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Motivation: seismic oil and gas exploration

Seismic exploration

Seismic waves in the
subsurface induced by
sources (shots)

Measurements of seismic
signals on the surface or
in a well bore

Determine the acoustic or
elastic parameters of
the subsurface
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Acoustic wave equation

Consider an acoustic wave equation in the time domain

utt = Au in Ω, t ∈ [0,T ]

with initial conditions

u|t=0 = u0, ut |t=0 = 0

The spatial operator A ∈ RN×N is a fine grid discretization of

A(c) = c2∆

with the appropriate boundary conditions
The solution is

u(t) = cos(t
√
−A)u0
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Source model

We stack all p sources in a single tall skinny matrix S ∈ RN×p and
introduce them in the initial condition

u|t=0 = S, ut |t=0 = 0

The solution matrix u(t) ∈ RN×p is

u(t) = cos(t
√
−A)S

We assume the form of the source matrix

S = q2(A)CE,

where E are p point sources supported on the surface, q2(ω) is
the Fourier transform of the source wavelet and C = diag(c)

Here we take q2(ω) = eσω with small σ so that S is localized
near E, only assumes the knowledge of c and thus A near the
surface
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Receiver and data model

For simplicity assume that the sources and receivers are
collocated
Then the receiver matrix R ∈ RN×p is

R = C−1E

Combining the source and receiver we get the data model

F(t ; c) = RT cos(t
√
−A(c))S,

a p × p matrix function of time
The data model can be fully symmetrized

F(t) = B̂T cos
(

t
√
−Â
)

B̂,

with Â = C∆C and B̂ = q(Â)E
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Seismic inversion and imaging

1 Seismic inversion: determine c from the knowledge of measured
data F?(t) (full waveform inversion, FWI); highly nonlinear since
F( · ; c) is nonlinear in c

Conventional approach: non-linear least squares (output least
squares, OLS)

minimize
c

‖F? − F( · ; c)‖2
2

Abundant local minima

Slow convergence

Low frequency data needed
2 Seismic imaging: estimate c or its discontinuities given F(t) and

also a smooth kinematic model c0
Conventional approach: linear migration (Kirchhoff, reverse time
migration - RTM)

Major difficulty: multiple reflections
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Reduced order models
The data is always discretely sampled, say uniformly at tk = kτ
The choice of τ is very important, optimally we want τ around
Nyquist rate
The discrete data samples are

Fk = F(kτ) = B̂T cos
(

kτ
√
−Â
)

B̂ =

= B̂T cos
(

k arccos
(

cos τ
√
−Â
))

B̂ = B̂T Tk (P̂)B̂,

where Tk is Chebyshev polynomial and the propagator is

P̂ = cos
(
τ

√
−Â
)

We want a reduced order model (ROM) P̃, B̃ that fits the
measured data

Fk = B̂T Tk (P̂)B̂ = B̃T Tk (P̃)B̃, k = 0, . . . ,2n − 1
Mamonov, Druskin, Zaslavsky Backprojection imaging 7 / 42



Projection ROMs
Projection ROMs are obtained from

P̃ = VT P̂V, B̃ = VT B̂,

where V is an orthonormal basis for some subspace
How do we get a ROM that fits the data?
Consider a matrix of solution snapshots

U = [û0, û1, . . . , ûn−1] ∈ RN×np, ûk = Tk (P̂)B̂

Theorem (ROM data interpolation)

If span(V) = span(U) and VT V = I then

Fk = B̂T Tk (P̂)B̂ = B̃T Tk (P̃)B̃, k = 1, . . . ,2n − 1,

where P̃ = VT P̂V ∈ Rnp×np and B̃ = VT B̂ ∈ Rnp×p.
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Obtaining the ROM from the data

We do not know the solutions in the whole domain U and thus V is
unknown
How do we obtain the ROM from just the data Fk?
The data does not give us U, but it gives us the inner products!
A basic property of Chebyshev polynomials is

Ti(x)Tj(x) =
1
2

(Ti+j(x) + T|i−j|(x))

Then we can obtain

(UT U)i,j = uT
i uj =

1
2

(Fi+j + Fi−j),

(UT P̂U)i,j = uT
i P̂uj =

1
4

(Fj+i+1 + Fj−i+1 + Fj+i−1 + Fj−i−1)
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Obtaining the ROM from the data

Suppose U is orthogonalized by a block QR procedure

U = VLT ,

so V = UL−T , where L is a block Cholesky factor of the Gramian
UT U known from the data

UT U = LLT

The projection is given by

P̃ = VT P̂V = L−1
(

UT P̂U
)

L−T ,

where UT P̂U is also known from the data
The use of Cholesky for orthogonalization is essential, (block)
lower triangular structure is the linear algebraic equivalent of
causality
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Use of ROMs

Once we have the ROM P̃ = VT P̂V, B̃ = VT B̂ how do we estimate
c from it?

