Let $T : U \rightarrow V$ be linear. We defined $\ker(T) = \{x | x \in U, T(x) = 0\}$ and $\text{im}(T) = \{y | T(x) = y \text{ for some } x \in U\}$. According to the dimension equality we have that $\dim(\ker(T)) + \dim(\text{im}(T)) = \dim(U) = n$. We have that the linear map T is one-one or injective iff $\ker(T) = \{0\}$. If $U = V$ then T is injective iff T is surjective (onto). This is an easy consequence of the dimension equality.

For any linear map T we have a matrix representation. The matrix A of T depends on the chosen bases α and β of U and V, respectively:

$$\text{Mat}(T; \alpha_1, \alpha_2, \ldots, \alpha_n; \beta_1, \beta_2, \ldots, \beta_m) = (a_{ij}) \text{ where } T(\alpha_j) = \Sigma_{i=1}^{m} a_{ij} \beta_i; j = 1, \ldots, n; i = 1, \ldots, m$$

The matrix for T is an $m \times n$ matrix where $\dim(V) = m, \dim(U) = n$. Each of the n columns of A contain the m components of $T(\alpha_j)$ with respect to the basis β_j.

Let x be a vector in U. If $x = \Sigma_{j=1}^{n} x_j \alpha_j$, then $T(x) = T(\Sigma_{j=1}^{n} x_j \alpha_j) = \Sigma_{j=1}^{n} x_j T(\alpha_j) = \Sigma_{j=1}^{n} x_j \Sigma_{i=1}^{m} a_{ij} \beta_i = \Sigma_{i=1}^{m} (\Sigma_{j=1}^{n} a_{ij} x_j) \beta_i = \Sigma_{j=1}^{m} y_j \beta_i$

where

$$y_i = \Sigma_{j=1}^{n} a_{ij} x_j$$

Thus

$$\begin{pmatrix}
 a_{11} & a_{12} & \ldots & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & \ldots & a_{2n} \\
 \ldots & \ddots & \ldots & \ldots & \ldots \\
 a_{m1} & a_{m2} & \ldots & \ldots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \ldots \\
 \ldots \\
 x_n
\end{pmatrix}
=
\begin{pmatrix}
 y_1 \\
 y_2 \\
 \ldots \\
 \ldots \\
 y_m
\end{pmatrix}$$

Thus the map $T(x) = y$ has a coordinate representation as $Ax = y$. With this in mind, we see that

$$\dim(\text{im}(T)) = \dim(\text{columnspace } A) = s, \dim(\ker(T)) = \dim(\text{solution space for } Ax = 0) = n - r$$

where r is the row rank of A. By the dimension equality we have that $s + (n - r) = n$ which is $s = r$ that is row rank = column rank.

Example 1:

Let $U = \mathbb{R}^3, V = \mathbb{R}^4$ then the matrix $A = \begin{pmatrix}
 2 & 8 & -3 \\
 1 & 4 & 1 \\
 -5 & 2 & 2 \\
 1 & -3 & 8
\end{pmatrix}$ stands for the linear map T.
where \(T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -5 \end{pmatrix}, \quad T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 2 \end{pmatrix}, \quad T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix} \)

where we have chosen the unit vectors as bases for \(U = \mathbb{R}^3 \) and \(V = \mathbb{R}^4 \).

We have that

\[
\begin{pmatrix} 2 & 8 & -3 \\ 1 & 4 & 1 \\ -5 & 2 & 2 \\ 1 & -3 & 8 \end{pmatrix}
\]

has rank 3. This means that \(\ker(T) = \{0\} \), the map is injective and maps the 3 unit vectors to three linearly independent vectors. The image of the vector \(x \in \mathbb{R}^3 \) is a vector in \(\mathbb{R}^4 \):

\[
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 2x + 8y - 3z \\ x + 4y + z \\ -5x + 2y + 2z \\ x - 3y + 8z \end{pmatrix}
\]

\(\ker(T) \) is the solution space for the homogeneous system which as we already saw consists only of the zero-vector of \(\mathbb{R}^3 \).

