Nonlinear seismic imaging via
reduced order model backprojection

Alexander V. Mamonov',
Vladimir Druskin® and Mikhail Zaslavsky?

"University of Houston,
2Schlumberger-Doll Research Center

Mamonov, Druskin, Zaslavsky Backprojection imaging



Motivation: seismic oil and gas exploration

@ Seismic exploration

@ Seismic waves in the
subsurface induced by
sources (shots)

@ Measurements of seismic
signals on the surface or
in a well bore

@ Determine the acoustic or
elastic parameters of

the subsurface
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Acoustic wave equation

@ Consider an acoustic wave equation in the time domain
ur=Au inQ, tel0,T]
with initial conditions
Ult—o = Up, Ut[t=0 =0
@ The spatial operator A € RV*N is a fine grid discretization of
Alc) = 2A

with the appropriate boundary conditions

@ The solution is
u(t) = cos(tv—A)up [l]l
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Source model

@ We stack all p sources in a single tall skinny matrix S € RN*P and
introduce them in the initial condition

Ui—0=39S, Wo=0
@ The solution matrix u(t) € RN*P is
u(t) = cos(tv—A)S
@ We assume the form of the source matrix
S = ¢°(A)CE,

where E are p point sources supported on the surface, ¢?(w) is
the Fourier transform of the source wavelet and C = diag(c)
@ Here we take g?(w) = e°“ with small o so that S is localized
near E, only assumes the knowledge of ¢ and thus A near the llll
surface
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Receiver and data model

@ For simplicity assume that the sources and receivers are
collocated

@ Then the receiver matrix R € RN*P is
R=C'E
@ Combining the source and receiver we get the data model

F(t; c) T cos(t/—A(c))S,

a p x p matrix function of time
@ The data model can be fully symmetrized

F(t) = B cos (t —K)

with A = CAC and B = g(A)E llll
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Seismic inversion and imaging

@ Seismic inversion: determine ¢ from the knowledge of measured
data F*(t) (full waveform inversion, FWI); highly nonlinear since
F(-;c)is nonlinearinc

e Conventional approach: non-linear least squares (output least
squares, OLS)
minimize |F* — F(:; B

e Abundant local minima
@ Slow convergence
o Low frequency data needed

@ Seismic imaging: estimate ¢ or its discontinuities given F(t) and
also a smooth kinematic model ¢g
e Conventional approach: linear migration (Kirchhoff, reverse time
migration - RTM)

o Major difficulty: multiple reflections wl
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Reduced order models

@ The data is always discretely sampled, say uniformly at fy = kr

@ The choice of 7 is very important, optimally we want = around
Nyquist rate

@ The discrete data samples are

Fy = F(kr) = BT cos (/wﬁ) B-—
— B cos <k arccos <cosT\/ —R)) B =B’ 7«(P)B,

where Ty is Chebyshev polynomial and the propagator is

P — cos ( _z\)

@ We want a reduced order model (ROM) P, B that fits the

measured data ll!'l
Fr =BT T(P)B=B'T((P)B, k=0,...,2n—1
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Projection ROMs

@ Projection ROMs are obtained from
P=V'PV, B=VTB,
where V is an orthonormal basis for some subspace

@ How do we get a ROM that fits the data?
@ Consider a matrix of solution shapshots

U= [Go,ﬁ1,. . .,Gn_1] S Ranp, Gk = Tk(P)B

Theorem (ROM data interpolation)
If span(V) = span(U) and V'V = I then

F,=B'T,(P)B=B'T(«(P)B, k=1,....,2n—1,

where P = VTPV € R*™ and B = VTB € R™P*P,
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Obtaining the ROM from the data

@ We do not know the solutions in the whole domain U and thus V is
unknown

@ How do we obtain the ROM from just the data Fy?
@ The data does not give us U, but it gives us the inner products!
@ A basic property of Chebyshev polynomials is

TOOTX) = 3 (Tosf6) + Ty ()

@ Then we can obtain

’
(V'U);; =ulu; = 5 (Fisj + Fij),

. - 1
(UTPU);; =u/Pu; = 7 Fivitt +Fiipn + Fpyiq +Fjiy) llll
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Obtaining the ROM from the data

@ Suppose U is orthogonalized by a block QR procedure
U=VL’,

soV =UL-T, where L is a block Cholesky factor of the Gramian
U’ U known from the data

u'u=LL"
@ The projection is given by
P—V'PV L' (UTPU)L T,
where UTPU is also known from the data
@ The use of Cholesky for orthogonalization is essential, (block)

lower triangular structure is the linear algebraic equivalent of lﬂl
causality
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Use of ROMs

@ Once we have the ROM P = VTPV, B = V7B how do we estimate
c from it?

