to see how the histogram
is actually behaving:

So , we perform a Singular Value Decomposition and then look at the histogram.

[P,M] = phases(Xrecon);

to observe the bi-modal distribution as well as the phase precession.

8

11 Circular variance

The circular variance is an indicator of how widely distributed the phases are
. The circular variance as a function of time can be computed once the phase
analysis has been performed. Having obtained the matrix P which is essentially
the same as the data matrix with each pixel replaced by its correposnding phase,
the circular variance is computed by calling :

R = circular variance(X);

where X is the data matrix.

R circ = circular variance(X original);

which produces:

There appears to be a dip in the circular variance before the first minor ripple.
However , before the second major ripple the circular variance increases and then
falls again which seems to indicate phase synchronization prior to the ripple.

12 Help for the functions

Typing

help function name;

in the MATLAB command window will display the syntax for all the functions
described above. For example :

9

10