The map \(T : \mathbb{R}^3 \to \mathbb{R}^4 \) is injective. We can find a linear map \(S : \mathbb{R}^4 \to \mathbb{R}^3 \) such that \(S \circ T : \mathbb{R}^3 \to \mathbb{R}^3 \) is the identity. Because \(T(e_1), T(e_2), T(e_3) \) are linearly independent, we can find a vector \(\beta_4 \) such that \(\{\beta_1 = T(e_1), \beta_2 = T(e_2), \beta_3 = T(e_3), \beta_4\} \) form a basis of \(\mathbb{R}^4 \). We define \(S \) on this basis by \(\beta_1 \mapsto e_1, \beta_2 \mapsto e_2, \beta_3 \mapsto e_3, \beta_4 \mapsto a \) where \(a \) is any vector in \(\mathbb{R}^3 \). For example \(a = 0 \in \mathbb{R}^3 \) is fine. Then \(S(T(e_1)) = S(\beta_1) = e_1 \) and similarly for the other unit vectors of \(\mathbb{R}^3 \). That is \(S(T(e_i)) = e_i \). That is, the composition \(S \circ T \) is the identity on the unit vectors of \(\mathbb{R}^3 \) and therefore the identity on \(\mathbb{R}^3 \). Because of \(S \circ T = id_{\mathbb{R}^3} \) we have for general reasons that \(S \) is surjective and \(T \) injective. Something we showed for arbitrary maps. We also see that \(S \) is not uniquely determined by \(T \). First \(\beta_4 \) is not unique and if we have found some \(\beta_4 \) we can assign any vector \(\alpha \) in \(\mathbb{R}^3 \) as its image under \(S \). The map \(S \) is unique only on \(im(S) \) by assigning to \(T(\alpha) \), the vector \(\alpha \).

Example 2. This is a simple example which makes the logic quite transparent. Let

\(T : \mathbb{R}^2 \to \mathbb{R}^3, e_1^2 \mapsto e_1^3, e_2^2 \mapsto e_2^3. \) The matrix of \(T \) is

\[
\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}
\]

We add the third unit vector \(e_3^3 \) to \(T(e_1^2) = e_1^3, T(e_2^2) = e_2^3 \) and define the map \(S \) as

\(S(T(e_1^2)) = e_1^2, S(T(e_2^2)) = e_2^3, S(e_3^3) = a = \begin{pmatrix} a \\ b \end{pmatrix}, a, b \) arbitrarily chosen. Then
This is an example where the product of two non-square matrices is square and invertible. Notice that
\[
\begin{pmatrix}
1 & 0 & a \\
0 & 1 & b
\end{pmatrix}
\begin{pmatrix}
1 & 0 & a \\
0 & 1 & b
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]
is also square but not the identity.

Matrices and linear maps can be identified. If A is an $m \times n$ -matrix, then
$L_A : \mathbb{R}^n \to \mathbb{R}^m, X \mapsto AX = Y$ is linear and $Mat(L_A) = A$. This is because $Ae_j^n = A_j$ where A_j is the j^{th} -column vector of A.

Example 3.
The matrix
\[
\begin{pmatrix}
2 & 3 & 1 \\
1 & 1 & 4
\end{pmatrix}
\]
stands for a map, A, from \mathbb{R}^3 into \mathbb{R}^2. The map is onto (why?), and therefore $\ker(A) + 2 = 3$, which gives us a one-dimensional null-space. How can we compute the kernel, that is find a basis? We have for
\[
\begin{pmatrix}
2 & 3 & 1 \\
1 & 1 & 4
\end{pmatrix}
\]
as row echelon form:
\[
\begin{pmatrix}
1 & 0 & 11 \\
0 & 1 & -7
\end{pmatrix}
This is $x = -11z, y = 7z$ or
\[
\begin{pmatrix}
-11 \\
7 \\
1
\end{pmatrix}
\]
ker(A) is the span of the vector

We have that the matrix of the composition of maps corresponds to the product of the matrices
If $S : U \to V, T : V \to W, A = Mat(S; a_1, a_2, \ldots, a_n; \beta_1, \beta_2, \ldots \beta_m), B = Mat(T; \beta_1, \beta_2, \ldots \beta_m; \gamma_1, \gamma_2, \ldots, \gamma_l)$
then

\[\text{Mat}(T \circ S; \alpha_1, \alpha_2, \ldots, \alpha_n; \gamma_1, \gamma_2, \ldots, \gamma_l) = BA \]

In particular, \(\text{Mat}(LBA) = BA : LBA(X) = (BA)X = B(AX) = L_B(L_A(X)) \). Thus \(L_{BA} = L_B \circ L_A \) and therefore \(\text{Mat}(L_{BA}) = \text{Mat}(L_B \circ L_A) = \text{Mat}(L_B)\text{Mat}(L_A) = BA \)

The linear map \(T : U \to V \) is invertible if there is a linear map \(S : V \to U \) such that \(S \circ T = \text{id}_U \) and \(T \circ S = \text{id}_V \). For a linear map \(T : U \to V \) to have an inverse, \(T^{-1} \), it is necessary that \(\dim U = \dim V \).

We have the following important result:

For an \(n \times n \) matrix the following are equivalent:

- \(Ax = 0 \) has only the trivial solution;
- \(Ax = y \) has for every \(y \) exactly one solution \(x \)
- \(A \) has an inverse.

All of this follows from the theorem that a linear map on a finite dimensional vector space is injective if and only if it is surjective.