@ The ROM for the operator A itself is
~ 2
A=—(P-1I
S(P-
from truncated Taylor’s expansion

@ Inversion: transform A to a block finite difference (bFD)
scheme, use the bFD coefficients in optimization

e Imaging: Using a smooth kinematic model ¢, backproject A to
get the coefficient ¢ directly llll
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Seismic inversion: optimization preconditioning

@ Recall the conventional FWI (OLS)
minimize ||F* — F(- .c)3

@ Replace the objective with a “nonlinearly preconditioned”
functional o
minimize | A* - A(c)||%,

where A* is computed from the data F* and Z\(c) is a (highly)
nonlinear mapping

ﬂ:c—>A(c)—>U—>V—>ﬁ—>K

@ Why does this have a preconditioning effect? llll
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Advantages of ROM-preconditioned optimization

@ The biggest issue of conventional OLS FWI is the abundance of
local minima (cycle skipping)

@ The dependency of A(c) = c?A on ¢ is linear

@ In a certain parametrization the dependency of A on c2 should be
close to linear

@ The preconditioned objective functional is close to quadratic, thus
close to convex

@ Approximate convexity leads to faster, more robust convergence

@ Implicit orthogonalization of solution snapshots V = UL~"
removes the multiple reflections llll
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
CG iteration 1, Er =0.137937 CG iteration 1, Er =0.080594

0.2 . . . . . 0.2 . . . . .
. . . 0 . . .

Faster convergence.
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
CG iteration 5, Er =0.108350 CG iteration 5, Er =0.010831
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Faster convergence.
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
CG iteration 10, Er =0.081899 CG iteration 10, Er =0.002826
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Faster convergence.
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
CG iteration 15, Er =0.070725 CG iteration 15, Er =0.002226
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Faster convergence.
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
CG iteration 1, Er =0.278869 CG iteration 1, Er =0.272127
‘ ‘ ‘ ‘ —cG ‘ ‘ ‘ ‘ —cG
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Automatic removal of multiple reflections.

|
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
CG iteration 5, Er =0.265722 CG iteration 5, Er =0.197026

‘ ‘ ‘ ‘ —cG ‘ ‘ ‘ ‘ —cG
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Automatic removal of multiple reflections.
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
CG iteration 10, Er =0.273922 CG iteration 10, Er =0.157774
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Automatic removal of multiple reflections.
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
CG iteration 15, Er =0.268569 CG iteration 15, Er =0.138945

‘ ‘ ‘ ‘ —cG ‘ ‘ ‘ ‘ —cG
2 —true| 2 —true
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Automatic removal of multiple reflections.
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
CG iteration 1, Er =0.173770 CG iteration 1, Er =0.147049

0'20 0.5 1 15 2 25 3 0'20 0.5 1 15 2 25 3

|

Avoiding the cycle skipping.
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
CG iteration 5, Er =0.174695 CG iteration 5, Er =0.105966

0'20 0.5 1 15 2 25 3 0'20 0.5 1 15 2 25 3

|

Avoiding the cycle skipping.
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
CG iteration 10, Er =0.174688 CG iteration 10, Er =0.095547

0'20 0.5 1 15 2 25 3 0'20 0.5 1 15 2 25 3

|

Avoiding the cycle skipping.
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Conventional vs. preconditioned in 1D

Conventional Preconditioned
CG iteration 15, Er =0.174689 CG iteration 15, Er =0.086519

0'20 0.5 1 15 2 25 3 0'20 0.5 1 15 2 25 3

|

Avoiding the cycle skipping.

Mamonov, Druskin, Zaslavsky Backprojection imaging



Imaging: backprojection

@ The ROM for A approximately satisfies
A~VTAV

@ If the subspace spanned by V is sufficiently rich, then

so we can backproject the ROM to the fine grid space
A~ VAV’ ~ VVTAVV’

@ Problem: we do not know V, since the snapshots U are unknown

to us in the whole domain
@ Known smooth kinematic model ¢, is needed
@ From ¢y we can explicitly compute everything: Ag, A, Ug and,

most important, Vg
@ Replace the unknown true V by known Vg ll!'l
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Backprojection: extracting the PDE coefficient

@ We do not need the whole operator A or A, just the fine grid
coefficient ¢?
@ Recall that A = CAC, thus

c? o diag(A)
@ Similarly for the difference we have
5c? = ¢® — ¢3 o diag(A — Ay)

@ Approximate A and IT\O by their backprojections to obtain an
imaging relation

5¢2  diag (VO(K —AgV] )

@ Choosing different proportionality factors leads to various imaging
formulae, for example a multiplicative

c* =coV 1+ adc? llll
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Backprojection imaging: features

