1. Prove that a finite abelian group that is not cyclic contains a subgroup which is isomorphic to $\mathbb{Z}_p \oplus \mathbb{Z}_p$.

2. Let A be an abelian group of order n and let m be an integer that divides n. Prove that A contains a subgroup of order m.

3. A finite abelian group is directly irreducible if it is not the direct sum of abelian groups of smaller order. Give a direct proof that every finite abelian group is the direct sum of directly irreducible abelian groups. Characterize the directly irreducible abelian groups.

4. Let A, B, C be finite abelian groups. Show that if $A \oplus B \cong A \oplus C$ then $B \cong C$.

5. Let n be a positive integer. Show that every abelian group of order n is cyclic iff n is not divisible by the square of any prime.