The ROM for the operator A itself is

Ã =
2
τ2 (P̃− I)

from truncated Taylor’s expansion

Inversion: transform Ã to a block finite difference (bFD)
scheme, use the bFD coefficients in optimization

Imaging: Using a smooth kinematic model c0 backproject Ã to
get the coefficient c directly
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Seismic inversion: optimization preconditioning

Recall the conventional FWI (OLS)

minimize
c

‖F? − F( · ; c)‖22

Replace the objective with a “nonlinearly preconditioned”
functional

minimize
c

‖Ã? − Ã(c)‖2F ,

where Ã? is computed from the data F? and Ã(c) is a (highly)
nonlinear mapping

Ã : c→ A(c)→ U→ V→ P̃→ Ã

Why does this have a preconditioning effect?
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Advantages of ROM-preconditioned optimization

The biggest issue of conventional OLS FWI is the abundance of
local minima (cycle skipping)

The dependency of A(c) = c2∆ on c2 is linear

In a certain parametrization the dependency of Ã on c2 should be
close to linear

The preconditioned objective functional is close to quadratic, thus
close to convex

Approximate convexity leads to faster, more robust convergence

Implicit orthogonalization of solution snapshots V = UL−T

removes the multiple reflections
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
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Conventional vs. preconditioned in 1D
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
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Imaging: backprojection

The ROM for Ã approximately satisfies

Ã ≈ VT ÂV

If the subspace spanned by V is sufficiently rich, then

VVT ≈ I,

so we can backproject the ROM to the fine grid space

Â ≈ VÃVT ≈ VVT ÂVVT

Problem: we do not know V, since the snapshots U are unknown
to us in the whole domain
Known smooth kinematic model c0 is needed
From c0 we can explicitly compute everything: Â0, Ã, U0 and,
most important, V0
Replace the unknown true V by known V0

Â ≈ V0ÃVT
0
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Backprojection: extracting the PDE coefficient

We do not need the whole operator A or Â, just the fine grid
coefficient c2

Recall that Â = C∆C, thus

c2 ∝ diag(Â)

Similarly for the difference we have

δc2 = c2 − c2
0 ∝ diag(Â− Â0)

Approximate Â and Â0 by their backprojections to obtain an
imaging relation

δc2 ∝ diag
(

V0(Ã− Ã0)VT
0

)
Choosing different proportionality factors leads to various imaging
formulae, for example a multiplicative

c? = c0

√
1 + αδc2
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Backprojection imaging: features

Conventional imaging techniques (Kirchhoff, RTM) are linear in
the data
Our approach is non-linear because of implicit
orthogonalization

P̃ = L−1
(

UT P̂U
)

L−T , UT U = LLT

Block Cholesky: causal orthogonalization, removes the “tail”,
only the wavefront survives
Thus, multiple reflection artifacts are removed
We image correctly not only the locations of reflectors, but also
their strength: true amplitude imaging
Computationally cheap: we need a forward solution (same as
RTM) and an extra orthogonalization step
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Removal of multiple reflection artifacts
True sound speed c RTM image

Backprojection imageA simple layered model, p = 12
sources/receivers (black ×)

Multiple reflections from waves
bouncing between layers and
surface

Each multiple creates an RTM
artifact below actual layers
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Solution snapshot orthogonalization
Solution snapshots U Orthogonalized basis V

x
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A 1D analogue of the previous example
Strong primaries/multiples in U, almost none in V
The operator Â is probed with V that is mostly a
single propagating wavefront
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High contrast imaging: hydraulic fractures
True c Backprojection difference c? − c0

Important application: seismic monitoring of hydraulic fracturing

Multiple thin fractures (down to 1cm in width, here 10cm)

Very high contrasts: c = 4500m/s in the surrounding rock,
c = 1500m/s in the fluid inside fractures

Strong reflections, any linearized image dominated with multiplesMamonov, Druskin, Zaslavsky Backprojection imaging 31 / 42



High contrast imaging: hydraulic fractures
True c RTM difference c? − c0
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Numerical example: Marmousi model

Classical Marmousi model, 13.5km × 2.7km

Forward problem is discretized on a 15m grid with
N = 900× 180 = 162,000 nodes

Kinematic model c0: smoothed out true c (465m horizontally, 315m
vertically)

Time domain data sample rate τ = 33.5ms, source frequency about
15Hz, n = 35 data samples measured

Number of sources/receivers p = 90 uniformly distributed with spacing
150m

Data is split into 17 overlapping windows of 10 sources/receivers each
(1.5km max offset)

Reflecting boundary conditions

No data filtering, everything used as is (surface wave, reflections from
the boundaries, multiples)
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Backprojection imaging: Marmousi model
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Backprojection imaging: Marmousi model
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Marmousi backprojection image: well log
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Marmousi backprojection image: well log
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Marmousi backprojection image: well log
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Marmousi backprojection image: well log
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Marmousi backprojection image: well log
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Marmousi backprojection image: well log
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Conclusions and future work
Novel approach to seismic imaging using reduced order models
Time domain formulation is essential, makes use of causality (linear
algebraic analogue - Cholesky decomposition)
Nonlinear construction of ROM via implicit causal orthogonalization of
solution snapshots
Strong suppression of multiple reflection artifacts

Future work:

Non-symmetric setting (non-collocated sources/receivers)
Full waveform inversion in higher dimensions
Better theoretical understanding

References:
[1] A.V. Mamonov, V. Druskin, M. Zaslavsky, Nonlinear seismic imaging via
reduced order model backprojection, SEG Technical Program Expanded
Abstracts 2015: pp. 4375–4379.
[2] V. Druskin, A. Mamonov, A.E. Thaler and M. Zaslavsky,
Direct, nonlinear inversion algorithm for hyperbolic problems via
projection-based model reduction. arXiv:1509.06603 [math.NA], 2015.

Mamonov, Druskin, Zaslavsky Backprojection imaging 42 / 42