Now, how can we find the inverse of a matrix? While the book postpones this up to a later chapter, see p.100, Example 2, using our current knowledge on linear maps this is actually quite trivial to do. Let us explain this on that example:

\[
A = \begin{pmatrix} 5 & 7 \\ 2 & 3 \end{pmatrix}
\]

stands for the linear map \(T = L_A : \mathbb{R}^2 \to \mathbb{R}^2 \) where

\[
\begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 5 \\ 2 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 7 \\ 3 \end{pmatrix}.
\]

That is \(A = \text{Mat}(T; e_1, e_2; e_1, e_2) \) where the \(e_i \) are the unit vectors in \(\mathbb{R}^2 \). We have

\[
T^{-1} \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad T^{-1} \begin{pmatrix} 7 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.
\]

Then obviously,

\[
\text{Mat}(T^{-1}; Te_1, Te_2; e_1, e_2) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

and this is not what we want. We want

\[
\text{Mat}(T^{-1}, e_1, e_2; e_1, e_2) = A^{-1}.
\]

For this we need to find

\[
T^{-1}(e_1) = \begin{pmatrix} x_{11} \\ x_{21} \end{pmatrix}, \quad T^{-1}(e_2) = \begin{pmatrix} x_{12} \\ x_{22} \end{pmatrix}
\]

But for this we need to express the unit vectors as linear combinations of \(\begin{pmatrix} 5 \\ 2 \end{pmatrix} \) and

\[
\begin{pmatrix} 7 \\ 3 \end{pmatrix} = x \begin{pmatrix} 5 \\ 2 \end{pmatrix} + y \begin{pmatrix} 7 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.
\]

This is the inhomogeneous linear system of
2 equations in 2 unknowns with augmented matrix
\[
\begin{pmatrix}
5 & 7 & 1 \\
2 & 3 & 0
\end{pmatrix}
\] which has the row echelon form:
\[
\begin{pmatrix}
1 & 0 & 3 \\
0 & 1 & -2
\end{pmatrix}
\]. Hence:
\[x = 3, y = -2.\]
And from:
\[
\begin{pmatrix}
1 \\
0
\end{pmatrix}
= 3 \begin{pmatrix}
5 \\
2
\end{pmatrix} - 2 \begin{pmatrix}
7 \\
3
\end{pmatrix}
\]
we get
\[
T^{-1} \begin{pmatrix}
1 \\
0
\end{pmatrix} = 3T^{-1} \begin{pmatrix}
5 \\
2
\end{pmatrix} - 2T^{-1} \begin{pmatrix}
7 \\
3
\end{pmatrix} = 3 \begin{pmatrix}
1 \\
0
\end{pmatrix} - 2 \begin{pmatrix}
0 \\
1
\end{pmatrix} = \begin{pmatrix}
3 \\
-2
\end{pmatrix}
\]
and similarly for the second column of the inverse. Actually we can work out simultaneously both inhomogeneous systems where the right hand sides are the unit vectors
\[
\begin{pmatrix}
5 & 7 & 1 & 0 \\
2 & 3 & 0 & 1
\end{pmatrix}, \text{ row echelon form: } \begin{pmatrix}
1 & 0 & 3 & -7 \\
0 & 1 & -2 & 5
\end{pmatrix}
\]
Thus, \(\text{Mat}(T^{-1}; e_1, e_2; e_1, e_2) = \begin{pmatrix}
3 & -7 \\
-2 & 5
\end{pmatrix}\).

Let \(A\) be an \(n \times n\) matrix where \(L_A\) has an inverse. Then \(A\) has an inverse \(A^{-1}\). Then if \(A_j\) is the \(j^{th}\) column of \(A\) then \(L_A(e_j) = A_j\). Then if
\[x_1A_1 + x_2A_2 + \ldots + x_nA_n = e_j,\]
where \(e_j\) is the \(j\)th unit vector
then applying \(L_A^{-1}\) to this equation gives:
\[x_1e_1 + x_2e_2 + \ldots + x_ne_n = L_A^{-1}(e_j)\]
This is \(L_A^{-1}(e_j) = \begin{pmatrix}
x_{1j} \\
x_{2j} \\
\vdots \\
x_{nj}
\end{pmatrix} = X_j\) and the matrix with columns \(X_j\) is the matrix of \(L_A^{-1}\) and the inverse of \(A\).

Let \((A \mid I_n)\) be the matrix \(A\) augmented by the \(n\) columns of unit vectors \(e_1, e_2, \ldots, e_n\). Then using the elementary row operations transforms \(A\) into \(I_n\) and \(I_n\) into \(A^{-1}\).

\[(A \mid I_n) \overset{\text{elementary row operations}}{\Rightarrow} (I_n \mid A^{-1})\]
Actually, \(AA^{-1} = I_n\). This tells us that \(L_A^{-1}\) is injective. But then it must be also surjective, that is \(AA^{-1}\) also.