@ Conventional imaging techniques (Kirchhoff, RTM) are linear in
the data

@ Our approach is non-linear because of implicit
orthogonalization

P—L" (UTI3U> L7, Uu=LL"

@ Block Cholesky: causal orthogonalization, removes the “tail”,
only the wavefront survives

@ Thus, multiple reflection artifacts are removed

@ We image correctly not only the locations of reflectors, but also
their strength: true amplitude imaging

@ Computationally cheap: we need a forward solution (same as
RTM) and an extra orthogonalization step lﬂ'l
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Removal of multiple reflection artifacts

True sound speed ¢

RTM image
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@ A simple layered model, p = 12
sources/receivers (black x)

@ Multiple reflections from waves
bouncing between layers and
surface

@ Each multiple creates an RTM
artifact below actual layers
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Solution snapshot orthogonalization

Solution snapshots U

Orthogonalized basis V
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@ A 1D analogue of the previous example
@ Strong primaries/multiples in U, almost none in V

@ The operator Ais probed with V that is mostly a
single propagating wavefront lﬂ'l
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High contrast imaging: hydraulic fractures

True ¢ Backprojection difference ¢* — ¢g

..................

2 4 6 8 101214161820222426283032343638 2 4 6 8101214161820222426283032343638

[ __

15 2 2.5 3 3.5 4 4.5 -3 -2 -1 0 1 2 3
@ Important application: seismic monitoring of hydraulic fracturing

@ Multiple thin fractures (down to 1cm in width, here 10cm)

@ Very high contrasts: ¢ = 4500m/s in the surrounding rock, lﬂ.l
¢ = 1500m/s in the fluid inside fractures
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High contrast imaging: hydraulic fractures
True c RTM difference ¢* — ¢

2 4 6 8 101214161820222426283032343638 2 4 6 8101214161820222426283032343638

[ |
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@ Important application: seismic monitoring of hydraulic fracturing

@ Multiple thin fractures (down to 1¢m in width, here 10cm)

@ Very high contrasts: ¢ = 4500m/s in the surrounding rock, wl
¢ = 1500m/s in the fluid inside fractures
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Numerical example: Marmousi model

Classical Marmousi model, 13.5km x 2.7km

Forward problem is discretized on a 15m grid with
N =900 x 180 = 162,000 nodes

Kinematic model ¢q: smoothed out true ¢ (465m horizontally, 315m
vertically)

Time domain data sample rate = = 33.5ms, source frequency about
15Hz, n = 35 data samples measured

Number of sources/receivers p = 90 uniformly distributed with spacing
150m

Data is split into 17 overlapping windows of 10 sources/receivers each
(1.5km max offset)

Reflecting boundary conditions

No data filtering, everything used as is (surface wave, reflections from
the boundaries, multiples)
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Backprojection imaging: Marmousi model

030609 1215 1.8 21 24 27 3 33 3.6 3.9 42 45 48 51 54 57 6 63 66 6.9 72 7.5 7.8 8.1 84 87 396 9.910210510811.111.411.7 12 123126129132

030609 12151821 24 27 3
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Backprojection imaging: Marmousi model

ackprojection imagin



Marmousi backprojection i |mage well Iog

030609121518212427 3 33363942454.8515457 6 636669727.57.88.18487 9 9396 9.910210.510.811.111.4117 12 123126129132
x=4.50 km
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Marmousi backprojection i |mage well Iog

030609121518212427 3 333639424548515457 6 6366697275788.18487 9 9309.69.910210.510.811.111.411.71212.312.612.913.2
x=6.00 km
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ckprojection imagil



Marmousi backprojection i |mage well Iog

030609121518212427 3 333639424548515457 6 6366697275788.18487 9 9309.69.910210.510.811.111.411.71212.312.612.913.2
x=6.90 km
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Marmousi backprojection i |mage well Iog

030609121518212427 3 333639424548515457 6 6366697275788.18487 9 9309.69.910210.510.811.111.411.71212.312.612.913.2

X=7.65 km
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ckprojection imagil



Marmousi backprojection i |mage well Iog

030609121518212427 3 33363942454.8515457 6 636669727.57.88.18487 9 9396 9.910210.510.811.111.4117 12 123126129132
x=10.50 km
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Marmousi backprojection image: well log
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Conclusions and future work

@ Novel approach to seismic imaging using reduced order models

@ Time domain formulation is essential, makes use of causality (linear
algebraic analogue - Cholesky decomposition)

@ Nonlinear construction of ROM via implicit causal orthogonalization of
solution snapshots

@ Strong suppression of multiple reflection artifacts

Future work:

@ Non-symmetric setting (non-collocated sources/receivers)
@ Full waveform inversion in higher dimensions
@ Better theoretical understanding
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